
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1567 November, 1995
C.B.C.L. Memo No. 133

Learning Fine Motion by Markov Mixtures of
Experts

Marina Meil�a Michael I. Jordan

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

Compliant control is a standard method for performing �ne manipulation tasks, like grasping and assembly,
but it requires estimation of the state of contact between the robot arm and the objects involved. Here
we present a method to learn a model of the movement from measured data. The method requires little
or no prior knowledge and the resulting model explicitly estimates the state of contact . The current state
of contact is viewed as the hidden state variable of a discrete HMM. The control dependent transition
probabilities between states are modeled as parametrized functions of the measurement. We show that
their parameters can be estimated from measurements concurrently with the estimation of the parameters
of the movement in each state of contact . The learning algorithm is a variant of the EM procedure. The
E step is computed exactly; solving the M step exactly would require solving a set of coupled nonlinear
algebraic equations in the parameters. Instead, gradient ascent is used to produce an increase in likelihood.

Copyright c Massachusetts Institute of Technology, 1996

This report describes research done at the Dept. of Electrical Engineering and Computer Science, the Dept. of Brain and
Cognitive Sciences, the Center for Biological and Computational Learning and the Arti�cial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the arti�cial intelligence research is provided in part by the Advanced
Research Projects Agency of the Dept. of Defense and by the O�ce of Naval Research. Michael I. Jordan is a NSF Presidential
Young Investigator. The authors can be reached at M.I.T., Dept. of Brain and Cognitive Sciences, 79 Amherst St., Cambridge
MA 02139, USA. E-mail: mmp@psyche.mit.edu, jordan@psyche.mit.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

For a large class of robotics tasks, such as assembly tasks
or manipulation of relatively light-weight objects, under
appropriate damping of the manipulator the dynamics of
the objects can be neglected. For these tasks the main
di�culty is in having the robot achieve its goal despite
uncertainty in its position relative to the surrounding
objects. Uncertainty is due to inaccurate knowledge of
the geometric shapes and positions of the objects and of
their physical properties (surface friction coe�cients), or
to positioning errors in the manipulator. The standard
solution to this problem is controlled compliance [9]. Un-
der compliant motion, the task is performed in stages.
In each stage the robot arm maintains contact with a se-
lected surface or feature of the environment. The stage
ends when contact with the feature corresponding to the
next stage is made. The goal itself is usually de�ned as
satisfaction of a set of contact constraints rather than
�xed position and force references.

Decomposing the given task into subtasks and speci-
fying each goal or subgoal in terms of contact constraints
has proven to be a particularly fertile idea, from which
a fair number of approaches have evolved. But each of
them have to face and solve the problem of estimating
the state of contact (i.e. checking if the contact with the
correct surface is achieved), a direct consequence of deal-
ing with noisy measurements. The earliest approaches
such as guarded moves [2] and compliance control [9] are
problem dependent and deal only indirectly with uncer-
tainty . Preimage �ne motion planning [8] directly in-
corporates uncertainty and provides a formal problem
statement and approach, but becomes computationally
intractable in the case of noisy measurements. Attempt-
ing to overcome this last di�culty are the proposals of
[10] local control around a nominal path (LCNP) and
[5] feature based programming. The latter treats the
uncertanty in position and velocity in a probabilistic
framework. It associates to each state of contact the
coresponding movement model; that is: a relationship
between positions and nominal 1 and actual velocities
that holds over a domain of the position-nominal veloc-
ity space. Then it constructs an observer which uses
a sequence of recent measurements in order to decide
which is the current movement model. All the above ap-
proaches assume prior geometrical and physical knowl-
edge of the environment.

In this paper we present a method to learn a model of
the environment which will serve to estimate the state of
contact and to predict future positions from noisy mea-
surements. The current movement model is viewed as
the hidden state variable of a discrete HMM. The control
dependent transition probabilities between states are ex-
plicitly modeled as parametrized functions of the mea-
surement. We call this modelMarkov Mixture of Experts

1The nominal velocity is the velocity of the arm under
the same actuator force if it was moving in free space. It is
proportional in size and identical in orientation to the force
vector exerted by the actuators (the active force). When the
object is subject to reactive forces from the surfaces it is in
contact with, the actual velocity does not coincide with the
nominal velocity.

(MME) and show how its parameters can be estimated.
The rest of the paper is organized as follows: Section 2
de�nes the problem, in section 3 the learning algorithm
is derived, section 4 presents a simulated example and
section 5 discusses other aspects relevant to the imple-
mentation and directions for further work.

2 Reachability Graphs and Markov

Mixtures of Experts

For any assembly of objects, the space of all the relative
degrees of freedom of the objects in the assembly is called
the con�guration space (C-space). Every possible con�g-
uration of the assembly is represented by a unique point
in the C-space and movement in the real space maps into
continuous trajectories in the C-space. The sets of points
corresponding to each state of contact create a partition
over the C-space. Because trajectories are continuous, a
point can move from a state of contact only to one of the
neighboring states of contact . This can be depicted by
a directed graph with vertices representing states of con-
tact and arcs for the possible transitions between them,
called the reachability graph. If no constraints on the ve-
locities are imposed, then in the reachability graph each
state of contact is connected to all its neighbours. But if
the range of velocities restricted, the connectivity of the
graph decreases and the connections are generally non-
symmetric. Figure 1 shows an example of a C-space and
its reachability graph for velocities with only positive
componenets. On the other hand, longer movement du-
rations between observations could allow more than one
state transition to occur, leading to an e�ective increase
in the number of neighbours of a state.

