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Abstract

The need to generate new views of a 3D object from a single real image arises in several �elds, including
graphics and object recognition. While the traditional approach relies on the use of 3D models, we have
recently introduced [11, 6, 5] techniques that are applicable under restricted conditions but simpler. The
approach exploits image transformations that are speci�c to the relevant object class and learnable from
example views of other \prototypical" objects of the same class.

In this paper, we introduce such a new technique by extending the notion of linear class �rst proposed
by Poggio and Vetter [12]. For linear object classes it is shown that linear transformations can be learned
exactly from a basis set of 2D prototypical views. We demonstrate the approach on arti�cial objects and
then show preliminary evidence that the technique can e�ectively "rotate" high-resolution face images
from a single 2D view.
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1 Introduction

View-based approaches to 3D object recognition and
graphics may avoid the explicit use of 3D models by
exploiting the memory of several views of the object and
the ability to interpolate or generalize among them. In
many situations however a su�cient number of views
may not be available. In an extreme case we may have
to do with only one real view. Consider for instance the
problem of recognizing a speci�c human face under a dif-
ferent pose or expression when only one example picture
is given. Our visual system is certainly able to perform
this task { even if at performance levels that are likely to
be lower than expected from our introspection [10, 15].
The obvious explanation is that we exploit prior informa-
tion about how face images transform, learned through
extensive experience with other faces. Thus the key idea
(see [12]), is to learn class-speci�c image-plane transfor-
mations from examples of objects of the same class and
then to apply them to the real image of the new object in
order to synthesize virtual views that can be used as ad-
ditional examples in a view-based object recognition or
graphic system. Prior knowledge about a class of objects
may be known in terms of invariance properties. Poggio
and Vetter [12] examined in particular the case of bilat-
eral symmetry of certain 3D objects, such as faces. Prior
information about bilateral symmetry allows the synthe-
sis of new virtual views from a single real one, thereby
simplifying the task of generalization in recognition of
the new object under di�erent poses. Bilateral symme-
try has been used in face recognition systems [5] and
psychophysical evidence supports its use by the human
visual system [15, 13, 18].

A more exible way to acquire information about how
images of objects of a certain class change under pose,
illumination and other transformations, is to learn the
possible pattern of variabilities and class-speci�c defor-
mations from a representative training set of views of
generic or prototypical objects of the same class { such as
other faces. Although our approach originates from the
proposal of Poggio and Brunelli [11] and of Poggio and
Vetter [12], for countering the curse-of-dimensionality in
applications of supervised learning techniques, similar
approaches with di�erent motivations have been used
in several di�erent �elds. In computer graphics, actor-
based animation has been used to generate sequences of
views of a character by warping an available sequence
of a similar character. In computer vision the approach
closest to the �rst part of ours is the active shape models
of Cootes, Taylor, Cooper and Graham [14]. They build
exible models of known rigid objects by linear combi-
nation of labeled examples for the task of image search
{ recognition and localization. In all of these approaches
the underlying representation of images of the new object
are in terms of linear combinations of the shape of exam-
ples of representative other objects. Beymer, Shashua
and Poggio [6] as well as Beymer and Poggio [5] have
developed and demonstrated a more powerful version
of this approach based on non-linear learning networks
for generating new grey-level images of the same object
or of objects of a known class. Beymer and Poggio [5]
also demonstrated that new textures of an object can be

generated by linear combinations of textures of di�er-
ent objects. In this paper, we extend and introduce the
technique of linear classes to generate new views of an
object. The technique is similar to the approach of [5, 6]
but more powerful since it relies less on correspondence
between prototypical examples and the new image.

The work described in this paper is based on the idea
of linear object classes. These are 3D objects whose 3D
shape can be represented as a linear combination of a
su�ciently small number of prototypical objects. Linear
object classes have the properties that new orthographic
views of any object of the class under uniform a�ne 3D
transformations, and in particular rigid transformations
in 3D, can be generated exactly if the corresponding
transformed views are known for the set of prototypes.
Thus if the training set consist of frontal and rotated
views of a set of prototype faces, any rotated view of a
new face can be generated from a single frontal view {
provided that the linear class assumption holds. In this
paper, we show that the technique, �rst introduced for
shape-only objects can be extended to their grey-level or
colour values as well, which we call texture.

