
MASSACHVSETTS INSTITVTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1547 February 20, 1993

MIT SchMUSE: Class-Based Remote Delegation
in a

Capricious Distributed Environment

Michael R. Blair, Natalya Cohen, David M. LaMacchia, Brian K. Zuzga

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

MIT SchMUSE (pronounced \shmooz") is a concurrent, distributed, delegation-based object-oriented
interactive environment with persistent storage. It is designed to run in a \capricious" network envi-
ronment, where servers can migrate from site to site and can regularly become unavailable. Our design
introduces a new form of unique identi�ers called globally unique tickets that provide globally unique
time/space stamps for objects and classes without being location speci�c. Object location is achieved by
a distributed hierarchical lazy lookup mechanism that we call realm resolution. We also introduce a novel
mechanism called message deferral for enhanced reliability in the face of remote delegation. We conclude
with a comparison to related work and a projection of future work on MIT SchMUSE.

Copyright c Massachusetts Institute of Technology, 1993, 1994, 1995

This report is an editted and reformatted version of a report that appeared in the Proceedings of the 1995 Lisp Users and
Vendors Conference, Cambridge MA, August 14{18, sponsored by the Association of Lisp Users (ALU). It was voted and
selected best paper from the Student Presentation Contest by the conference attendees.

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratory's arti�cial intelligence research is provided in part by the Advanced Research Projects Agency of
the Department of Defense under O�ce of Naval Research contract N00014-83-K-0125. Computer facilities to support the
prototyping of this project were also provided, in part, by a generous equipment donation from Hewlett-Packard Company to
the MIT Department of Electrical Engineering and Computer Science.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

MIT SchMUSE is a Scheme-based [Clinger & Rees 91]
[IEEE 91] Multi-User Simulation Environment based
on a concurrent, distributed, delegation-based object-
oriented language with a persistent object store.
It was originally conceived as a teaching vehicle
for the introductory programming course at MIT
[Abelson & Sussman 85].

The project's main goal was to provide a Scheme-
based concrete introductory case-study of computer sys-
tems issues such as concurrency, distributed comput-
ing, persistence, recoverability, transactions, reliability,
and delegation-based object-oriented programming sys-
tem (OOPS). We did so under the guise of implementing
a multi-user interactive adventure game, mainly because
that is a common setting very familiar to most students.
It was not our intention, however, to limit ourselves
to this application domain. For example, we envision
the SchMUSE as being a practical prototype system
in which to implement a distributed interactive virtual
o�ce space or a distributed object-oriented database.
Nonetheless, for reader accessibility, the examples in this
report reect a simulated world setting. Moreover, this
report focuses exclusively on the novel features of the
SchMUSE language design and its functionality rather
than on distributed systems issues per se. To wit, we
view our primary contribution as having explored several
novel language systems issues that arise in distributed
object delegation with regards to language implementa-
tion rather than in having tackled the distributed sys-
tems issues that arise merely by virtue of being a dis-
tributed computing environment, such as message trans-
action atomicity and concurrency coordination.

We chose to implement our system in MIT Scheme

[Hanson 91], a dialect of the Lisp family of program-
ming languages. Our object system is modelled after the
delegation-based OOPS style of [Adams & Rees 88], pri-
marily because that is the language in which our course
is taught. None of our results are speci�c to Scheme:

we could equally as well have implemented this system
in Smalltalk-80 [XLRG 81], CLOS [Bobrow et al. 90],
Dylan [Apple 92] or even C++ [Stroustrup 86].1

1.1 Application Context

The laboratory setting in which we envision MIT
SchMUSE being exercised has greatly inuenced its de-
sign. Speci�cally, our course lab is comprised of a local
area network of 46 high-performance diskless worksta-
tions (HP 720s) evenly divided across 2 high-powered
centralized network �le servers (HP 750s). Ultimately,
however, we envision MIT SchMUSE spreading across
the Internet as an extremely distributed global network

1Of course, delegation-based dialects of these lan-
guages would be required. The exemplar-based dialect of
Smalltalk [LaLonde 86] could be used. Delegation-based
extensions can be made fairly painlessly to CLOS and Dy-

lan by careful use of the Meta-Object Protocol (MOP)
[Kiczales et al. 91], as demonstrated in [Blair & Maessen 93].
Finally, the feasibility of delegation in C++ was demonstrated
in [Johnson & Zweig 91].

of potentially collaborating simulation sites. For exam-
ple, now that MIT provides network access in the cam-
pus dormitories, we would not be surprised if our stu-
dents choose to leave their otherwise idle PCs active as
SchMUSE servers, running atop publicly available DOS
MIT Scheme [DOS Scheme].

The classroom mode of operation for students
SchMUSE-ing is envisioned to be as follows: a stu-
dent logs into an unused workstation and brings up a
local SchMUSE client session. During this session,
the student can interact (via TCP/IP sockets) with ob-
jects on either of two highly available centralized �le
servers, likely creating a few new instances of standard-
ized classes on the servers, subject to a modest space
quota.

More interestingly, the student can also extend the
simulation system with new classes and objects on their
client machine. These new creations can then be made
available to other students in the lab by allowing other
clients in the lab to establish server connections to their
client. In this way, we blur the distinction between server
and client since we allow clients to themselves act as
servers to other clients. This permits very interactive
collaboration throughout the network. A student on one
workstation can build on the e�orts of students on sev-
eral other workstations, and vice versa, to build elabo-
rate team experiments.

When a student logs out of a workstation, unfortu-
nately their client/server sessions must be terminated
(to make room for the next student), but their state
can be dumped to persistent storage. Speci�cally, their
code, as well as the state of their local object instance
database, can be dumped as �les to a personal oppy
disk or ftp'd to a remote �le server.

When the student returns to the lab (or to their dorm
room), all their SchMUSE state can be restored from
their last state dump and their session can continue. Of
course, some of the other student servers they were in-
teracting with may have also moved to a di�erent work-
station (e.g., so the student can sit closer to someone else
they are collaborating with or because their reservation
on the machine they were using had expired) or they may
be altogether unavailable (e.g., the student who was run-
ning the server session may be temporarily in transit to
a new location or dormant during sleeping and eating
periods).