Ideally, in the absence of noise, the states of contact
and every transition through the graph can be perfectly
observed. To deal with the uncertainty in the measure-
ments, we will attach probabilities to the arcs of the
graph in the followingway: Let us denote byQi the set of
con�gurations corresponding to state of contact i and let
the movement of a point xwith uniform nominal velocity
v for a time �T be given by x(t +�T ) = f�(x; v;�T );
both x and v are vectors of same dimension as the C-
space. Now, let x0; v0 be the noisy measurements of the
true values x; v; x 2 Qj and P [x; vjx0; v0; j] the poste-
rior distribution of x; v given the measurements and the
state of contact . Then, the probability of transition to a
state i from a given state j in time �T can be expressed
as:

P [ijx0; v0; j] =

Z
fx;vjx2Qj;f�(x;v;�T )2Qig

P [x; vjx0; v0; j]dx dv = aij(x
0; v0)

(1)
We de�ne a transition probability matrix A = [aji]

m
i;j=1

and assume a measurement noise p[x0jq = i; x 2 Qi].
This allows us to construct a Hidden Markov Model
(HMM) with output x having a continous emission prob-
ability distribution p and where the state of contact plays
the role of a hidden state variable. Our main goal is to
estimate this model from observed data.

To give a general statement of the problem we will as-
sume that all position, velocity and force measurements

1



x

y

v

A

B

C

G

B stick

B slide

A stick

A slide

(a) (b)

Figure 1: Restricted movement in a 2D space (a) and the corresponding reachability graph (b). The nodes represent
movement models: C is the free space, A and B are surfaces with static and dynamic friction, G represents jamming
in the corner. The velocity v has positive components.

are represented by the input vector u; an output vec-
tor y of dimensionality ny contains the future position
(which our model will learn to predict). Observations
are made at integer multiples of time �T , indexed by
t = 0; 1; ::T . If �T is a constant sampling time the
dependency of the transition probability on �T can be
ignored. For the purpose of the parameter estimation,
the possible dependence between y(t) and u(t + 1) will
also be ignored, but it should be considered when the
trained model is used for prediction.

Throughout the following section we will also make
the assumption that the input-output dependence is de-
scribed by a gaussian conditional density p(y(t)jq(t) = k)
with mean f(u(t); �k) and variance � = �2I. This is
equivalent to assuming that given the state of contact
all noise is additive gaussian output noise, which is ob-
viously an approximation. But this approximation will
allow us to derive certain quantities in closed form.

The function f(u; �k) is the movement model associ-
ated with state of contact k (with �k its parameter vec-
tor) and q is the selector variable which takes on values
from 1 to m. Sometimes we will �nd it useful to parti-
tion the domain of a movement model into subdomains
and to represent it by a di�erent function (i.e a di�erent
set of parameters �k) on each of the subdomains; when
f(u; �k) will bear physical signi�cance, the name move-

ment model will be to them, but in general each f(u; �k)
will be refered to as a module.

The evolution of q is controlled by a Markov chain
which depends on u and of a set of parameters Wj :

aij(u(t);Wj) = Pr[q(t+1) = ijq(t) = j; u(t)] t = 0; 1; : : :

with X
i

aij(u;Wj) = 1 j = 1; : : : ;m 8u;Wj: (2)

Figure 2 depicts this architecture. It can be easily seen
that this model generalizes the mixture of experts ar-
chitecture [7], to which it reduces in the case where aij
are independent of j (the columns of A are all equal).
It becomes the model of [1] when A and f are neural
networks. A model where the Markov chain transitions
are implemented by a recurrent network was proposed
in [3].

3 An EM Algorithm for MME

To estimate the values of the unknown parameters
�2; Wk; �k; k = 1; : : : ;m given the sequence of ob-
servations 2 u

0;T
; y

0;T
; T > 0 and a prior probability of

the initial state

�j(0) = Pr[q(0) = j]:

the Expectation Maximization (EM) [4] algorithmwill be
used.

The EM algorithm is an iterative procedure which
converges asymptotically to a local maximumof the like-
lihood function. It requires the introduction of unob-
served variables, which, in our case will be the hidden

state variables fq(t)g
T

t=0. Then it attempts to maximize
a complete likelihood function lc which depends on the
extended set of variables.

This process is iterative, each iteration comprising two
steps. The �rst step (Expectation or E) �nds the distri-
bution of the unobserved variables given the observed
variables and the current estimates of the parameters;
then it computes the expectation of lc w.r.t. this distri-
bution.

2
s
t1;t2

= f s(t1); s(t1+1); : : : ; s(t2)g denotes the sequence

of values of the variable s over the time interval t1; : : : ; t2.
2



f

fm

1

u

q

+
y

+

+

Expert 1

Expert m

ν

ν

1

m

Figure 2: The Markov Mixture of Experts architecture

The Maximization (M) step reassigns to the unknown
parameters the values which maximize the expected
complete likelihood.