Key to our approach is a representation of an object
view in terms of a shape vector and a texture vector (see
also Jones and Poggio [9] and Beymer and Poggio [5]).
The �rst gives the image-plane coordinates of feature
points of the object surface; the second provides their
colour or grey-level. On the image plane the shape vec-
tor reects geometric transformation in the image due to
a change in view point, whereas the texture vector cap-
tures photometric e�ects, often also due to viewpoint
changes.

For linear object classes the new image of an object
of the class is analyzed in terms of shape and texture
vectors of prototype objects in the same pose. This re-
quires correspondence to be established between all fea-
ture points of the prototype images { both frontal and
rotated { which can be done in a o�-line stage and does
not need to be automatic. It also require correspondence
between the new image and one of the prototypes in the
same pose but does not need correspondence between
di�erent poses as in the parallel deformation technique
of Poggio and Brunelli [11] and Beymer et al.[6].

The paper is organized as follows. The next section
formally introduces linear object classes, �rst for objects
de�ned only through their shape vector. Later in the
section we extend the technique to objects with textures
and characterize the surface reectance models for which
our linear class approach is valid. Section 3 describes an
implementation of the technique for synthetic objects
for which the linear class assumption is satis�ed by con-
struction. In the last section we address the key question
of whether the assumption is a su�ciently good approx-
imation for real objects. We consider images of faces
and demonstrate promising results that indirectly sup-
port the conjecture that faces are a linear class at least to
a �rst approximation. The discussion reviews the main
features of the technique and its future extensions.
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2 Linear Object Classes

Three-dimensional objects di�er in shape as well as in
texture. In the following we will derive an object repre-
sentation consisting of a separate texture vector and a
2D-shape vector, each one with components referring to
the same feature points, usually pixels. Assuming cor-
respondence, we will represent an image as follows: we
code its 2D-shape as the deformation �eld of selected
feature points { in the limit pixels { from a reference im-
age which serves as the origin of our coordinate system.
The texture is coded as the intensity map of the image
with feature points e.g. pixels set in correspondence with
the reference image. Thus each component of the shape
and the feature vector refers to the same feature point
e.g. pixel. In this setting 2D-shape and texture can be
treated separately. We will derive the necessary and suf-
�cient conditions for a set of objects to be a linear object
class.

2.1 Shape of 3D objects

Consider a 3D view of an three-dimensional ob-
ject, which is de�ned in terms of pointwise features
[12]. A 3D view can be represented by a vector
X = (x1; y1; z1; x2; :::::; yn; zn)

T , that is by the x; y; z-
coordinates of its n feature points. Assume thatX 2 <3n

is the linear combination of q 3D views Xi of other ob-
jects of the same dimensionality, such that:

X =

qX

i=1

�iXi: (1)

X is then the linear combination of q vectors in a 3n
dimensional space, each vector representing an object of
n pointwise features. Consider now the linear operator L
associated with a desired uniform transformation such as
for instance a speci�c rotation in 3D. Let us de�ne Xr =
LX the rotated 3D view of object X. Because of the
linearity of the group of uniform linear transformations
L, it follows that

Xr =

qX

i=1

�iX
r

i
(2)

Thus, if a 3D view of an object can be represented as the
weighted sum of views of other objects, its rotated view
is a linear combination of the rotated views of the other
objects with the same weights. Of course for an arbitrary
2D view that is a projection of a 3D view, a decomposi-
tion like (1) does not in general imply a decomposition
of the rotated 2D views (it is a necessary but not a suf-
�cient condition).

