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Abstract

This paper describes the main features of a view-based model of object recognition. The model tries to
capture general properties to be expected in a biological architecture for object recognition. The basic
module is a regularization network in which each of the hidden units is broadly tuned to a speci�c view
of the object to be recognized. The network output, which may be largely view independent, is �rst
described in terms of some simple simulations. The following re�nements and details of the basic module
are then discussed: (1) some of the units may represent only components of views of the object { the
optimal stimulus for the unit, its \center", is e�ectively a complex feature; (2) the units' properties are
consistent with the usual description of cortical neurons as tuned to multidimensional optimal stimuli; (3)
in learning to recognize new objects, preexisting centers may be used and modi�ed, but also new centers
may be created incrementally so as to provide maximal invariance; (4) modules are part of a hierarchical
structure: the output of a network may be used as one of the inputs to another, in this way synthesizing
increasingly complex features and templates; (5) in several recognition tasks, in particular at the basic
level, a single center using view-invariant features may be su�cient.

Modules of this type can deal with recognition of speci�c objects, for instance a speci�c face under various
transformations such as those due to viewpoint and illumination, provided that a su�cient number of
example views of the speci�c object are available. An architecture for 3D object recognition, however,
must cope { to some extent { even when only a single model view is given. The main contribution of this
paper is an outline of a recognition architecture that deals with objects of a nice class undergoing a broad
spectrum of transformations { due to illumination, pose, expression and so on { by exploiting prototypical
examples. A nice class of objects is a set of objects with su�ciently similar transformation properties
under speci�c transformations, such as viewpoint transformations. For nice object classes, we discuss
two possibilities: (a) class-speci�c transformations are to be applied to a single model image to generate
additional virtual example views, thus allowing some degree of generalization beyond what a single model
view could otherwise provide; (b) class speci�c, view-invariant features are learned from examples of the
class and used with the novel model image, without an explicit generation of virtual examples.
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1 Introduction

In the past three years we have been developing sys-
tems for 3D object recognition that we label view-based
(or memory-based, see Poggio and Hurlbert, 1993) since
they require units tuned to views of speci�c objects or
object classes.1 Our work has led to arti�cial systems for
solving toy problems such as the recognition of paper-
clips as in Figure 3 (Poggio and Edelman, 1990; Brunelli
and Poggio, 1991), as well as more real problems such
as the recognition of frontal faces (Brunelli and Poggio,
1993; Gilbert and Yang, 1993) and the recognition of
faces in arbitrary pose (Beymer, 1993). We have dis-
cussed how this approach may capture key aspects of the
cortical architecture for 3D object recognition (Poggio,
1990; Poggio and Hurlbert, 1993), we have tested suc-
cessfully with psychophysical experiments some of the
predictions of the model (B�ultho� and Edelman, 1992;
Edelman and B�ultho�, 1992; Schyns and B�ultho�, 1993)
and recently we have gathered preliminary evidence that
this class of models is consistent with both psychophysics
and physiology (speci�cally, of inferotemporal [IT] cor-
tex) in alert monkeys trained to recognize speci�c 3D
paperclips (Logothetis et al., 1994).

This paper is a short summary of some of our theo-
retical work; it describes work in progress and it refers
to other papers that treat in more detail several aspects
of this class of models. Some of these ideas are similar
to Perrett's (1989), though they were developed inde-
pendently from his data; they originate instead from ap-
plying regularization networks to the problem of visual
recognition and noticing an intriguing similarity between
the hidden units of the model and the tuning properties
of cortical cells. The main problem this paper addresses
is that of how a visual system can learn to recognize an
object after exposure to only a single view, when the
object may newly appear in many di�erent views corre-
sponding to a broad spectrum of image transformations.
Our main novel contribution is the outline of an archi-
tecture capable of achieving invariant recognition for a
single model view, by exploiting transformations learned
from a set of prototype objects of the same class.