For our problem the complete likelihood is:

lc(y0;T ; q0;T ju0;T ; W; �; �(0)) =

= ln p
�
y
0;T

; q
0;T

ju
0;T

; W; �; �(0)
�

(3)

= ln

(
Pr[q

0;T
ju

0;T
; W; �; �(0)] �

TY
t=0

�q(t)(t)

)

where

�k(t) =
1

(2��2)ny=2
exp

�
�
ky(t) � f(u(t); �k)k

2

2�2

�
(4)

and � = f�1; �mg. The �rst factor does not depend on �
and u and can be written as

Pr[q0;T ju0;T ; W; �; �(0)] = (5)

= Pr[q
0;T

ju
0;T

; W; �(0)]

= �(0) �

TY
t=0

aq(t+1);q(t)

Let us now introduce the notations

ziq(t) =

�
1 q(t) = i
0 otherwise

i(t) = Pr[q(t) = i j u
0;T

; y
0;T

; W; �; �2; �(0)](6)

�ij(t) = Pr[q(t) = j; q(t + 1) = i j u0;T ;

y0;T ; W; �; �2; �(0)]

for t = 0; : : : ; T; i; j = 1; : : : ;m:

The last two quantities are well-known in the HMM liter-
ature and can be computed e�ciently by means of a pro-
cedure which parallels the forward-backward algorithm
[11].

Thus, the complete likelihood lc becomes

lc(y0;T ; q0;T ju0;T ; W; �; �(0)) = (7)

= ln�q(0) +

T�1X
t=0

lnaq(t+1);q(t)(u(t);Wq(t)) +

TX
t=0

ln �q(t)(t)

=

mX
k=1

zkq(0) ln�k(0) +

T�1X
t=0

mX
i;j=1

z
j

q(t)
ziq(t+1)lnaij(u(t);Wj)

�

TX
t=0

mX
k=1

zkq(t)

�
ky(t) � f(u(t); �k)k

2

2�2
+

1

2
ln(2��2k)

ny

�

Since this is a linear function of the unobserved
variables represented by zkq(t), taking its expectation is

straightforward. Moreover, by the de�nitions (6), we
have

E[ziq(t) j y0;T ; u0;T ; W; �; �(0)] = i(t) (8)

E[z
j

q(t)
ziq(t+1) j y0;T ; u0;T ; W; �; �(0)] = �ij(t) (9)

for i; j = 1; : : : ;m:
In the M step the new estimates of the parameters are

found by maximizing the average complete log-likelihood

J , which in our case has the form

J(�; �2;W ) =

= E[lc j y0;T ; u0;T ; W; �; �2; �(0)] (10)

= �
1

2�2

TX
t=0

mX
k=1

k(t)ky(t) � f(u(t); �k)k
2

+

T�1X
t=0

mX
i;j=1

�ij(t) ln aij(u(t);Wj) (11)

�
T + 1

2
ny ln(�

2) + C

where C is a constant. Since each parameter appears in
only one term of J the maximization is equivalent to:

�newk = argmin
�

TX
t=0

k(t) ky(t) � f(u(t); �k)k
2 (12)

3



Wnew
j = argmax

W

T�1X
t=0

X
i

�ij(t) ln aij(u(t);Wj) (13)

�2new =

PT
t=0

Pm
k=0 k(t) ky(t) � f(u(t); �k)k

2

ny(T + 1)
(14)

By solving (12)-(14) a new set of values for the param-
eters is found and the current step of the EM procedure
is completed.

The di�culty of (12) and (13) strongly depends on the
form of the movement models f and of the transition
matrix A. The complexity of the movement models is
determined by the geometrical shape of the objects' sur-
faces. For planar surfaces and no rotational degrees of
freedom f is linear in �k. Then, (12) becomes a weighted
least squares problem which can be solved in closed form.

The functions in A depend both on the movement
and on the noise models. Because the noise is prop-
agated through non-linearities to the output, a closed
form as in (1) may be di�cult to obtain. Moreover, a
correct noise model for each of the possible uncertainties
is rarely available [5]. A common practical approach is
to trade accuracy for computability and to parametrize
A in a form which is easy to update but devoid of physi-
cal meaning. In all the cases where maximization cannot
be performed exactly, one can resort to Generalized EM

by merely increasing J . In particular, gradient ascent in
parameter space is a technique which can replace max-
imization. This modi�cation will not a�ect the overall
convergence of the EM iteration but can signi�cantly re-
duce its speed.

Because EM only �nds local maxima of the likelihood,
the initialization is important. If f(u; �k) correspond
to physical movement models, good initial estimates for
their parameters may be available. The same can apply
to those components of W which bear physical signi�-
cance. A complementary approach is to reduce the num-
ber of parameters by explicitly setting the probabilities
of the impossible transitions to 0.

4 Simulation Results

4.1 Problem and implementation

The problem is to learn a predictive model for the move-
ment of a point in the 2-dimensional space shown in �g-
ure 1, a. The inputs were 4-dimensional vectors of posi-
tions (x; y) and nominal velocities (vx; vy) and the out-
put was the predicted position (xout; yout). The coordi-
nate range was [0, 10] and the admissible velocities were
con�ned to the upper right quadrant (vx; vy � Vmin > 0)
and had magnitudes (after multiplication by �T ) be-
tween 0 and 4. The restriction in direction guaranteed
that the trajectories remained in the coordinate domain.
It also reected in the topology of the reachability graph,
which is not complete (has no transition to the free space
from another state, for example). The magnitude range
was chosen so that all the transitions in the graph have
a non-negligible chance of being observed. A detailed
description of the physical model is given in Appendix
A.