1.2 Outline

The following sections deal with the di�culties of mit-
igating this sort of capricious network environment of
itinerant virtual servers, where servers can become un-
available and where servers can move among worksta-
tions, both with disturbing regularity. First, however,
we establish our language context by describing the
SchMUSE object system in section 2. In section 3, we
proceed to describe how remote delegation is supported
in our object system. In section 4, we show how impos-
ing class structure on our delegation system enables var-
ious performance enhancements for remote delegation.
Section 5 introduces message deferral for improved reli-
ability in a system where servers are itinerant. Section 6

1

relates our language design to other work in the �eld.
Section 7 emphasizes the unique contributions of this
work. Finally, in section 8, we conclude by outlining
future work in the project.

2 The SchMUSE Object System

The sole means of object interaction in MIT SchMUSE

is through message passing [Agha 86]. Methods are in-
voked by passing messages to objects, and instance slots
are accessed via messages. (It will become clear below
why we choose to distinguish object slot accesses from
other, more compound methods).

Unlike prototype-based delegation systems
[Lieberman 86], our system employs class-based delega-
tion. Speci�cally, our objects are created as instances
of classes, where each class declares the local variables
and methods de�ned on instances of the class as well
as declaring any parent's classes.2 When an instance of
a class is generated, a chain of partial objects is made
which corresponds to the inheritance chain prescribed
by the object's class structure. An example is sketched
in Figure 1. Each partial object (box), hereafter called
a node, contains slots for the local variables as well as
pointers to node instances of the node's parent classes.
Notice that a node taken with the transitive closure of
its parent nodes constitutes an object instance. A node
is said to delegate to its parent objects. In this way, an
object is represented as a directed acyclic graph (DAG)
of nodes that directly reects the inheritance structure
of its class de�nition.

Note from Figure 1 that slot names, in addition to
method names, can shadow one another. For example,
persons and students both have a nickname slot. In ad-
dition, as our �gure suggests, an object can be the parent
of more than one child node. In our �gure, the person
is a common parent of both a student node and an em-
ployee node.

This very general framework for sharing is what makes
delegation-based inheritance most compelling for dis-
tributed systems. Speci�cally, in a distributed setting,
each object node could reside on a separate workstation.
We call this distribution of delegate nodes across several
sites remote delegation. Note that traditional class-based
inheritance systems such as Smalltalk [XLRG 81],
CLOS [Bobrow et al. 90], and C++ [Stroustrup 86] pro-
vide no such distributed sharing. Instead, they at-
ten objects into one long array of slots, one per each
unique slot name. Consequently, slot shadowing is not
supported in these systems. Also, slot sharing among
multiple children is not directly supported.3

Delegation-derived sharing allows for complex pat-
terns of centralized sharing with privacy control. In our
example, for instance, centralized sharing is illustrated

2We permit multiple inheritance. For simplicity, we fol-
low the mechanism of left-to-right topological linearization
of multiple parents described in [Snyder 86] and used as the
default in CLOS [Bobrow et al. 90] and Dylan [Apple 92].

3Some contortions involving indirection through shared
cell data is possible. This is what we resorted to in
[Blair & Maessen 93].

by the person being shared by both the student and em-
ployee nodes. By centralizing the sharing, privacy can
be enhanced; for instance, the employee child may be
granted access to the person's social security number
while the student child may be denied this information.
Moreover, by permitting multiple independent children
we in e�ect provide multiple independent views of the
same essential object. Speci�cally, an application that
knows about the student view of our person may be un-
aware of our employee view. Thus, a student's advisor
may be unaware that s/he is consulting on the side. This
too is an important form of privacy.

3 Remote Delegation via Globally

Unique Tickets and Realm Resolution

All objects in the SchMUSE are passed to methods
via object reference. In order to support remote del-
egation, these object references must embody globally

unique identi�ers [Leach et al. 82].

3.1 Globally Unique Tickets

In MIT SchMUSE this need for globally unique IDs for
object references is accomplished by implementing ev-
ery object reference as an object ticket. Similarly, class
references are implemented as class tickets. Collectively,
object and class tickets comprise what we call globally
unique tickets. The grammar for these GUTs of the
SchMUSE object system is shown in Figure 2.

The �rst �eld of each ticket is not strictly necessary:
they are introduced primarily for debugging support, al-
though we will later exploit the ClassTicket within an
ObjectTicket. A btime is the encoding of a millisecond
real-time clock reading of when the entity was born, and
bmachloc is the encoding of the \birth machine loca-
tion", i.e., the network address of the machine on which
the entity was created. Together, these two data pro-
vide a globally unique identi�er for every object in the
network.4 They do not, however, provide location infor-
mation if we allow SchMUSE sessions to migrate about
the network. This is where the RealmTicket comes into
play.

Each server/client session maintains its own names-
pace of classes and instances in the underlying Scheme
session. A class table and object table are maintained to
map class tickets to classes and object tickets to object
instances. Since SchMUSE sessions are itinerant, these
namespaces are consequently mobile. We conceptually
divide each namespace into realms of course-grained col-
lections of objects. For example, a student may be devel-
oping an adventure game simulation with a Blade Run-
ner Realm and a Time Bandits Realm. Each separate
realm can be dumped to disk and transported to another
workstation separately.

When an object class or instance is created, it is al-
ways created in some realm. This realm information is
encoded by the RealmTicket inside the entity's ticket.

4Note also that they obviate the need for distributed clock
synchronization: so long as each workstation assures that its
own clock progresses strictly forward, no two distinct entity
tickets can collide in SchMUSE space-time.

2

.--------------. .----------------.

| MobileObject | | AnimateObject |

|--------------| |----------------|

| slot: place | | slot: asleep? |

|method: move | |method: hear |

`--------------' `----------------'

/|\ /|\

| |

.------------------.

| Person |

|------------------|

|slots: soc-sec-no |

| possessions|

| nickname |

|methods: move |

| say |

`------------------'

/|\ /|\

| |

.------------------. .----------------.

| Student | | Employee |

|------------------| |----------------|

| slot: nickname | | slot: nickname|

|methods: move | |method: work |

| say | | say |

`------------------' `----------------'

Figure 1: An example delegation-based instance.