We will �rst describe the basic view-based module and
illustrate it with a simple simulation. We will then dis-
cuss a few of the re�nements that are necessary to make
it biologically plausible. The next section will sketch a
recognition architecture for achieving invariant recogni-
tion. In particular, we will describe how it may cope with
the problem of recognizing a speci�c object of a certain
class from a single model view. Finally, we will describe
an hypothetical, secondary route to recognition { a vi-
sualization route { in which a) class-speci�c RBF-like
modules estimate parameters of the input image, such

1Of course the distinction between view-based and object-
centered models makes little sense from an information pro-
cessing perspective: a very small number of views contains
full information about the visible 3D structure of an object
(compare Poggio and Edelman, 1990). Our view-based label
refers to an overall approach that does not rely on an explicit
representation of 3D structure and in particular to a bio-
logically plausible implementation in terms of view-centered
units.

as illumination, pose and expression; b) other modules
provide the appropriate transformation from prototypes
and synthesize a "normalized" view from the input view;
c) the normalized input view is compared with the model
view in memory. Thus analysis and synthesis networks
may be used to close the loop in the recognition process
by generating the "neural" imagery corresponding to a
certain interpretation and eventually comparing it to the
input image. In the last section we will outline some of
the critical predictions of this class of biological models
and discuss some of the existing data.

2 The basic recognition module

Figure 1 shows our basic module for object recognition.
As Poggio and Hurlbert (1993) have argued, it is rep-
resentative of a broad class of memory based modules
(MBMs). Classi�cation or identi�cation of a visual stim-
ulus is accomplished by a network of units. Each unit
is broadly tuned to a particular view of the object. We
refer to this optimal view as the center of the unit. One
can think of it as a template to which the input is com-
pared. The unit is maximally excited when the stimulus
exactly matches its template but also responds propor-
tionately less to similar stimuli. The weighted sum of
activities of all the units represents the output of the
network.

Figure 1: A RBF network for the approximation of two-
dimensional functions (left) and its basic \hidden" unit
(right). x and y are components of the input vector
which is compared via the RBF h at each center t. Out-
puts of the RBFs are weighted by the c

i
and summed to

yield the function F evaluated at the input vector. N is
the total number of centers.

Here we consider as an example of such a structure
a RBF network that we originally used as a learning
network (Poggio and Girosi, 1989) for object recognition
while discovering that it was biologically appealing (Pog-
gio and Girosi, 1989; Poggio, 1990; Poggio and Edelman,
1990; Poggio and Hurlbert, 1993) and representative of
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a much broader class of network architectures (Girosi,
Jones and Poggio, 1993).

2.1 RBF networks

Let us review briey RBF networks. RBF networks are
approximation schemes that can be written as (see Fig-
ure 1; Poggio and Girosi, 1990b and Poggio, 1990 )

f(x) =

NX

i=1

cih(kx� t
i
k) + p(x) (1)

The Gaussian case, h(kx � tk) = exp(�(kx �
tk)2=2�2), is especially interesting:

� Each "unit" computes the distance kx � tk of the
input vector x from its center t and

� applies the function h to the distance value, i.e. it
computes the function h(kx � tk).

� In the limiting case of h being a very narrow Gaus-
sian, the network becomes a look-up table.

� Centers are like templates.

The simplest recognition scheme we consider is the
network suggested by Poggio and Edelman (1990) to
solve the speci�c problem of recognizing a particular 3D
object from novel views. This is a problem at the sub-
ordinate level of recognition; it assumes that the object
has already been classi�ed on the basic level but must
be discriminated from other members of its class. In the
RBF version of the network, each center stores a sample
view of object, and acts as a unit with a Gaussian-like
recognition �eld around that view. The unit performs an
operation that could be described as \blurred" template
matching. At the output of the network the activities of
the various units are combined with appropriate weights,
found during the learning stage.

Consider how the network "learns" to recognize views
of the object shown in Figure 3. In this example the
inputs of the network are the x; y positions of the ver-
tices of the object images and four training views are
used. After training, the network consists of four units,
each one tuned to one of the four views as in Figure 2.
The weights of the output connections are determined
by minimizing misclassi�cation errors on the four views
and using as negative examples views of other similar
objects (\distractors").