We implemented this model by a MME. The state
q(t) represents the expert used up to time t and aij(t)

the probability of using expert i between t and t+1 given
that q(t) = j.
Implementation of the experts f : The ex-

perts f(u; �k) were chosen to be linear in the pa-
rameters, corresponding to the piecewise linearity of
the true model (see Appendix A). Linearity is
achieved by introducing the additional input variables
vx=vy; vy=vx; x vy=vx; y vx=vy, each of them having a
new parameter as coe�cient. But each additional vari-
able a�ects only one of the 6 experts (see Appendix A).
Therefore, by including the additional variables only in
the models that depend on them, we have an insignif-
icant increase in the number of parameters. To avoid
in�nite input values the the values of vx; vy were lower-
bounded by the small constant Vmin = 1=50.

Implementation of the transition probability
matrix: To implement the transition matrix A we used
a bank of gating networks, one for each column of A. Ex-
amining �gure 1 it is easy to see that there exist experts
that share the same �nal state of contact (for instance,
A stick and A slide both represent movements whose
�nal position is on surface A). Since transition proba-
bilities depend only on the �nal position the columns of
the matrix A corresponding to these experts are equal.
This brings the number of distinct gating networks to 4.

The boundaries of the decision regions are curved sur-
faces, so that to implement each of them we used a 2 layer
perceptron with softmax output, as presented in �gure
3. The number of hidden units in each gating net was
chosen considering the geometry of the decision regions
to be learned.

4.2 Training and testing criteria

The training set consists of N = 5000 data points, in
sequences of length T � 6, all starting in the free space.
The starting positon of the sequence and the nominal ve-
locities at each step were picked randomly. It was found
that for e�ective learning it is necessary that the state
frequencies in the training set are roughly equal. The
distribution over velocities and the sequence length T
were chosen so as to meet this requirement. The (x; y)
values obtained by simulation were corrupted with gaus-
sian additive noise with standard deviation �.

In the M step, the parameters of the gating networks
were updated by gradient ascent, with a �xed number
of epochs for each M step. Appendix C shows how the
gradient was computed. We used weighted least squares
estimation for the movement models parameters. To en-
sure that models and gates are correctly coupled, initial
values for � are chosen around the true values. In the
present case, this is not an unrealistic assumption. W
was initialized with small random values. Because of
the long time to convergence, only a small number of
runs have been performed. The observed variance of the
results over test sets was extremely small, so that the
values presented here can be considered as typical.

Three criteria were used to measure the performance
of the learning algorithm: experts' parameters deviation
from the true values, square root of prediction MSE and
hidden state misclassi�caton. Because training was per-
formed on a distribution that is not expected to appear

4



h

s

kj

ki ik

so
ftm

ax

kij

kj

aWa

Wx

y

x

Wy

Wvx

Wvy

kj

kj

kj

input 

layer

hidden

layer

output

layer

vx

vy

1

Wt kj

Figure 3: Gating network computing the transition probabilities aik for state of contact k.

in practice, all the models were tested on both the train-
inng distribution and on a distribution which is uniform
over (vx; vy) (and therefore highly non-uniform over the
states of contact), subsequently called the \uniform V
distribution".

Performance comparisons were made with a ME ar-
chitecture having identical experts but only one gating
net. For the number of hidden units in it, various val-
ues have been tried; the results presented here represent
the performance of the best model obtained. The per-
formance of a k-nearest neighbor (k-NN) model is also
shown.

4.3 Results

Learning curves. Figure 4 presents the learning curves
for two MME and two ME models. The horizontal axes
show the number of EM epochs. Since the number of
backpropagation epochs for each M step is 2000, the
number of training epochs for the ME models was scaled
down accordingly. The ME models converge faster than
the MME models. The di�errence may be due to the
choice of a �xed number of epochs in the M step; the
MME model also contains more parameters in the gat-
ing nets (220 vs ME's 180 parameters). The experts
contain 64 parameters.

The only model which achieves 0 misclassi�cation er-
ror is the MME trained without noise. For training in
noise, the �nal prediction error on the training set is the
same for both architectures, but the results on test sets
will show a di�erence favouring the MME model.

Comparison with k-NN. The k-NN method per-
formed much worse than the other two algorithms. The
following table presents a summary of the best results
obtained.

Test set performance. Figure 5 presents the test
set performance of MME and ME models trained with
and without noise. Each test set contained � 50,000
datapoints. The input noise added to the (x; y) values
in the test sets was gaussian with variance between 0
and (0.4)2. It can be seen that the ME models perform
similarly w.r.t. both prediction error and state classi�-
cation. The two MME models perform better than the

Table 1: Performance (MSE1=2) for the k-NN
method. Memorized (training) set: size=11,000;
noise=�m. Test set: size=11,000; noise=�t.