2D projections of 3D objects
The question we want to answer here is, \Under which
conditions the 2D projections of 3D objects satisfy equa-
tion (1) to (2)?" The answer will clearly depend on the
types of objects we use and also on the projections we
allow. We de�ne:

A set of 3D views (of objects) fXig is a linear ob-
ject class under a linear projection P if dimfXig =
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Figure 1: Learning an image transformation according
to a rotation of three-dimensional cuboids from one ori-
entation (upper row) to a new orientation (lower row).
The `test' cuboid (upper row right) can be represented as
a linear combination of the two-dimensional coordinates
of the three example cuboids in the upper row. The lin-
ear combination of the three example views in the lower
row, using the coe�cients evaluated in the upper row,
results in the correct transformed view of the test cuboid
as output (lower row right). Notice that correspondence
between views in the two di�erent orientations is not
needed and di�erent points of the object may be occluded
in the di�erent orientations.

dimfPXig with Xi 2 <3n and PXi 2 <p and p < 3n

This is equivalent to saying that the minimal number
of basis objects necessary to represent a object is not
allowed to change under the projection. Note that the
linear projection P is not restricted to projections from
3D to 2D, but may also \drop" occluded points. Now
assume x = PX and xi = PXi being the projections of
elements of an linear object class with

x =

qX

i=1

�ixi (3)

then xr = PXr can be constructed without knowing
Xrusing �i of equation (3) and the given xr

i
= PXr

i
of

the other objects.

xr =

qX

i=1

�ix
r

i
: (4)

These relations suggest that we can use \prototypical"
2D views (the projections of a basis of a linear object
class) and their known transformations to synthesize an
operator that will transform a 2D view into a new 2D
view when the object is a linear combination of the pro-
totypes. In other words we can compute a new 2D view
of such an object without knowing explicitly its three-
dimensional structure. Notice also, that knowledge of
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the correspondence between equation (3) and equation
(4) is not necessary (rows in a linear equation system can
be exchanged freely). Therefore, the technique does not
require to compute the correspondence between views
from di�erent viewpoints. In fact some points may be
occluded. Figure 1 shows a very simple example of a
linear object class and the construction of a new view
of an object. Taking the 8 corners of a cuboid as fea-
tures, a 3D view X, as de�ned above, is an element of
<24; however, the dimension of the class of all cuboids
is only 3, so any cuboid can be represented as a linear
combination of three cuboids. For any projection, that
preserve these 3 dimensions, we can apply equations (3)
and (4). The projection in �gure 1 projects all non oc-
cluded corners orthographically onto the image-plane (
x = PX 2 <14) preserving the dimensionality. Notice,
that the orthographic projection of an exactly frontal
view of a cuboid, which would result in a rectangle as
image, would preserve 2 dimensions only, so equation (4)
could not guarantee the correct result.
Before applying this idea to grey-level images, we would
like to introduce a helpful change of coordinate systems
in equations (3) and (4). Instead of using an absolute
coordinate system, we represent the views as the di�er-
ence to the view of a reference object of the same class,
in terms of the spatial di�erences of corresponding fea-
ture points in the images. Subtracting on both sides of
equations (3) and (4) the projection of a reference object
gives us

�x =

qX

i=1

�i�xi (5)

and

�xr =

qX

i=1

�i�x
r

i
: (6)

After this change in the coordinate system, equation
(6) now evaluates to the new di�erence vector to the ro-
tated reference view. The new view of the object can
be constructed by adding this di�erence to the reference
view.

2.2 Texture of 3D objects

In this section we extend our linear space model from
a representation based on feature points to full images
of objects. In the following we assume that the objects
are isolated, that is properly segmented from the back-
ground. To apply equations (5) and (6) to images, the
di�erence vectors between an image of a reference object
and the images of the other objects have to be computed.
Since the di�erence vectors reect the spatial di�erence
of corresponding pixels in images, this correspondence
has to be computed �rst. The problem of �nding corre-
spondence between images in general is di�cult and out-
side the scope of this paper. In the following we assume
that the correspondence is given for every pixel in the
image. In our implementation (see next section) we ap-
proximated this correspondence �elds using a standard
optical ow technique. For an image of n-by-n pixels �x

in equations (5) and (6) are the correspondence �elds of

the images to a reference image with �x 2 <2n2.