The �gure shows the tuning of the four units for im-
ages of the "correct" object. The tuning is broad and
centered on the training view. Somewhat surprisingly,
the tuning is also very selective: the dotted line shows
the average response of each unit to 300 similar distrac-
tors (paperclips generated by the same mechanisms as
the target; for further details about the generation of
paperclips see Edelman and B�ultho�, 1992). Even the
maximum response to the best distractor is in this case
always less than the response to the optimal view. The
output of the network, being a linear combination of the
activities of the four units, is essentially view-invariant
and still very selective. Notice that each center is the
conjunction of all the features represented: the Gaus-
sian can in fact be decomposed into the product of one-
dimensional Gaussians, one for each input component.

+

•• • •••
X1 Xd

Figure 2: A RBF network with four units each tuned
to one of the four training views shown in the next �g-
ure. The tuning curve of each unit is also shown in the
next �gure. The units are view-dependent but selective
relative to distractors of the same type.

The activity of the unit measures the global similarity
of the input vector to the center: for optimal tuning all
features must be close to the optimum value. Even the
mismatch of a single component of the template may set
to zero the activity of the unit. Thus the rough rule im-
plemented by a view-tuned unit is the conjunction of a
set of predicates, one for each input feature, measuring
the match with the template. On the other hand the
output of the network is performing an operation more
similar (but not identical because of the eventual output
nonlinearity) to the \OR" of the output of the units.
Even if the output unit may have a sigmoidal nonlin-
earity (see Poggio and Girosi, 1990) its output does not
need to be zero when one or more of the hidden units
are inactive, provided there is su�cient activity in the
remaining ones.

This example is clearly a caricature of a view-based
recognition module but it helps to illustrate the main
points of the argument. Despite its gross oversimpli-
�cation, it manages to capture some of the basic psy-
chophysical and physiological �ndings, in particular the
existence of view-tuned and view-invariant units and the
shape of psychophysically measured recognition �elds.
In the next section we will list a number of ways in which
the network can be made more plausible.

3 Towards more biological recognition

modules

The simple model proposed in the previous section con-
tains view-centered hidden units.2 More plausible ver-
sions allow for the centers and corresponding hidden
units to be view-invariant if the task requires. In a bio-

2A computational reason for why a few views are su�cient
can be found in the results (for a speci�c type of features) of
Ullman and Basri (1990). Shashua (1991, 1992) describes an
elegant extension of these results to achieve illumination as
well as viewpoint invariance.
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HIDDEN UNITS

NETWORK

x   target
... distractors

Figure 3: Tuning of each of the four hidden units of the
network of the previous �gure for images of the \correct"
3D objects. The tuning is broad and selective: the dot-
ted lines indicate the average response to 300 distractor
objects of the same type. The bottom graphs show the
tuning of the output of the network after learning (that
is computation of the weights c): it is view-invariant and
object speci�c. Again the dotted curve indicates the aver-
age response of the network to the same 300 distractors.

logical implementation of the network, we in fact expect
to �nd a full spectrum of hidden unit properties, from
view-centered to view-invariant. View-centered units are
more likely in the case of subordinate level recognition
of unfamiliar not nice objects (for the de�nition of a
nice class, see later); view-invariant units would appear
for the basic level recognition of familiar objects. We
will now make a number of related observations, some
of which can be found in Poggio and Hurlbert (1993),
which point to necessary re�nements of the model if it
is to be biologically plausible.

1. In the previous example each unit has a center
which is e�ectively a full training view. It is much
more reasonable to assume that most units in a
recognition network should be tuned to components
of the image, that is to conjunctions of some of
the elementary features but not all of them. This
should allow for su�cient selectivity (the above
network performs better than humans) and provide
for signi�cant robustness to occlusions and noise
(see Poggio and Hurlbert, 1993). This means that
the \AND" of a high-dimensional conjunction can
be replaced by the \OR" of its components { a
face may be recognized by its eyebrows alone, or
a mug by its colour. Notice that the disjunction
(corresponding to the weighted combination of the
hidden units) of conjunctions of a small number
of features may be su�cient (each conjunction is
implemented by a Gaussian center which can be
written as the product of one-dimensional Gaus-
sians). To recognize an object, we may use not only
templates (i.e. centers in RBF terminology) com-
prising all its features, but also, and in some cases
solely, subtemplates, comprising subsets of features
(which themselves constitute \complex" features).
This is similar in spirit to the technique of supple-
menting whole-face templates with several smaller
templates in the Brunelli-Poggio work on frontal
face recognition (see also Beymer, 1993).