ObjectTicket ::= ClassTicket � btime � bmachloc � RealmTicket

ClassTicket ::= classname � btime � bmachloc � RealmTicket

RealmTicket ::= realmname � btime � bmachloc

Figure 2: Globally Unique Tickets

When remote sessions access a local realm and receive
copies of its local object tickets, this realm information
is later used to locate the object again. That is, when a
message is sent to an object ticket, if the object ticket's
realm matches the realm we are in when processing the
message, then the object must be local. The local object
table is then used to map the object ticket to the desired
object and the message can be processed on that local
object. If, on the other hand, the object ticket's realm is
not that of a local realm, then the message is forwarded
to the machine where the remote object's realm resides.

3.2 Realm Resolution

Notice, however, that RealmTickets pointedly do not

contain location information other than the birthplace
of a realm. Thus, there is nothing in the ticket to de-
clare where a particular realm actually resides in the net-
work. For this we resort to a \Brazilian" 5 distributed
hierarchical realm resolution/location mechanism which
we have dubbed Central Services. Central Services is
not a single centralized entity but, rather, a distributed
hierarchical network. Each SchMUSE session which ini-
tiates server access does so by contacting some nearby
authority and requesting access to Central Services. The
authority designates some server within the network of

5That is, inspired by the movie Brazil.

active SchMUSE servers to serve as realm resolution
authority for the new session. In this way, a variety of
load-distributed resolution hierarchies can be initiated
by the central authority, such as N-ary trees and H-trees
[Leighton 92].

The server then informs the authority and its desig-
nated Central Services contact point of the realms which
it is making available for server access. This information
is then lazily distributed throughout the SchMUSE net-
work on demand in a fashion similar to Internet names-
pace service. Should this contact point become unavail-
able, a new one can be requested from the nearby author-
ity. The authority network, being the backbone of the
SchMUSE, is �xed and distributed, much like Internet
namespace service.

Each SchMUSE session, then, maintains a cache of
its realm lookups to map RealmTickets to real machine
addresses. Of course, these address mappings will be-
come obsolete when a remote server session terminates,
so a time-out mechanism is implemented whereby an un-
successful connection can resort to querying Central Ser-
vices to see if the desired realm has moved. When a
session is terminated, it is customary to therefore no-
tify Central Services so that future inquires regarding
the realm's location can be rejected without resorting to
repeated time-out mechanisms.

3

The details of this distributed hierarchical realm res-
olution mechanism of the SchMUSE are still very much
in the experimental phase so little can be said of its per-
formance. Nonetheless, we are con�dent that this style of
lazy location with eager cancellation will suit our labora-
tory and campus environment well. We have also found
that performance pro�ling and system debugging were
greatly facilitated by separating an entity's birth ma-
chine location from its present location hint associated
the object tickets. Speci�cally, the btime and bmachloc

remain constant despite realm motion, providing a time-
invariant UID by which to identify objects in the net-
work.

4 Using Class Information for E�cient

Remote Delegation

We turn now to the performance issue of making
delegation-based inheritance e�cient in the face of re-
mote delegation. In short, we use static information from
the class de�nitions to accelerate method dispatch and
slot accesses. Most importantly, the static class infor-
mation allows us to delegate directly to the node where
a slot is located rather than traversing the full delega-
tion chain of the object being manipulated. In the case
of highly distributed delegation, this can have major
performance improvements since superuous delegation
chain traversal amounts to superuous network tra�c
and unnecessary indirection through numerous worksta-
tions, tying up valuable resources and heightening the
liability of access failure. In the case where the com-
plete structure information about a node is not present
on the SchMUSE session that is processing a message,
we must be a bit more clever.

In brief, the performance issues surrounding remote
delegation can be divided along two lines of concern:
�rst, the amount of structure information available con-
cerning the object being manipulated; and second, the
kind of message being processed by the object. These
concerns naturally subdivide, in turn, as follows: regard-
ing structure information, we must consider 1) if the full
class information is co-resident with the instance, or 2)
if we allow opaque remote classes, i.e., if we can have
a local instance whose local class information may be
known but whose inherited class structure is remote and
not known. As we shall see shortly, these two class poli-
cies have di�erent implications depending on whether
the message involved is A) a slot access message, or B) a
compound method message.6 The following subsections
address each of the four resulting combinations.

4.1 Case 1A: Full class info; Slot access

Returning to our example delegation in Figure 1, imag-
ine we are on the machine where the student node re-
sides and we wish to access the student's place slot.
Imagine that each ancestral delegate node resides on a
separate machine. In such a con�guration, if we were
naive in accessing the place slot of the student, we would
have to traverse the object's delegation DAG through the

6That is, a method whose body is a mixture of slot refer-
ences and Scheme procedure calls.

Person node to get to the MobileObject node where the
place slot resides. If, however, we locally knew the ob-
ject tickets in the full object class ancestry of the student
and we further knew that the place slot was accessed
as slot 0 of the student's parent's primary parent (en-
coded as delegate <0,0>), then we could directly send to
the MobileObject node a request for the value of slot
0. This would entirely bypass the Person machine and
would lighten the burden on the MobileObjectmachine
by not engaging it to decode the place message into a
slot access on slot 0.

We implemented such a strategy as follows: at class
creation time, we \compile" the slot access methods to
operate in terms of \lexical addresses" into the delega-
tion chain. Speci�cally, at method installation time, we
statically compute, for each slot accessor method, both
the o�set into the delegation chain for the delegate which
possesses the target slot and the index of that slot within
the target delegate's array of slots. We further arrange
that each local node, upon creation, cache away a DAG
representing its full delegation ancestry. In this way,
whenever a slot access method is called on a local node,
the encoded indirection into the delegation chain can
be used to indirect into the cached delegation ancestry
DAG. The encoded slot access can then be sent directly
to the object ticket representing the target delegate. In
our prototype implementation, we witnessed an order of
magnitude in performance improvement when this en-
hancement was installed: a test case that took 20 min-
utes to complete without it took only 2{3 minutes with
it.7

4.2 Case 1B: Full class info; Compound

method

Compound methods can likewise be decomposed into
more primitive operations. Speci�cally, every method
ultimately decomposes into nested sequences of Scheme
language primitives and slot accesses. Thus, if we can
know the implementation of the AnimateObject's hear
method locally on the machine where the Student node
inherits it, then hear messages sent to the Student can
be decomposed on the local Student node's machine into
Scheme primitives and slot accesses. This means that
the bulk of the work involved in processing a hear mes-
sage can be assumed by the machine on which the mes-
sage was initiated. This dramatically reduces the load
on the remote machine where the AnimateObject node
resides, enhancing its availability to other remote child
nodes. In our prototype implementation, we witnessed,
on average, a 4{5 fold decrease in load on the remote
node when this feature was enabled.