The computed correspondence between images en-
ables a representation of the image that separates 2D-
shape and texture information. The 2D-shape of an im-
age is coded as a vector representing the deformation
�eld relative to a reference image. The texture informa-
tion is coded in terms of a vector which holds for each
pixel the texture map that results from mapping the im-
age onto the reference image through the deformation
�eld. In this representation, all images { the shape vec-
tor and the texture vector { are vectorized relative to the
reference image. Since the texture or image irradiance
of an object is in general a complex function of albedo,
surface orientation and the direction of illumination, we
have to distinguish di�erent situations.

Let us �rst consider the easy case of objects all with
the same identical texture: corresponding pixels in each
image have the same intensity or color. In this situation
a single texture map (e.g. the reference image) is su�-
cient. Assuming a linear object class as described ear-
lier, the shape coe�cients �i can be computed (equation
5) and result (equation 6) in the correspondence �eld
from the reference image in the second orientation to the
new `virtual' image. To render the `virtual' image, the
reference image has to be warped along this correspon-
dence �eld. In other words the reference image must be
mapped onto the image locations given through the cor-
respondence �eld. In Figure 2 the method is applied to
grey level images of three-dimensional computer graphic
models of �ve dog-like objects. The `dogs' are shown in
two orientations and four examples of this transforma-
tion from one orientation to the other are given. Only a
single test view of a di�erent dog is given. In each orien-
tation, the correspondence from a chosen reference image
(dashed box) to the other images is computed separately
(see also section `An implementation'). Since the dogs
were created in such a way that the three-dimensional
objects form a linear object class, the correspondence
�eld to the test image could be decomposed exactly into
the other �elds (upper row). Applying the coe�cients
of this decomposition to the correspondence �elds of the
second orientation results in the correspondence of the
reference image to a new image, showing the test object
in the second orientation. This new image (\output" in
the lower row) was created by simply warping the ref-
erence image along this correspondence �eld, since all
objects had the same texture. Since in this test a three-
dimensional model of the object was available, the syn-
thesized output could be compared to the model. As
shown in the di�erence image, there is only a small er-
ror, which can be attributed to minor errors in the cor-
respondence step. This example shows that the method
combined with standard image matching algorithms is
able to transform an image in a way that shows an ob-
ject from a new viewpoint.

Let us next consider the situation in which the texture
is a function of albedo only, that is independent of the
surface normal. Then a linear texture class can be for-
mulated in a way equivalent to equations (1) through
(4). This is possible since the textures of all objects were
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Figure 2: Grey level images of an arti�cial linear object class are rendered. The correspondence between the images
of a reference object (dashed box) and the other examples are computed separately for each orientation. The corre-
spondence �eld between the test image and the reference image is computed and linearly decomposed into the other
�elds (upper row). A new correspondence �eld is synthesized applying the coe�cients from this decomposition to the
�elds from the reference image to the examples in the lower row. The output is generated by forward warping the
reference image along this new correspondence �eld. In the di�erence image between the new image and the image of
the true 3D model (lower row, right), the missing parts are marked white whereas the parts not existing in an image
of the model are in black.

mapped along the computed deformation �elds onto the
reference image, so all corresponding pixels in the images
are mapped to the same pixel location in the reference
image. The equation

t =

qX

i=1

�iti (7)

with �i (di�erent to �i in equation (3)) implies

tr =

qX

i=1

�it
r

i
(8)

assuming that the appearance of the texture is indepen-
dent of the surface orientation and the projection does
not change the dimensionality of the texture space. Here
we are in the nice situation of a separate shape and tex-
ture space. In an application the coe�cients �i for the
shape and coe�cients �i for the texture can be computed
separately. In face recognition experiments [5] the coef-
�cients �i were already used to generate a new texture
of a faces using textures of di�ernt faces. Figure 3 shows
a test of this linear approach for a separated 2D-shape
and texture space in combination with the approximated
correspondence. Three example faces are shown, each
from two di�erent viewpoints accordingly to a rotation
of 22:5�. Since the class of all faces has more than three
dimensions a synthetic face image is used to test the