2. The units tuned to complex features mentioned
above are similar to IT cells described by Fujita
and Tanaka (1992) and could be constructed in a
hierarchical way from the output of simpler RBF-
like networks. They may avoid the correspondence
problem, provided that the system has built-in in-
variance to image-plane transformations, such as
translation, rotation and scaling. Thus cells tuned
to complex features are constructed from a hierar-
chy of simpler cells tuned to incrementally larger
conjunctions of elementary features. This idea {
popular among physiologists (see Tanaka, 1993;
Perrett and Oram, 1993) { can immediately be for-
malized in terms of Gaussian radial basis functions,
since a multidimensional Gaussian function can be
decomposed into the product of lower dimensional
Gaussians (Marr and Poggio, 1976; Ballard, 1986;
Mel, 1992; Poggio and Girosi, 1990).

3. The features used in the example of Figure 3 (x,y{
coordinates of paperclip vertices) are biologically
implausible. We have also used other more natural
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features such as orientation of lines. An attrac-
tive feature of this module is its recursive nature:
detection and localization of a line of a certain ori-
entation, say, can be thought of as being performed
by a similar network with centers being units tuned
to di�erent examples of the desired line type. An
eye detector can localize an eye by storing in its
units templates of several eyes and using as inputs
more elementary features such as lines and blobs.
A face recognition network may use units tuned
to speci�c templates of eyes and nose and so on.
A homogeneous, recursive approach of this type
in which not only object recognition is view-based
but also feature localization is view-based has been
successfully used in the Beymer-Poggio face recog-
nizer (see Beymer, 1993). Both feature detection
and face recognition depend on the use of several
templates, the \examples".

4. In this perspective there are probably elementary
features such as blobs and oriented lines and center-
surround patterns, but there is then a continuum
of increasingly complex features corresponding to
centers that are conjunctions of more elementary
ones. In this sense a center is simply a more com-
plex feature than its inputs and may in turn be the
input to another network with even more complex
center-features.

5. The RBF network described in the previous sec-
tions is the simplest version of a more general
scheme (Hyperbasis Functions) given by

f�(x) =

nX

�=1

c�G(k(x� t�)k
2
W ) + p(x) (2)

where the centers t� and coe�cients c� are un-
known, and are in general fewer in number than
the data points (n � N ). The norm is a weighted
norm

k(x � t�)k
2
W = (x � t�)

TWTW (x � t�) (3)

where W is an unknown square matrix and the
superscript T indicates the transpose. In the sim-
ple case of diagonal W the diagonal elements wi

assign a speci�c weight to each input coordinate,
determining in fact the units of measure and the
importance of each feature (the matrix W is es-
pecially important in cases in which the input fea-
tures are of a di�erent type and their relative im-
portance is unknown). During learning, not only
the coe�cients c but also the centers t�, and the
elements of W are updated by instruction on the
input-output examples. Whereas the RBF tech-
nique is similar to and similarly limited as tem-
plate matching, HBF networks perform a general-
ization of template matching in an appropriately
linearly transformed space, with the appropriate
metric. As a consequence, Hbf networks may \�nd"
view-invariant features when they exist (Bricolo, in
preparation). There are close connections between

Hyperbasis Function networks, Multilayer Percep-
trons and regularization (see Girosi, Jones and Pog-
gio, 1993).