4.3 Cases 2A & 2B: Remote class info; Slot or

Method messages

The natural question to follow from the preceding is, of
course, what to do if the full class information (namely,
delegate storage and inherited methods) is not available
to some remote child. For example, imagine that the

7This test case involved an obscenely complex remote del-
egation DAG being pounded on during peek network usage
hours.

4

local slot structure and local methods for a Student are
known at the student's node but that the class informa-
tion for a Person is not known. This may be a reasonable
situation if, say, the Person class implementor has de-
cided not to export the implementation of persons.8 In
this case, any message that we can decode locally using
only information known about local students can still
be done with some e�ciency, yet any inherited message
would be an unknown.

In such a case, we re-package the message and forward
it to the machine where the remote class resides, us-
ing the RealmTicket in the ClassTicket of the object's
parent to determine its residence.9 In this re-packaged
message we are also careful to include the object ticket
of the Student object for which the message was origi-
nally intended. It is then the responsibility of the remote
class to ultimately discover the method for this mes-
sage. This may, in turn, involve further re-packaging to
other remote classes. Nonetheless, assuming an applica-
ble method is discovered, the invocation of this method
on the intended object ticket will naturally result in the
appropriate decomposition of the message into Scheme
primitives and slot accesses. Thus, the price for keeping
a class implementation private is the cost of performing
all non-exported methods at the class site. Notice that
this suggests that some methods may be exported and
some not, depending on their depth within the inher-
itance structure. Notice, further, that in the extreme
case where no classes are exported, the remote class re-
packaging strategy will ultimately result in a full traver-
sal of the delegation structure. This ultimately degrades
into the naive delegation strategy outlined at the begin-
ning of case 1A.

If the unknown re-packaged message is found to cor-
respond to a simple slot access method, it is then de-
sirable to request the intended object ticket to reveal
its full ancestry so that the slot access optimization can
proceed by using this ancestry DAG to avoid travers-
ing the delegation chain, analogous to case 1A above.10

This is very helpful in the case where some intermediate
ancestor is only partially opaque (like Person) but some
deeper ancestor atop which it is built is exported (like
MobileObject).

If, on the other hand, the message is discovered to be a

8For example, this class may be still under construction
or one of its methods may use proprietary code or code under
federal export control.

9This, of course, is complicated by multiple inheritance.
In such a situation, each remote parent class would have to
be attempted, in turn, until one of them is able to process
the message, after which the deferral target can be cached to
avoid repeated exhaustive searches.

10The reason this is only \analogous" to case 1A is that a
trick is involved. The trick is to notice that in re-packaging
to some delegate class, the o�set into the delegation chain
that that class's methods will embody will not include the
delegation through the ancestry of the intended object up
to that remote class. This is easily handled by the remote
class by �rst walking through the delegation ancestry of the
intended object to get to the delegate ancestor corresponding
to the remote class. Once there, it can proceed by applying
the slot access method to that object ticket.

compound method, then, similar to case 1B, the method
can be decomposed into more primitive operations and
processing proceeds as sketched above. Notice that it is
not until we tackle the message at the remote class's host
that we discover whether the message is a slot access or
a compound method.

4.4 Summary of E�cient Remote Delegation

In closing on this issue of e�cient remote delegation in
the face of full/remote classes a few points should be
emphasized.

First of all, it should be noted that we intend to re-
quire every local object to at least have local class infor-
mation on the machine where it resides. Speci�cally, we
consider it undesirable to have a local Student object
instance, say, on a machine that does not know about
the Student class. Such a local object would be use-
less in that every message to it would ultimately have
to be forwarded somewhere else only to have the most
primitive slot accesses actually performed on the object
locally.

Second, we do not have a problem with several inde-
pendent implementations of the \same" class (e.g., two
distinct kinds of Student) since each class is stamped
by when/where its implementation was born. Specif-
ically, when a class implementation is exported, the
ClassTicket for the class at the exporting site is em-
bedded within the exported class code. Thus, distinct
re-implementations of a class (i.e., version updates) will
have di�erent ClassTickets since their timestamps (at
least) will di�er. Similarly, exporting a class to a ma-
chine that then extends or otherwise modi�es the class
will again be reected in a new distinct ticket for the
resulting new class. To our knowledge, no other system
has adopted such a clean approach. The use of class ver-
sion numbers comes close, but requires global synchro-
nization on the issuance of these version numbers. Our
technique requires no such synchronization. We �nd the
globally unique ticket mechanism to be quite elegant in
this regard.

Finally, it is worth re-iterating that at any point in
the class hierarchy one might choose to export or not
export an ancestral class implementation. Thus, hierar-
chical privacy and opaque encapsulation are supported in
the SchMUSE. This mechanism, in e�ect, supports ab-
stract types in a distributed object-oriented framework.
The burden, of course, is that the site of the implemen-
tation is charged with processing the messages to such
objects. We have not explored the rami�cations of this
policy in detail, but we consider it to be intriguing that
to keep an implementation aspect private or proprietary
one must pay the overhead of servicing requests for these
secretive aspects oneself or arrange to have them serviced
only by trusted authorized or licensed servers.

5 Message Deferral for Reliable

Remote Delegation

We now move from the e�ciency issues surrounding re-
mote delegation to the reliability issues. Speci�cally, a
distributed system is reliable if its performance and avail-

5

ability are not a�ected by machines crashing. We have
already seen how delegating directly to nodes that con-
tain slots allows us to jump over intermediate delegate
nodes. This certainly enhances reliability in the case
where the jumped node may not have been up.

Otherwise, if some delegate is unavailable in our
system due, for example, to the server that supports
that delegate not being currently \plugged into the
SchMUSE" then we can just avoid any slot accesses
to slots local to that delegate and hence avoid thrash-
ing the Central Services in search of a realm that is not
present and wasting time with time-outs on messages
that cannot succeed.