method. This synthetic face is generated by a standard
morphing technique [1] between the two upper left im-
ages. This ensures that the necessary requirements for
the linear class assumption hold, that is the test image
is a linear combination of the example images in texture
and 2D-shape. In the �rst step for each orientation the
correspondence between a reference face (dashed box)
and the other faces is computed. Using the same pro-
cedure described earlier, the correspondence �eld to the
test image is decomposed into the other �elds evaluating
the coe�cients �i. Di�erently from �gure 2, the textures
are mapped onto the reference face. Now the texture of
the test face can be linearly decomposed into the textures
of the example faces. Applying the resulting coe�cients
�i to the textures of the example faces in the second
orientation (lower row of �gure 3), we generate a new
texture mapped onto the reference face. This new tex-
ture is now warped along the new correspondence �eld.
This new �eld is evaluated applying the coe�cients �i
to the correspondence �elds of the examples to the ref-
erence face in the second orientation. The output of this
procedure is shown below the test image. Since the in-
put is synthetic, this result can not be compared to the
true rotated face, so it is up to the observer to judge the
quality of the applied transformation of the test image.
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EXAMPLES TEST
INPUT

OUTPUT
Figure 3: Three human example faces are shown, each in two orientations (the three left columns), one of these faces
is used as reference face (dashed box). A synthetic face, a `morph' between the two upper left images, is used as a
test face to ensure the linear combination constraint (upper right). The procedure of decomposing and synthesizing
the correspondences �elds is as described in �gure 2. Additionally all textures, for each orientation separately, are
mapped onto the reference face. Here the test texture is decomposed into the other example textures. Using the
evaluated coe�cients a new texture is synthesized for the second orientation on the reference face. The �nal output,
the transformed test face, is generated by warping this new texture along the new synthesized correspondence �eld.

3 An Implementation

The implementation of this method for grey-level pixel
images can be divided into three steps. First, the corre-
spondence between the images of the objects has to be
computed. Second, the correspondence �eld to the new
image has to be linearly decomposed into the correspon-
dence �elds of the examples. The same decomposition
has to be carried out for the new texture in terms of
the example textures. And �nally we synthesize the new
image, showing the object from the new viewpoint.

3.1 Computation of the Correspondence

To compute the di�erences �x used in equations (5) and
(6), which are the spatial distances between correspond-
ing points of the objects in the images, the correspon-
dence of this points has to be established �rst. That
means we have to �nd for every pixel location in an im-
age, e.g. a pixel located on the nose, the corresponding
pixel location on the nose in the other image. This is
in general a hard problem. However, since all objects
compared here are in the same orientation, we can of-
ten assume that the images are quite similar and that
occlusion problems should usually be negligible. These

conditions make it feasible to compare the images of the
di�erent objects with automatic techniques. Such al-
gorithms are known from optical ow computation, in
which points have to be tracked from one image to the
other. We use a coarse-to-�ne gradient-based gradient
method [2] and follow an implementation described in
[3]. For every point x; y in an image I, the error term
E =
P
(Ix�x+ Iy�y � �I)2 is minimized for �x; �y, with

Ix; Iy being the spatial image derivatives and �I the dif-
ference of intensity of the two compared images. The
coarse-to-�ne strategy re�nes the computed displace-
ments when �ner levels are processed. The �nal result of
this computation (�x; �y) is used as an approximation of
the spatial displacement (�x in equation (5)and (6))of a
pixel from one image to the other. The correspondence
is computed in the direction towards the reference image
from the example and the test images. As a consequence
all vector �elds have a common origin at the pixel loca-
tions of the reference image.

3.2 Learning the Linear Transformation

The decomposition of a given correspondence �eld in
equation (5) and the composition of the new �eld in
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equation (6) can be understood as a single linear trans-
formation. First, we compute the coe�cients �i for the
optimal decomposition (in the sense of least square). We
decompose a\initial" �eld �x to a new object X into the
\initial" �elds �xi to the q given prototypes by minimiz-
ing

jj�x�

qX

i=1

�i�xijj
2
: (9)

We rewrite equation (5) as �x = �� where � is the
matrix formed by the q vectors �xi arranged column-
wise and � is the column vector of the �i coe�cients.
Minimizing equation (9) gives

� = (�)+�x: (10)

The observation of the previous section implies that the
operator L that transforms �x into �xr through �xr =
L�x, is given by