6. It is also plausible that some of the center-features
are \innate", having being synthesized by evolu-
tion or by early experience of the individual or
more likely by both. We assume that the adult sys-
tem has at its disposal a vocabulary of simple as
well as increasingly more complex center-features.
Other centers are synthesized on demand in a task-
dependent way. This may happen in the following
way. Assume that a network such as the one in
Figure 2 has to learn to recognize a new object. It
may attempt to do so by using some of the out-
puts in the pool of existing networks as its inputs.
At �rst no new centers are allocated and only the
linear part of the network is used, corresponding
to the term p(x) in equation 1 and to direct con-
nections between inputs and output (not shown in
Figure 2). This of course is similar to a simple OR
of the input features. Learning may be successful
in which case only some of the inputs will have a
nonzero weight. If learning is not successful { or
su�ciently weak { a new center of minimal dimen-
sion may be allocated to mimic a component of one
of the training views. New centers of increasing di-
mensionality { comprising subsets of components,
up to the full view { are added while old centers are
continually pruned until the performance is satis-
factory. Centers of dimension 2 e�ectively detect
conjunctions of pairs of input features (see alsoMel,
1992). It is not di�cult to imagine learning strate-
gies of this type that would select automatically
centers, i.e. complex features, that are as view in-
variant as possible (this can be achieved by modi-
fying the associated parameters c and/or w in the
W matrix). Such features may be global { such as
color { but we expect that they will be mostly local
and perhaps underlie recognition of geon-like com-
ponents (see Edelman, 1991 and Biederman, 1987).
View-invariant features may be used in basic-level
more than in subordinate-levels recognition tasks.

7. One essential aspect of the simplest (RBF) version
of the model is that it contains key units which
are viewer-centered, not object-centered. This as-
pect is independent of whether the model is 2D
or 3D, a dichotomy which is not relevant here.
Each center may consist of a set of features that
may mix 2D with 3D information, by including
shading, occlusion or binocular disparity informa-
tion, for example. The features that depend on
the image geometry will necessarily be viewpoint-
dependent, but features such as color may be
viewpoint-independent. As we mentioned earlier,
in situations in which view-invariant features exist
(for basic as well as for subordinate level recogni-
tion) centers may actually be view-independent.

8. The network described here is used as a classi�er
that performs identi�cation, or subordinate-level
recognition: matching the face to a stored mem-
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ory, and thereby labeling it. A similar network
with a di�erent set of centers could perform also
basic-level recognition: distinguishing objects that
are faces from those that are not.

4 Virtual Views and Invariance to

Image Transformations: towards a

Recognition Architecture

In the example given above, the network learns to recog-
nize a particular 3D object from novel views and thereby
achieves one crucial aim in object recognition: viewpoint
invariance. But recognition does not involve solely or
simply the problem of recognizing objects in hitherto
unseen poses. Hence, as Poggio and Hurlbert (1993)
emphasize, the cortical architecture for recognition can-
not consist simply of a collection of the modules of Fig-
ures 3 and 1, one for each recognizable object. The
architecture must be more complex than that cartoon,
because recognition must be achieved over a variety of
image transformations, not just those due to changes in
viewpoint, but also those due to translation, rotation
and scaling of the object in the image plane, as well
as non-image-plane transformations, such as those due
to varying illumination. In addition, the cortex must
also recognize objects at the basic as well as subordinate
level.

In the network described above, viewpoint invariance
is achieved by exploiting several sample views of the spe-
ci�c object. This strategy might work to obtain invari-
ance under other types of transformations also, provided
su�cient examples of the object under sample transfor-
mations are available. But suppose that example views
are not available. Suppose that the visual system must
learn to recognize a given object under varying illumi-
nation or viewpoint, starting with only a single sample
view. This is the problem that we will focus on in the
next few sections, that of subordinate level recognition
under non-image-plane transformations, given only a sin-
gle model view.

Probably the most natural solution is for the sys-
tem to exploit certain invariant features, learned from
examples of objects of the same class. These features
could supplement the information contained in the sin-
gle model view. Here we will put forward an alternative
scheme which, although possibly equivalent at a compu-
tational level, may have a very di�erent implementation.
Our proposal is that when sample images of the speci�c
object under the relevant transformations are not avail-
able, the system may generate virtual views of that ob-
ject, using image-based transformations which are char-
acteristic of the corresponding class of objects (Poggio
and Vetter, 1992). We propose that the system learns
these transformations from prototypical example views
of other objects of the same class, with no need for 3D
models. The idea is simple but it is not obviously clear
that it will work. We will provide later a plausibility
argument.