5.1 The Problem

Beyond this, however, is a desire for more graceful degra-
dation in behavior. That is, failing to process a message
because of the inaccessibility of the node which holds
some object slot (or some method, in the remote class
case) seems severe. In many cases, it may be that the
method on some node is merely a fanciful specializa-
tion of some inherited method. For example, the say

method on Student may just print something silly (like
\Yo") then proceed to invoke the parent Person say

method. In such a situation, it might be desirable to
permit the student behavior to gracefully degrade into
normal person behavior when the student method is un-
available. Thus, were we to build a GradStudent class
that delegates to Student but choose not to export the
implementation of the Student say method to the grad
student,11 then attempts to make a grad student node
say something would be fraught with peril if the parent
Student node were crashed. Even when a grad student
forgets for a moment how to behave like a student, it
would be nice if they could at least still temporarily act
like a normal person in the meantime rather than going
totally catatonic.

Similarly, the node at which some slot resides may
become unavailable. If that slot shadows some other slot
with the same name but later in the delegation chain,
it may sometimes be desirable to permit slot reads of
the unavailable slot to be deferred as slot reads of the
shadowed slot. Returning to Figure 1, for example, if
the Student nickname slot becomes unavailable, it may
be acceptable to read the shadowed Person nickname

slot instead.
We have attempted to deal with this desirability of

graceful inheritance degradation by a mechanism we call
message deferral. For example, we would say that when
the student class is not available, it may be safe to defer
the say message to the shadowed person class. Some
methods may be safe to defer while others may not be.
For example, when a MobileObject moves, it merely
changes its place slot and tells the place object to up-
date its inventory to include the new object (and tell
the old place to release the object). For Persons, how-
ever, we must not only move the person object but also
move each of the objects being carried in the person's

11For example, like when GradStudent behavioral norms
are regulated by a di�erent set of guidelines than typical
Student norms, dude.

possessions slot. Thus, were the person class not avail-
able to some student, it would not be safe to defer move
messages to the underlying MobileObject class upon
which the person class was built. To do so would mean
to lose your wallet along with all your other possessions!

Similarly, we may have an Employee say method that
is specialized to say \Sir" then go on to call the Person
say method. We might then build a Manager class that
delegates to Employee. Were we to then ask a say mes-
sage of a manager whose employee node is unavailable,
it may be undesirable, due to corporate protocol, to de-
fer to the less formal person say method. Similarly, it
might be embarrassing to defer to the pedestrian Person

nickname slot when an attempt is made to access the
Employee nickname slot. These illustrate a subtle com-
plication in the deferral mechanism: the safety of a de-
ferral is not just a property of the message or slot read
being deferred, it is also a property of the path by which
the deferral takes place. In our GradStudent/Student
say the deferral to Person was acceptable, but not so for
the Manager/Employee deferral. Thus, when attempting
to defer a message, some record of the deferral path must
be passed along with the deferral attempt. Notice also
that more than one node along the delegation chain may
be unavailable at one time. Thus, an arbitrary depth of
deferral may become necessary.

Finally, this deferral mechanism is further compli-
cated by multiple inheritance. Consider, for example,
some message having methods along both the primary
parent delegation chain and the secondary parent del-
egation chain. If one chain is unavailable, perhaps the
second should be attempted. In such a situation, the
safety and propriety of deferral may involve shadowing
of methods not via child shadowing but via neighbor-
ing parent shadowing. Viewing the child/parent paths
as vertically directed and multiple parents of a node as
horizontally splayed, we recognize that the child/parent
shadowing is a matter of vertical shadowing while multi-
ple parents that handle the same method could be said to
engage in horizontal shadowing. This distinction will be-
come necessary in understanding how we implement safe
deferral. In a scenario where an employee is a student
intern (and thus inherits from both a normal employee
node and a student node), this issue can be critical.

5.2 The Solution

How then do we implement this selective deferral mech-
anism? Presently, each time a new class is created that
delegates to a parent class, the parent class is noti�ed of
the names of all the local messages that the child class
handles. In this way, if the parent class has never before
been delegated to by a child of the new child class, the
parent class can detect which of its methods are shad-
owed by the child. This same list of the child class's local
messages is then forwarded to the parent class's parents'
classes, and so on down the class delegation chain, so
that deeply shadowed messages can be annotated. Note
that at each point where a shadowing is detected, we
store in the shadowed class an association between the
shadowed message and the child classes which shadow it.
If we choose to declare a particular message to be safe to

6

defer to some speci�c shadowed parent, we can specify
that in the class de�nition by stating precisely, for each
local method, which parent class(es) that method's mes-
sage can safely be deferred to. In such cases, the child's
message shadowing of that message is not recorded at
the parent class.

Note also that this shadow information is propagated
aggressively at the earliest possible moment, namely at
class creation time. This is because if we tried to imple-
ment a lazy on-demand strategy, by the time we actually
need to attempt a message deferral it may well be too
late to attempt to propagate the shadowing information.
Since this shadowing information is our means for judg-
ing if a particular deferral is safe, failing to propagate
this vital information could be our undoing.

To see how this class shadowing information is used
to detect deferral safety, consider the following scenario.
An object receives a message and decomposes it into a
slot access on some ancestor node. If this ancestor is
unavailable, it may be desirable to attempt to defer to
some other ancestor with a slot of the same name. We
therefore consult the method dispatch table for an ances-
tor whose class indicates that it can handle the message
which failed, then forward the message on to the ances-
tor, telling it that this is a deferral and telling it which
ancestor(s) we have deferred across. If the deferred an-
cestor is likewise unavailable, we proceed through the
ancestry with deeper and deeper deferral attempts. Sim-
ilarly, if the attempt to discover if an ancestor's class
can handle this message involves querying a remote class
which is likewise unavailable then we treat that ances-
tor as unavailable. If we run out of deferral candidates,
then we �nally give up and return a failure signal. On
the other hand, if we do �nd some ancestor available,
then, at the point where we succeed, the receiving an-
cestor processes the message by �rst consulting its class's
association of shadowed messages and the child classes
which shadow them. If the present message is discovered
to be shadowed by an object class of one of the ances-
tors we have just deferred across, then the deferral is
unsafe and we send an error to that e�ect. Otherwise,
we proceed with the message as usual.