�xr = �r
� = �r�+�x as L = �r�+ (11)

and thus can be learned from the 2D example pairs
(�xi;�x

r

i
). In this case, a one-layer, linear network

(compare Hurlbert and Poggio, 1988) can be used to
learn the transformation L. L can then transform a view
of a novel object of the same class. If the q examples are

linearly independent �+ is given by �+ = (�T�)
�1
�T ;

in the other cases equation (9) was solved by an SVD al-
gorithm.
Before decomposing the new texture into the example
textures, all textures have to be mapped onto a common
basis. Using the correspondence, we warped all images
onto the reference image. In this representation the de-
composition of the texture can be performed as described
above for the correspondence �elds.

3.3 Synthesis of the New Image.

The �nal step is image rendering. Applying the com-
puted coe�cients to the examples in the second orien-
tation results in a new texture and the correspondence
�elds to the new image. The new image can be generated
combining this texture and correspondence �eld. This is
possible because both are given in the coordinates of the
reference image. That means that for every pixel in the
reference image the pixel value and the vector pointing
to the new location are given. The new location gen-
erally does not coincide with the equally spaced grid of
pixels of the destination image. A commonly used solu-
tion of this problem is known as forward warping [19].
For every new pixel, we use the nearest three points to
linearly approximate the pixel intensity.

4 Is the linear class assumption valid

for real objects?

For man made objects, which often consist of cuboids,
cylinders or other geometric primitives, the assumption
of linear object classes seems almost natural. However,
are there other object classes which can be linearly rep-
resented by a �nite set of example objects? In the case

of faces it is not clear how many example faces are neces-
sary to synthesize any other face and in fact, it is unclear
if the assumption of a linear class is appropriate at all.
The key test for the linear class hypothesis in this case is
how well the synthesized rotated face approximates the
\true" rotated face. We tested our approach on a small
set of 50 faces, each given in two orientations (22:5� and
0�). Figure 4 shows four tests using the same technique
as described in �gure 3. In each case one face was se-
lected as test face and the 49 remaining faces were used
as examples. Each test face is shown on the upper left
and the output image produced by our technique on the
lower right, showing a rotated test face. The true ro-
tated test face from the data base is shown on the lower
left. We also show in the upper right the synthesis of
the test face through the 49 example faces in the test
orientation. This reconstruction of the test face should
be understood as the projection of the test face into the
shape and texture space of the other 49 example faces.
A perfect reconstruction of the test face would be a nec-
essary (not su�cient!) requirement that the 50 faces
are a linear object class. The results are not perfect
but, considering the small size of the example set, the
reconstruction is quite good. The similarity of the re-
construction to the input test face allows to speculate
that an example set size of the order of hundred faces
may be su�cient to construct a huge variety of di�erent
faces. We conclude that the linear object class approach
may be a satisfactory approximation even for complex
objects as faces. On the other hand it is obvious that
the reconstruction of every speci�c mole or wrinkle in a
face requires to an almost in�nite number of examples.
To overcome this problem, correspondence between im-
ages taken from di�erent viewpoints should be used to
map the speci�c texture on the new orientation [9, 5].

5 Discussion

Linear combinations of images of a single object have
been already successfully used to create a new image of
that object [16]. Here we created a new image of an
object using linear combinations of images of di�erent
objects of the same class. Given only a single image of
an object, we are able to generate additional synthetic
images of this object under the assumption that the \lin-
ear class" property holds. This is demonstrated not only
for objects purely de�ned through their shape but also
for smooth objects with texture.