�m k �t = 0 �t = 0:2
0 100 0.333762 0.425333
0.2 200 0.341495 0.455458

ME models, with a signi�cant di�errence between the
model trained with noise and the model trained with
ideal data. The results are consistent over distributions,
noise levels and performance criteria.
Parameter error. In the present problem the true

parameters for the experts can be computed exactly.
The values of the MSE of the learned parameters in var-
ious models are shown in the following table (where �
represents the noise level in the training set):

Model � noise MSE
1=2

�

MME 0 0
MME 0.05 0.0474
MME 0.2 0.0817
ME 0 0.1889
ME 0.2 0.1889

Prediction along a trajectory. To illustrate the
behaviour of the algorithm in closed loop, �gure 6
presents a sample trajectory and the predictions of the
MME model in open and closed loop mode. In the lat-
ter, the predicted and measured positions were averaged
(with ratios 1/2) to provide the models' (x; y) input for
the next time step.

The simulations show that, although input noise is
not explicitly taken into account by the model, the MME
architecture is tolerant to it and is able to achieve both
learning and good prediction performance in noisy con-
ditions.

The comparison with k-NN con�rms that the prob-
lem is not simple and that well tailored algorithms are
required to solve it. MME outperforms ME in all situa-
tions, with a small additional computational e�ort dur-

5



0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

st
an

da
rd

 p
re

di
ct

io
n 

er
ro

r

EM iterations | backprop epochs/2000
0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 m

is
cl

as
si

fie
d 

st
at

es

EM iterations | backprop epochs/2000

(a) (b)

Figure 4: Prediction standard error (MSE1=2) (a) and percentage of wrong expert choices (misclassi�ed states) (b)
on the training set during learning for the MME and ME models. The abscissa was scaled according to the number
of backpropagation epochs for the two models. | MME, no noise; � � � MME, noise 0:2; { � { ME, no noise; { { ME,
noise 0:2.

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

input noise level

pr
ed

ic
tio

n 
st

an
da

rd
 e

rro
r −

 in
pu

t n
oi

se
 le

ve
l

Training distribution

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

input noise level

pr
ed

ic
tio

n 
st

an
da

rd
 e

rro
r −

 in
pu

t n
oi

se
 le

ve
l

Uniform V distribution

(a) (b)

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7

8

9

input noise level

%
 m

is
cl

as
si

fie
d 

st
at

es

Training distribution

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

input noise level

%
 m

is
cl

as
si

fie
d 

st
at

es

Uniform V distribution

(c) (d)

Figure 5: Test set performance of the MME and ME models for various levels of the input noise �in on two di�erent
distribuitons. (a) and (b): (Prediction MSE)1=2��in; (c) and (d): the percentage of misclassi�ed states. � { MME,
no noise; * { MME noise 0:2; � { ME, no noise; + { ME, noise 0:2.

6



6.5 7 7.5 8 8.5 9 9.5 10

1

2

3

4

5

6

7

8

9

10

std err=.11

std err =.19

prediction with position feed-back

prediction without position feed-back

observed trajectory

true trajectory

Figure 6: Sample trajectory in the (x; y) space, together with the open and closed loop predictions of the MME
model. The noise level is 0.2.

ing training.This demonstrates the advantage of taking
into account the time-dependencies in the data.

5 Discussion

The learning algorithm and the architecture presented
here allow us to model a wide range of dynamic systems.
Theoretically any �nite state discrete time system can
be represented in the form of a MME, and continuous
state spaces can be often conveniently discretized. But
the aim of using a MME is to take advantage of the
natural modularity of the process we are trying to model
and to divide it into subprocesses of signi�cantly lower
complexity.

In the special case when the MME reduces to a mix-
ture of experts, the probability of a state depends only
on the input u, and it is easy to see (also cf. [7]) that
the gating network partitions the input space, assigning
to each expert a subset of it. As the domains of the
experts are generally contiguous, the mixture of experts
can be viewed as a combination of local models, each
being accurate in a con�ned region of the input space.

From the same point of view, the MME divides the
data into regimes and constructs locally accurate models
of dynamic processes corresponding to each of them. The
partition performed is twofold: the dynamic component
is con�ned to the level of the Markov chain and, at the
same level, the set of input-output pairs is partitioned
into subsets which are assigned to the static experts.
The former is ensured by the structure of the model, the
latter has to be learned during the E step of the EM
algorithm.

This suggests that a critical condition for accurate
learning is the correct assignment of the data points to
the experts responsible for them. This is basically a clus-
tering problem. Therefore, although the learner is pro-
vided with \input-output" pairs, it is esssentially per-
forming an alternation of supervised and unsupervised
learning tasks.

5.1 Computational aspects

Local maxima. The EM algorithm is guaranteed to
converge to a local maximum of the likelihood. This
may not be su�cient when the value of the likelihood
at the local maximum is much smaller than the value
at the global maximum. Another issue is that in some
cases we may be in search of parameters with physical
meaning. In these cases, we need to �nd the (local)
maximum that is closest to the parameters of the data
generating process.

The �rst issue can be addressed by performing sev-
eral runs of the learning algorithm, each starting from
a di�erent initial point in the parameter space, and by
chosing at the end the most likely solution. To address
the second issue, besides validating the values of the pa-
rameters after convergence, prior knowledge about the
process can be used to �nd a good initial estimate.
Inuence of f and aij. We have imposed no condi-

tions on the form of f and aij so far. They inuence the
success of learning in several ways:

1. they determine the di�culty of the Maximizaton
step, as discussed in 3.