This strategy correctly detects vertical shadowing, as
de�ned above. Unfortunately, it does not handle hor-

izontal shadowing. For that, we need additional class
information. Speci�cally, each class, upon creation,
queries each of its parent classes to discover the full
structure of messages that each ancestral class handles.12

Now, when a class is created that delegates with multi-
ple inheritance, we merely arrange that the list of child
messages that the parents are noti�ed of includes those
messages handled by neighboring parents. For example,
in our Person class, the AnimateObject class would be
noti�ed of the local messages of Person as well as all
messages of MobileObject (since we have left-to-right
precedence in our multiple inheritance). When we then
attempt a deferral that forces us to try the secondary

12Even with opaque remote classes, the ancestral mes-
sages are revealed since this does not expose the implemen-
tation. It only exposes some small structural property of the
implementation.

parent AnimateObject delegation chain, we include in
our trace of the deferrals we have already attempted all
the ancestors tried along the primary parent delegation
chain. In this way, the horizontal shadowing information
is given to the delegates that may be asked to process
a deferred message, and the path which the deferral fol-
lowed includes the horizontally neighboring ancestors of
the target deferral ancestor.

In closing, note that we have expressed this book-
keeping of vertical and horizontal shadowings in terms
of messages sent among classes. We did so because, in
general, communication with remote classes may require
it. In the case where a local class must communicate
information to another local class, the message send is
somewhat fanciful. Indeed, with some compiler exten-
sions, block compiling a selection of classes could e�ect
the same result directly in the internal class represen-
tations. We have not explored such compiler extensions
since we wished to make our SchMUSE implementation
based solely on portable MIT Scheme language features.
Compiler extensions generally do not port quite so easily.

6 Related Work

As mentioned at the outset, our delegation style ob-
ject system was modelled after [Adams & Rees 88]. Our
advocacy of this style's sharing properties and sup-
port of multiple shared views comes from Clovers

[Stein & Zdonik 89], although our introduction of classes
into the delegation style is not traditional in the sense
that it is not prototype-based delegation [Lieberman 86].

Of the distributed object systems we have examined,
nearly all have opted to extend a traditional class-based
inheritance system to a distributed object system only to
afterward comment that a delegation-based object sys-
tem would have been more desirable, as was anticipated
by [Otten & Hagen 90]. Most of them cite the extra ex-
ibility provided by delegation systems as the motivating
factor. [Bennett 90] even goes to the extent of identify-
ing remote classes as the primary point of tension, argu-
ing that delegation systems, by normally storing meth-
ods along with the local slots inside objects, naturally
satisfy this key exibility concern. Their careful exami-
nation of the design options surrounding remote classes
was very helpful in justifying to ourselves our constraint
that local object nodes must have local class information
about the node's class. Unlike them, however, we opted
to promote classes to the status of objects themselves,
complete with their own kind of class reference (namely,
ClassTickets). We �nd our solution to this problem
of remote classes, therefore, to be fairly elegant with-
out requiring delegation-based object instances to store
their methods directly in their representations. Rather,
we use class information to establish a method dispatch
table separate from the object slots array.

Our use of globally unique tickets was inspired by
[Leach et al. 82]. It di�ers from the apparently com-
mon use of object \proxies" for remote object references
[Decouchant 86]. Proxies are objects that accept mes-
sages and forward them to a remote object. We instead
make our message send procedure detect if the object

7

being queried is local or remote (which is easily deter-
mined by inspecting the object ticket's realm ticket) and
remotely forward the message if it is remote. It seems
to us that the use of proxies is an apology for having
an awkward object reference mechanism or for having
a system which demands every target of a message be
an \object" in some built-in language speci�c sense. In
fact, [McCullough 87] even goes so far as to then pro-
vide global UIDs for their proxies, along with a table to
map from proxies to UIDs to test object identity. This
seems like a further apology for having used proxies at
all. Since we were not retro-�tting our remote object
references to an existing local object language system,
we were not compelled to make such apologies.

Some
distributed object systems [Nascimento & Dollimore 92]
[Feeley & Levy 92] have adopted version numbers for
dealing with object and class references. A similar com-
mon approach is to adopt a centralized authority to co-
ordinate the issuance of sequential object ID numbers.
Any such strategies must globally synchronize their num-
bering to some extent to avoid collision. Our globally
unique identi�ers require no such synchronization. This
makes our system scalable. To wit, our strategy could
support a SchMUSE server at every single Internet
address. Moreover, although we shall permit \pointer
snapping" of RealmTickets within object/class tickets
when those entities migrate among realms, the remain-
der of the globally unique ID remains stable, as an im-
mutable birthtime/birthplace of each object. This has
greatly enhanced debugging and pro�ling of our system.

Our realm resolution is currently loosely modelled af-
ter Internet namespace service. We intend to investigate
alternative distributed resolution strategies, such as the
\clearinghouse" approach of [Oppen & Dalal 83]. Ad-
mittedly, given the small size of our prototype lab net-
work (48 workstations; 2 �le servers), we have not been
motivated to explore fanciful variations. Now that MIT
has completed its installation of Internet drops within
campus dorm rooms, the motivation to explore creative
options is expected to grow and we anticipate a veritable
army of participants avid to explore those options.

Finally, our blurring of the distinction between client
and server in the SchMUSE is similar to that found in
Flamingo [Anderson 86]. Their system, however, is a
cooperative mailer system; ours is an interactive simula-
tion environment, so the types of client/server interac-
tions are characteristically di�erent.

7 Contributions and Conclusions

Our novel use of globally unique tickets as object ref-
erences has proven to be elegant, versatile, low-cost,
and scalable without requiring network-wide clock syn-
chronization. Further, our separation of object identi-
�cation from object location, by means of embedding
RealmTickets within object and class tickets, has proven
quite useful. It allows course-grained object migration
(by realm) without requiring forwarding addressing to
disrupt the object database. This was achieved by us-
ing a separate realm table to map the realm tickets to

actual machine locations. This mapping has been proto-
typed as a \Brazilian" distributed hierarchical lazy map-
ping strategy modelled after Internet namespace servers.
Again, this will scale at least as well as the Internet has
scaled.