The problem of achieving invariance to image plane
transformations such as translation, rotation and scal-
ing, given only one model view, is also di�cult, par-

ticularly in terms of biologically plausible implementa-
tions. But given a single model view, it is certainly pos-
sible to generate virtual examples for appropriate image-
plane translations, scalings and rotations without speci�c
knowledge about the object. This is not the case for the
non-image-plane transformations we will consider here,
caused by, for example, changes in viewpoint, illumina-
tion, facial expression, or physical attitude of a exible
or articulated object such as a body.

Within the virtual views theory, there are two extreme
ways in which virtual views may be used to ensure in-
variance under non-image-plane transformations. The
�rst one is to precompute all possible "virtual" views of
the object or the object class under the desired group
of transformations and to use them to train a classi-
�er network such as the one of �gure 1. The second
approach { equivalent from the point of view of infor-
mation processing { is instead to apply all the relevant
transformations to the input image and to attempt to
match the transformed image to the data base, which
under our starting assumption, may contain only one
view per object. These two general strategies may exist
in several di�erent variations and can also be mixed in
various ways.

4.1 An example

Consider as an example of the general recognition strat-
egy we propose the following architecture for biological
face recognition based on our own work on arti�cial face
recognition systems (Brunelli and Poggio, 1993; Beymer,
1993; see also Gilbert and Yang, 1993).

First the face has to be localized within the image
and segregated from other objects. This stage might be
template-based, and may be equivalent to the use of a
network like that in Figure 3, with units tuned to the
various low-resolution images a face may produce. From
the biological point of view, the network might be real-
ized by the use of low-resolution face detection cells at
each location in the visual �eld (with each location ex-
amined at a resolution dictated by the cortical map, in
which the fovea of course dominates), or by connections
from each location in, say, V1 to \centered" templates
(or the equivalent networks) in IT, or by a routing mech-
anism to achieve the same result with fewer connections
(see Olshausen et al., 1992). Of course the detection may
be based on disjunction of face components rather than
on their conjunction in a full face template.

The second step in our face recognizer is to normal-
ize the image with respect to translation, scale and im-
age rotation. This is achieved by �nding two anchor
points, such as the eyes, again with a template-based
strategy, equivalent to a network of the type of Figure 1
in which the centers are many templates of eyes of dif-
ferent types in di�erent poses and expressions. A similar
strategy may be followed by biological systems both for
faces and other classes of objects. The existence of two
stages would suggest that there are modules dedicated to
detect certain classes of complex features { such as eyes
{ and other modules that use the result to normalize
the image appropriately. Again there could be eye de-
tection networks at each location in the visual �eld or a
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routing of relevant parts of the image { selected through
segmentation operations { to a central representation in
IT.

The third step in our face recognizer is to match
the localized, normalized face to a data base of indi-
vidual faces while at the same time providing for view-,
expression- and illumination-invariance. If the data base
contains several views of each particular face, the system
may simply compare the normalized image to each item
there (Beymer, 1993): this is equivalent to classifying the
image using the network of Figure 1, one for each person.
But if the data base contains only a single model view for
each face, which is the problem we consider here, virtual
examples of the face may be generated using transfor-
mations { to other poses and expressions { learned from
examples of other faces (see Beymer, Shashua and Pog-
gio, 1993; Poggio and Vetter, 1992; Poggio and Brunelli,
1992). Then the same approach as for a multi-example
data base may be followed, but in this case most of the
centers will correspond to \virtual examples".

4.2 Transformations and Virtual Examples

In summary, our proposal is to achieve invariance to
non-image- plane transformations by using a su�cient
number of views of the speci�c objects for various trans-
formation parameters. If real views are available they
should be used directly; if not, virtual views can be gen-
erated from the real one(s) using image-based transfor-
mations learned from example views of objects of the
same class.