2. f inuences the di�culty of the clustering problem;
a linear f reduces it to gaussian clustering, whereas if the
class of allowed I/O functions becomes too rich or if the
mapping � ! f(�; �) is not one-to-one the assignment
problem can become ambiguous.

3. the form of f and aij determines the number of

parameters3 and thereby the number of data points nec-
essary for accurate learning.

4. by 2. and 3. the shape of the likelihood function is
inuenced and subsequently the number and distribution
of the local maxima
Number of states. So far we have assumed that

m, the number of experts, is known. This is not always
the case in practice. Simulations suggest that starting
with a large enough m could be a satisfactory strat-
egy. Sometimes the superuous clusters are automati-

3More precisely, the complexity of the model.
7



cally \voided" of data points in the process of learning.
This can be attributed to the fact that, for any �xed
model structure, maximizing likelihood is equivalent to
minimizing the description length of the data [12].

On the other hand, the number of parameters in A in-
creases proportionally tom2, increasing both the compu-
tational burden and the data complexity. The clustering
becomes also harder for a large number of alternatives.
Therefore it is important to know m or to have a good
upper bound on it.
Data complexity. The data complexity of a model

is, loosely speaking, the number of data points required
to attain a certain level of the prediction error. In the
case where we can talk about true parameters, the pre-
diction error is reected by the accuracy of the parame-
ters. For a more rigorous and detailed discussion of data
complexity consult [6] and its references. For the pur-
poses of this paper it is su�cient to state that for a given
class of models, the data complexity increases with the
number of parameters. As a consequence, an increase
in m will induce a quadratic increase in the number of
parameters and in the training set as well.

Simulationshave shown that training this architecture
requires large amounts of data. Therefore it is necessary
to use prior knowledge to reduce the number of parame-
ters. This and other uses of knowledge outside the data
set for constraining the model are the topics of the next
subsection.

5.2 Incorporating prior knowledge

Prior knowledge is extremely valuable in any practical
problem. Although the ML paradigm doesn't provide a
systematic way of incorporating it, prior knowledge can
and should be used at several levels of the model.

First, it will help in �nding the appropriate model
structure. An important structural parameter is the
number of states of the Markov chain. For instance,
knowing the number of the movement models in the �ne
motion task has allowed us to pair each expert with
a movement model, thus having simple linear experts
whose parameters have a physical meaning. For systems
that are not intrinsically discrete-time, prior knowledge
should guide the choice for an appropriate discretization
step. A too long discretization step may miss transitions
between states leading thus to poor modelling, whereas
a too short one will cause unnecesarily low transition
probabilities between di�erent states.

Closely related to the choice of the number of states
is the choice of the functional form of the experts. This
has been shown in the modeling of the robot armmotion.
Prior knowledge should help �nd the class of functions
f with the suitable complexity. This isssue, as well as
the issue of the best representation for the inputs and
outputs, arise in any modeling problem.

A similar selection concerns the form of the functions
in A. In view of condition (2) it is often reasonable to
group the transition probabilities into gating networks as
we have done in section 4 thus having a vector of param-
eters Wj for each set of functions faijji = 1; : : : ;mg. If
it is known a priori that certain transitions cannot occur,
then their probabilities can be set to 0, thereby reducing

both the complexity of the gating network and speeding
up the learning process by reducing uncertainty in the
state estimation. For instance, in the �ne motion prob-
lem, when the state-space grows by adding new objects
to the environment, the number of possible transitions
from a state of contact (also called the branching factor)
will be limited by the number of the states of contact
which are within a certain distance and can be reached
by a simple motion, which will grow much slowlier than
m. Therefore, the number of nonzero elements in A will
be approximately proportional to m. This is generally
the case when transitions are local, providing another
reason why locality is useful.

Finally, when the experts have physical meaning,
prior knowledge should give \good" initial estimates for
the experts parameters. This is important not only to
decrease the learning time, but also to avoid convergence
to spurious maxima of the likelihood.

Relearning. Certain aspects of relearning have been
discussed at the end of the previous section. (By relearn-
ing we mean learning a set of parameters, under the
assumption that another learning problem has already
been solved and that the old model is identical in struc-
ture to the new one. Sometimes it is also assumed that
the old and new parameter values are \close".) Since
EM is a batch learning algorithm, it cannot automat-
ically adapt to changes in the parameters of the data
generating process. But knowledge exterior to the data
set (that was called prior knowledge in the above para-
graphs) can still be used to make relearning easier than
learning from scratch. This process can be viewed as
the reverse of incorporating prior knowledge: we must
now (selectively) discard prior knowledge before learn-
ing from the new data begins. Obviously, the model
structure remains unchanged; the question is whether to
keep some of the parameter values unchanged as well.
The answer is yes in the case when we know that only
some of the experts or gating nets have su�ered changes,
in other words when the change was local. In this case
the learning algorithm can be easily adapted to locally

relearn, i.e. to reestimate only a subset of the parame-
ters.