We believe that our most signi�cant contribution is
our incorporation of class information into a delegation-
based inheritance system, yielding what we call a class-

based delegation system. We know of no other distributed
object system that has wed these traditionally rivaled
approaches of delegation and class inheritance.

Moreover, we found that class-based delegation facili-
tates several novel issues arising from remote delegation
which have heretofore been unaddressed by the object-
oriented community. For example, we are unaware
of previous work in accelerating delegation through
compile-time class analysis in a setting where classes
themselves may be remote (and hence, compile-time
opaque). In addition, we have also introduced a novel
notion of message deferral which permits graceful degra-
dation of object behavior and system availability as re-
mote sites go down while paying heed to the safety and
propriety of certain deferral.

8 Future Work

There are many directions for further development of
MIT SchMUSE. Roughly, these include object migra-
tion, enhanced concurrency, access control, and commu-
nication security.

Foremost on our agenda is investigating mechanisms
for allowing objects to migrate from one realm to an-
other. We will likely follow the �ne work of the Emer-
ald Project [Jul et al. 88] [Jul 88], including their for-
warding address strategy [Fowler 86] [Fowler 85] (for
\snapping" RealmTickets in stale ObjectTickets to
point to the new realm where the object has moved)
as well as their distributed garbage collection algo-
rithm [Vestal 87] (to GC stale forwarding addresses). Of
course, distributed GC is valuable for automatic stor-
age reclamation in general anyway so that space quo-
tas with manual object de-allocation do not have to be
imposed on users. Although the above citations give
the impression that each of these extensions is a solved
problem, actually implementing them should prove a re-
spectable engineering task. More recent advances in dis-
tributed GC should prove helpful [Detlefs 90] [VAT 92]
[Maheshwari 93].

Also, we would like to support a higher degree of con-
currency in the SchMUSE network by providing a true
transaction-based mechanism for our message passing.
(Currently, our messages are not even atomic in that par-
tially completed messages which fail do not back out).
We will likely pursue a design based on nested trans-
actions [Moss 81], possibly with some degree of opti-
mistic concurrency among concurrent transactions. This
should prove a fairly challenging task.

Next, the present prototype of the SchMUSE pro-
vides a fairly exotic locking strategy for object access
control. This is documented in [Cohen 93]. At present,
however, it provides only �ne- and coarse-grained lock-
ing (namely, instance locking per message and instance

8

locking per instance creator). We would like to extend it
to provide medium-grained locking as well (that is, lock-
ing per instance). This is a straightforward extension.

Our initial implementation uses [Adams & Rees 88]
style method delegation. We intend to look into a
more Dylan-like generic function method specialization
mechanism for overriding default class methods.

Finally, it would also be interesting to support net-
work privacy by encrypting messages and their results as
they are shipped between SchMUSE sites. This should
prove a fairly painless extension.

Credit and Acknowledgments

Prof. Hal Abelson initially proposed exploring the idea
of a Scheme-based MOO-like language modelled after
Xerox PARC Lambda-MOO but with distributed delega-
tion. Michael Blair and Natalya Cohen drafted an initial
design built atop Brian Zuzga's TCP/IP-based message-
passing communication substrate. David LaMacchia
later joined the design team and assisted in the realm
resolution design. All members of the SchMUSE team
assisted in our on-going prototype implementation.

Several members of our Summer '92 MIT Scheme

Team assisted in alpha-testing the design and imple-
mentation and, consequently, provided very valued feed-
back. They include Joseph Boerges, Greg MacLarin, and
Prof. Eric Grimson.

We would like to thank Abelson and Grimson for their
encouragement and support in pursuing this project and
in writing this report. Their guidance (and funding) has
proved invaluable.

And �nally, we thank the conference referees for their
helpful comments and constructive feedback.

References

[Abelson & Sussman 85]
Harold Abelson and Gerald Jay Sussman
with Julie Sussman
Structure and Interpretation of Computer Programs

The MIT Press, Cambridge, MA, 1985

[Adams & Rees 88]
Norman Adams and Jonathan Rees
Object-oriented Programming in Scheme

In Proceedings ACM Lisp and Functional
Programming, Jul 88, pp.277{288.

[Agha 86]
Gul Agha
Actors: a model of concurrent computation

in distributed systems

MIT Press, Cambridge, MA, 1986

[Anderson 86]
David B. Anderson
Experience with Flamingo: A Distributed,

Object-Oriented User Interface System

In Proceedings ACM OOPSLA '86, pp.177{185.

[Apple 92]
Apple Computer, Eastern Research and Technology
Dylan: An Object-Oriented Dynamic Language

Apple Computer, Inc, 1992

[Bennett 90]
John K. Bennett
Experience With Distributed Smalltalk

Software{Practice and Experience, Vol.20 No.2,
Feb 1990, pp.157{180.

[Blair & Maessen 93]
Michael R. Blair and Jan-Willem Maessen
CLOS Clovers: Delegation-based Inheritance in

Common Lisp via the CLOS Metaobject Protocol

Unpublished project. Implementation available at:
ftp://swissnet.ai.mit.edu/pub/clovers

[Bobrow et al. 90]
Daniel G. Bobrow, Linda G. DeMichel,
Richard P. Gabriel, Sonya E. Keene,
Gregor Kiczales, and David A. Moon
Common Lisp Object System

In [Steele 90], Chapter 28, pp.770{864.

[Clinger & Rees 91]
William Clinger and Jonathan Rees (Editors)
Revised

4
Report on the Algorithmic

Language Scheme

MIT/AI/Memo 848b, November 1991, and/or
In ACM Lisp Pointers, Vol. IV, No.3,
July-Sep 1991, pp.1-55.

[Cohen 93]
Natalya Cohen
SchMUSE 001: An Introductory Guide

to SchMUSE 001

MIT Arti�cial Intelligence Laboratory,
Project MAC Technical Memo.
Available as schmuse-manual.fps,dvig at
ftp://swissnet.ai.mit.edu/pub/schmuse/

[Decouchant 86]
Dominique Decouchant
Design of a Distributed Object Manager

for the Smalltalk-80 System

In Proceedings ACM OOPSLA '86, pp.444{452.