This approach based on two-dimensional models does
not need any depth information, so the sometime di�-
cult step of generating three-dimensional models from
two-dimensional images is superuous. Since no cor-
respondence is necessary between images, representing
objects in di�erent orientations, fully automated algo-
rithms can be applied for the correspondence �nding
step. For object recognition tasks our approach has sev-
eral implications. Our technique can provide additional
arti�cial example images of an object when only a sin-
gle image is given. On the other hand the coe�cients,
which result from a decomposition of shape and texture
into example shapes and textures give us already a rep-
resentation of the object which is invariant under any
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Figure 4: Four examples of arti�cially rotated human faces, using the technique described in �gure 3 are shown.
Each test face (upper left) is \rotated" using 49 di�erent faces (not shown) as examples, the results are marked as
output. Only for comparison the \true" rotated test face is shown on the lower left (this face was not used in the
computation). The di�erence, between synthetic and real rotated face is due to the incomplete example set, since the
same di�erence can already be seen in the reconstruction of the input test face using the 49 example faces (upper
right).
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a�ne transformation.
In an application our approach is confronted with two

types of problems. As in any approach based on exible
models, there is the problem of �nding the correspon-
dence between model and image. In our implementa-
tion we used a general method for �nding this corre-
spondence. However, if the class of objects is known in
advance, a method speci�c to this object class could be
used [9, 7]. In this case the correspondence �eld is lin-
early modeled by a known set of deformations speci�c to
that class of objects.

A second problem, speci�c to our approach is the ex-
istence of linear object classes and the completeness of
the available examples. This is equivalent to the ques-
tions of whether object classes de�ned in terms of human
perception can be modeled through linear object classes.
Presently there is no �nal answer to this question, apart
for simple objects like (e.g. cuboids, cylinders), where
the dimensionality is given through their mathematical
de�nition. The application of the method to a small
example set of human faces, shown here, provides pre-
liminary promising results at least for some faces. It is,
however, clear that 50 example faces are not su�cient
to model accurately all human faces. Since our linear
model allows to test the necessary conditions for an im-
age being a member of a linear object class, the model
can detect images where a transformation fails. This test
can be done by measuring the di�erence between the in-
put image and its projection into the example space,
which should ideally vanish.
Our implementation, as described in our examples, can
be improved by applying the linear class idea to inde-
pendent parts of the objects. In the face case, a new
input face was linearly approximated through the com-
plete example faces, that is for each example face a sin-
gle coe�cient (for texture and 2D-shape separately) was
computed. Assume noses, mouths or eyes span sepa-
rated linear subspaces, then the dimensionality of the
space spanned by the examples will be multiplied by the
number of subspaces. So in a new image the di�erent
parts will be approximated separately by the examples,
that will increase the number of coe�cients used as rep-
resentation and will also improve the reconstruction.
Several open questions remain for a fully automated im-
plementation. The separation of parts of an object to
form separated subspaces could be done by computing
the covariance between the pixels of the example images.
However, for images at high resolution, this may need
thousands of example images. Our linear object class
approach also assumes that the orientation of an object
in an image is known. The orientation of faces can be
approximated computing the correlation of a new image
to templates of faces in various orientations [4]. It is not
clear how precisely the orientation should be estimated
to yield satisfactory results.

Appendix

A Decomposing objects into parts

In the previous section we considered learning the ap-
propriate transformation from full views. In this case,

the examples (prototypes) must have the same dimen-
sionality as a full view. Our arguments above show that
dimensionality determines the number of example pairs
needed for a correct transformation. This section sug-
gests that components of an object { i.e. a subset of
the full set of features { that are element of the same
object class may be used to learn a single transforma-
tion with a reduced number of examples, because of the
smaller dimensionality of each component. We rewrite
equation (1) to X = �� where � is the matrix formed
by the q vectors Xi arranged column-wise and � is the
column vector of the �i coe�cients. The basic compo-
nents in which a view can be decomposed are given by
the irreducible submatrices �(i) of the structure matrix
� so that � = �(1) � ::::� �(k). Each submatrix �(i)

represents an isolated object class, formed by a subset
of feature points which we would like to call a part of
an object. As an example, for objects composed by two
cuboids in general six examples would be necessary since
all 3D views of objects composed of two cuboids span a
six-dimensional space (we suppose a �xed angle between
the cuboids). However, this space � is the direct sum

� = �(1) � �(2) of two three-dimensional subspaces, so
three examples are su�cient. Notice the �(1) and �(2)

are only identical when both are in the same orienta-
tion. This shows that the problem of transforming the
2D view x of the 3D objects X into the transformed 2D
views xr , can be treated separately for each component

x(k).
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