6 Conclusion

To conclude, the MME architecture is a generalization
of both HMMs and the mixture of experts architecture.
From the latter it inherits the abilty to take advantage of
the natural decomposability of the processes to model,
when this is the case, or to construct complex models
by putting together simple local models otherwise. The
embedded Markov chain allows it to account for simple
dynamics in the data generation process.

The parameters of the MME can be estimated by an
iterative algorithm which is a special case of the EM al-
gorithm. As a consequence, the a posteriori probabilities
of the hidden states are also computed. Multiple aspects
pertaining to the implementation of the algorithm have
been discussed. The trained model can be used as a
state estimator or for prediction as the forward model in
a recursive estimation algorithm.

8



References

[1] Y. Bengio and P. Frasconi. An input output HMM
architecture. In J. D. Covan, G. Tesauro, and
J. Alspector, editors, Neural Information Process-

ing Systems - 7, 1995.

[2] R. Bolles and R. Paul. The use of sensory feed-
back in a programmable assembly system. Technical
report, Stanford U., 1973.

[3] T. W. Cacciatore and S. J. Nowlan. Mixtures of
controllers for jump linear and non-linear plants.
In G. Tesauro, D. S. Touretzky, and T. K. Leen,
editors, Neural Information Processing Systems - 6,
1994.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-

ciety, B, 39:1{38, 1977.

[5] B. S. Eberman. A sequential decision approach to

sensing manipulation contact features. PhD thesis,
M.I.T., 1995.

[6] Stuart Geman, Elie Bienenstock, and Rene Doursat.
Neural networks and the bias/variance dilemma.
Neural Computation, 4:1{58, 1992.

[7] M. I. Jordan and R. A. Jacobs. Hierarchical mix-
tures of experts and the EM algorithm. Neural

Computation, 6:181{214, 1994.

[8] T. Lozano-Perez. Spatial planning: a con�guration
space approach. IEEE Transactions on Computers,
1983.

[9] M. T. Mason. Compliance and force control for
computer controlled manipulation. IEEE Trans. on

Systems, Man and Cybernetics, 1981.

[10] S. Narasimhan. Task-level strategies for robots. PhD
thesis, M.I.T., 1994.

[11] R. L. Rabiner and B. H. Juang. An introduction to
hidden Markov models. ASSP Magazine, 3(1):4{16,
January 1986.

[12] J. Rissanen. Modeling by shortest data description.
Automatica, 14:465{471, 1978.

A The exact movement model for the

simulated example

Here the equations describing the exact movementmodel
of the point in the C-space shown in �g.1 are given. First,
some notation. The position of the point at the current
time is denoted by (x; y) and its position after moving
for a time �T with constant velocity vector (vx; vy) by
(xnew; ynew).

The static and dynamic friction coe�cients on sur-
faces A and B are �sA; �

d
A; �

s
B ; �

d
B ; we will consider that

x 2 [0; LX]; y 2 [0; LY ]. With the movement model
notation introduced in �gure 1 the movement equations
are:
C:

xnew = x+ vx�T (15)

ynew = y + vy�T

A slide:

xnew = x+ sgn(vx)sgn(vy)�
d
A(Y L � y)

+�T (vx � �dAvy) (16)

ynew = Y L

A stick:

xnew = x+ vx
Y L� y

vy
(17)

ynew = Y L (18)

B slide:

xnew = XL

ynew = y + sgn(vx)sgn(vy)�
d
B(XL � x) (19)

+�T (vy � �dBvx)

B stick:

xnew = XL (20)

ynew = y + vy
XL � x

vx
(21)

G:

xnew = XL (22)

ynew = Y L

In the above, sgn denotes the sign function

sgn(z) =

(
1; z > 0

�1; z < 0
0; z = 0:

Equations (16-21) are slightly more general than needed
for the present case. For velocities restricted to vx; vy �
Vmin > 0 the sgn functions are 1 and can be dropped,
yielding all equations but (17 - 21) linear.

The former can also be brought to a linear form by
introducing the input variables
vx=vy; vy=vx; (x:vy)=vx; (y:vx)=vy. The coe�cients of

the extended set of variables are denoted by �Cx ; : : : �
G
vy

and represent the parameters of the model to be learned.
The coe�cients corresponding to vx=vy; vy=vx; etc. are
considered to be 0 and are not subject to learning for
the equations which don't contain these variables.

The domain of each movement model is the region in
the 4-dimensional space where the given model is valid.
This region is easily de�ned in terms of a set of inequal-
ities which must be satis�ed by all its points. For exam-
ple, the (preimage of) free space C is the set of points
for which 0 < xnew < XL; 0 < ynew < Y L. If we de�ne
the functions:

d1(x; y; vx; vy) = x+ vx�T (23)

d2(x; y; vx; vy) = y + vy�T

the following is an equivalent de�nition for the domain
of C :

0 < d1 < XL
0 < d2 < Y L

9



but now the functions d1 and d2 can be used in inequali-
ties de�ning the domains of neighboring movementmod-
els. The complete list of functions which de�ne the do-
main boundaries follows.

d1 = x+ vx�T
d2 = y + vy�T
d3 = vx � �sAvy
d4 = vy � �sBvx
d5 = x+ Y L�y

vy
vx

d6 = y + XL�x
vx

vy
d7 = x+ sgn(vx) sgn(vy)�

d
A(Y L� y)

+�T (vx � �dAvy)

d8 = y + sgn(vx) sgn(vy)�
d
B(XL � x)

+�T (vy � �dBvx)

In addition, for all the movement models hold the in-
equalities:

0 � x � XL
0 � y � Y L

Vmin � vx
Vmin � vy
jvj � Vmax

It can be seen that the model boundaries are not linear
in the inputs. Even if made linear by augmenting the
set of inputs as above, some domains are not convex sets
and others, although convex, cannot be represented as
the result of a tesselation with softmaxed hyperplanes.