[Detlefs 90]
David L. Detlefs
Concurrent, atomic garbage collection

PhD dissertation. Carnegie-Mellon University,
Technical Report CMU-CS-90-177, Oct. 1990

[DOS Scheme]
MIT Scheme Team
DOS Scheme Implementation

Implementation available via e-mail request to
info-cscheme-dos-request@altdorf.ai.mit.edu.

[Feeley & Levy 92]
Michael J. Feeley and Henry M. Levy
Distributed Shared Memory with Versioned Objects

In Proceedings ACM OOPSLA '92, pp.247{262.

[Fowler 85]
Robert J. Fowler
Decentralized Object Finding Using

Forwarding Addresses

PhD dissertation. University of Washington,
Department of Computer Science, Technical Report
TR 85-12-1, Dec 85

9

[Fowler 86]
Robert Joseph Fowler
The Complexity of Using Forwarding Addresses for

Decentralized Object Finding

In Proceedings ACM Principles in Distributed
Computing '86

[Hanson 91]
Chris Hanson
MIT Scheme Reference Manual

MIT Arti�cial Intelligence Laboratory,
MIT AI TR-1281, Nov 1991

[Hutchinson 87]
Norman C. Hutchinson
Emerald: An Object-Based Language for

Distributed Programming

PhD dissertation. University of Washington,
Department of Computer Science, Technical Report
TR 87-01-01, Jan 87

[IEEE 91]
IEEE Scheme Standardization Committee
IEEE Standard for the Scheme Programming

Language

IEEE Std 1178-1990, May 1991

[Johnson & Zweig 91]
Ralph E. Johnson and Jonathan M. Zweig
Delegation in C++

Journal of Object-Oriented Programming,
Nov/Dec 1991, pp.31{34.

[Jul 88]
Eric Jul
Object Mobility in a Distributed Object-Oriented

System

PhD dissertation. University of Washington,
Department of Computer Science, Technical Report
TR 88-12-06, Dec 88

[Jul et al. 88]
Eric Jul, Henry Levy, Norman Hutchinson, and
Andrew Black
Fine-Grained Mobility in the Emerald System

ACM Transactions on Computer Systems,
Vol.6, No.1, Feb 1988, pp.109{133.

[Kiczales et al. 91]
Gregor Kiczales, Jim des Rivieres, and
Daniel G. Bobrow
The Art of the Metaobject Protocol

MIT Press, Cambridge, MA, 1991

[LaLonde 86]
Wilf R. LaLonde, Dave A. Thomas and
John R. Pugh
An Exemplar Based Smalltalk

In Proceedings ACM OOPSLA '86, pp.322{330.

[Leach et al. 82]
Paul J. Leach, Bernard L. Stumpf,
James A. Hamilton, and Paul H. Levine
UIDs as Internal Names in a Distributed File

System

In Proceedings ACM Symposium on Principles
in Distributed Computing, Aug 1982, pp.34{41.

[Lieberman 86]
Henry Lieberman
Using Prototypical Objects to Implement Shared

Behavior in Object Oriented Systems

In Proceedings ACM OOPSLA '86, pp.214{223.

[Leighton 92]
F. Thomson Leighton
Introduction to parallel algorithms and architectures

Morgan Kaufmann, San Mateo, CA, 1992

[Maheshwari 93]
Umesh Maheshwari
Distributed garbage collection in a client-server,

transactional, persistent object system

M.S. dissertation, MIT Lab. for Computer Science,
MIT/LCS/TR-574, Oct. 1993

[McCullough 87]
Paul L. McCullough
Transparent Forwarding: First Steps

In Proceedings ACM OOPSLA '87, pp.331{341.

[Moss 81]
J. Eliot B. Moss
Nested Transactions: An Approach to Reliable

Distributed Computing

PhD dissertation. MIT Lab. for Computer Science,
MIT/LCS/TR-260, Apr 81

[Nascimento & Dollimore 92]
Claudio Nascimento and Jean Dollimore
Behavior maintenance of migrating objects in a

distributed object-oriented environment

Journal of Object-Oriented Programming,
Sept 1992, pp.25{32.

[Oppen & Dalal 83]
Derek C. Oppen and Yogen K. Dalal
The Clearinghouse: A Decentralized Agent for

Locating Named Objects in a Distributed

Environment

ACM Transactions on O�ce Information Systems,
Vol.1, No.3, July 1983, pp.230{253.

[Otten & Hagen 90]
D. B. M. Otten and P. J. W. ten Hagen
On the Role of Delegation and Inheritance in

Object-Oriented Database Systems

Technical Report CS-R9032
Centre for Mathematics and Computer Science,
P.O.Box 4079,
1009 AB Amsterdam, The Netherlands

[Snyder 86]
Alan Snyder
Encapsulation and Inheritance in Object-Oriented

Programming Languages

In Proceedings ACM OOPSLA '86, pp.38{45.

[Steele 90]
Guy L. Steele Jr.
Common Lisp: The Language (Second Edition)
Digital Press, 1990

10

[Stein 87]
Lynn Andrea Stein
Delegation Is Inheritance

In Proceedings ACM OOPSLA '87, pp.138{146.

[Stein & Zdonik 89]
Lynn Andrea Stein and Stanley B. Zdonik
Clovers: The Dynamic Behavior of Types and

Instances

Brown University Technical Report No. CS-89-42,

[Stroustrup 86]
Bjarne Stroustrup
The C++ Programming Language

Addison-Wesley, 1986

[VAT 92]
Nalini Venkatasubramanian, Gul Agha and
Carolyn Talcott
Hierarchical garbage collection in scalable

distributed systems

University of Illinois, Urbana-Champaign.
ILLINOIS UIUCDCS-R-92-1740, Apr. 1992

[Vestal 87]
Stephen C. Vestal
Garbage Collection: An Exercise in Distributed,

Fault-Tolerant Programming

PhD dissertation. University of Washington,
Department of Computer Science, Technical Report
TR 87-01-03, Jan 87

[XLRG 81]
The Xerox Learning Research Group
The Smalltalk-80 System

BYTE, Vol.6 No.8, Aug 1981, pp.36{48.

11