B The sigmoid and softmax functions

The de�nition of the sigmoid function used in the present
example is

sigmoid(x) � h(x) = tanh(x) �
ex � e�x

ex + e�x
(24)

where x is a real scalar. The sigmoid function maps the
real line into the interval (-1,1). Its derivative w.r.t. the
variable x can be expressed as

h0(x) = 1� h2(x)

The softmax function is the multivariate analog of the
sigmoid. It is de�ned on Rn !Rm by:

softmaxi(x;W ) � gi(x;W ) =
exp(WT

i x)P
j exp(W

T
j x)

; i = 1; ::m

with W; x vectors of the same dimension.) If we make
the notation si = WT

i x, then the partial derivatives of
the softmax function are given by

@gi

@sj
= gi(�ij � gj) 8i; j (25)

where �ij represents Kronecker's symbol.

C Gradient calculations

Here we give the calculation of the derivatives used in
the generalized M-step of the EM algorithm.

To obtain the new iterates of the parameters of the
gating networks, one has to maximize the function given
by (13) w.r.t. to W

JW =

T�1X
t=0

X
ij

�ij(t) ln (aij(u(t);Wj))

In the present implementation, the functions aij are
computed by a two layer perceptron with softmax out-
put. The complete calculation is given below, and the
notation is explained by �gure 3.

aik(u(t);W ) � aik(t) = softmaxi(hk;Wak)

hkj(t) = sigmoid[Wxkjx(t) +Wykjy(t) +Wvxkjvx(t)

+Wvykjvy(t) +Wtkj]

where k = 1; ::;m, i = 1; ::;m0

k, j = 1; :::; nk + 1 and
m; m0; nk represent the number of states, of outputs and
of hidden units for gate k, respectively. The parameter
matrices and vectors Wx;Wy;Wvx;Wvy;Wt and Wa
have the appropriate dimensions. By j0 ! k we denoted
the fact that module j0 leads to state of contact k. This
notation is necessary because there can be more than
one module leading to a given state of contact . (For
example, modules A stick and A slide both lead to
contact with surface A). The last unit in each hidden
layer is �xed to 1 to produce the e�ect of a threshold in
sk.

Expressing the derivatives as in Appendix B and usig
the fact that X

i

�ij(t) = j(t) 8t; j

we obtain the following formulas for the partial deriva-
tives of JW :

@JW

@Wakij
=

X
t;l

@JW

@alk(t)

@alk(t)

@Wakij

=
X
t;l

P
j0!k �lj0 (t)

alk(t)
alk(t)(�il � aik(t))hkj(t)

=
X
t

hkj(t)

2
4X
j0!k

�ij0(t)� aik(t)
X
j0!k

j0(t)

3
5

@JW

@Wxkj
=

X
t;l

@JW

@alk(t)

@alk(t)

@hkj(t)

@hkj(t)

@Wxkj

=
X
t

h0kj(t)x(t)
X
i

Wakij �

2
4X
j0!k

�ij0(t) � aik(t)
X
j0!k

j0(t)

3
5

Notice the bracketed term that is common to the two
expressions. Assuming, for simplicity, that j0 = k, it can
be rewritten as

�ik(t)� aik(t)k(t) = k(t)

�
�ik(t)

k(t)
� aik(t)

�
10



gkj’
ik

aG kij’

h

s

kj

ki

so
ftm

ax

kij

kj

Wa

W
x

y

x

Wy

Wvx

Wvy

kj

kj

kj

input 

layer

hidden

layer

output

layer

vx

vy

1
W

t kj

Figure 7: An alternate network for the transition probabilities. Gkij0 is 1 if j0 ! i and 0 otherwise.

outlining its role of weighted output error of the gating
net.

The modules f are linear in the parameters, therefore
their derivatives computation is straightforward.

Now we will show why the initial implementation is
not �t for gradient ascent. Remember that in this repre-
sentation the states of the Markov chain stood for states
of contact and aik(t) = P [q(t + 1) = ijq(t) = k; u(t)].
By gkj0(t) we denote the probability of using movement
model j0 in the time interval (t; t+1] given that the state
of contact at time t was k. We have that

aik =
X
j0!i

gkj0 =
X
j0

Gkij0gkj0

The structure of the network is given in �gure 7. The
elements of the matrix G are 1 or 0, indicating whether
module j0 leads to state of contact i or not.

The function to be maximized has the same form as
above, with the indices i; j both running now over the
states of contact . Then its gradient w.r.t. gkj0 is

@JW

@gkj0
=

�ik

aik

where i is the state of contact to which movement model
j0 leads (i.e. j0 ! i). The above relationship shows that
all the gates' outputs corresponding to the same state
of contact receive the same error signal and therefore no
competition can occur between them.

11