4.2.1 Transformation Networks

How can we learn class-speci�c transformations from
prototypical examples? There are several simple tech-
nical solutions to this problem, as discussed by Poggio
(1991), Poggio and Brunelli (1992) and Poggio and Vet-
ter (1992). The proposed schemes can "learn" approx-
imate 3D geometry and underlying physics for a su�-
ciently restricted class of objects { a nice class.3 We
de�ne informally here nice classes of objects as sets of
objects with su�ciently similar transformation proper-
ties. A class of object is nice with respect to one or
more transformations. Faces are a nice class under view-
point transformations because they typically have a sim-
ilar 3D structure. The paperclip objects used by Poggio
and Edelman (1990), B�ultho� and Edelman (1992 and
in press) and by Logothetis and Pauls (in press) are not
nice under viewpoint transformation because their global
3D structures are di�erent from each other. Poggio and
Vetter describe a special set of nice classes of objects {
"linear classes" . For linear classes, linear networks can
learn appropriate transformations from a set of prototyp-
ical examples. Figure 4 shows how by Beymer, Shashua
and Poggio (1993) used the even simpler technique (lin-
ear additive) of Poggio and Brunelli (1992) for learning
transformations due to face rotation and change of ex-
pression.

3The linear classes de�nition of Poggio and Vetter(1992)
may be satisfactory, even if not exact, in a number of practi-
cally interesting situations such as viewpoint invariance and
lighting invariance for faces.
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The virtual image imgp+nov is synthesized by the sys-
tem. In a biological implementation cell activities instead
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the transformation. From Beymer, Shashua and Poggio,
1993
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In any case, a su�cient number of prototype trans-
formations { which may involve shape, color, texture,
shading and other image attributes by using the appro-
priate features in the vectorized representation of images
{ should allow the generation of more than one virtual
view from a single \real" view. The resulting set of vir-
tual examples can then be used to train a classi�cation
network. The argument so far is purely on the com-
putational level and is supported only by preliminary
and partial experiments. It is totally unclear at this
point how IT cortex may use similar strategies based
on learning class-speci�c prototypical transformations.
The alternative model in which virtual examples are not
explicitly generated and instead view-invariant features
are learned is also attractive. Since networks such as
Multilayer Perceptrons and HyperBasis Function net-
works may \�nd" some view-invariant features the two
approaches may actually be used simultaneously.

4.3 An Alternative Visualization Route?

As we hinted earlier, an alternative implementation of
the same approach to invariant recognition from a single
model view is to transform the (normalized) input image
using the learned transformations and compare each one
of the resulting virtual views to the available real views
(in this case only one per speci�c object). As pointed out
by Ullman (1991), the cortex may perform the required
search by generating simultaneously transformations of
both the input image and the model views until a match
is found.

The number of transformations to be tested may be
reduced by �rst estimating the approximate pose and
expression parameters of the input image. The estimate
may be provided by a RBF-like network of the \analy-
sis" type in which the centers are generic face prototypes
(or face parts) spanning di�erent poses, expressions and
possibly illuminations4. They can be used if trained ap-
propriately to do the analysis task of estimating state
parameters associated with the image of the object such
as its pose in space, its expression (if a face), its illu-
mination etc. (see Poggio and Edelman, 1990; Beymer,
Shashua and Poggio, 1993).

The corresponding transformation will then be per-
formed by networks (linear or of a more general type).5

Analysis-type networks may help reduce dramatically
the number of transformations to be tried before suc-
cessful recognition is achieved. A particular version of
the idea is the following.

Assume that the data base consists of single views of
di�erent, say, faces in a \zero" pose. Then in the vi-
sualization route the analysis network provides an esti-
mate of \pose" parameters; a synthesis network (Poggio
and Brunelli, 1992; Librande, 1992; Beymer, Shashua
and Poggio, 1993) generates the corresponding view of a
prototype; the transformation from the latter prototype
view to the reference view of the prototype is computed
and applied to the input array to obtain its "zero" view;

4Invariance to illumination can be in part achieved by ap-
propriate preprocessing

5Of course in all of the modules described above the cen-
ters may be parts of the face rather than the full face.

�nally this corrected input view is compared with the
data base of single views. Of course the inverse trans-
formation could be applied to each of the views in the
data base, instead of applying the direct transformation
to the input image. We prefer the former strategy be-
cause of computational considerations but mixtures of
both strategies may be suitable in certain situations.

This estimation-transformation route (which may also
be called analysis-synthesis) leads to an approach to
recognition in which parameters are estimated from the
input image, then used to \undo" the deformation of
the input image and \visualize" the result, which is then
compared to the data base of reference views. A \vi-
sualization" approach of this type can be naturally em-
bedded in an iterative or feedback scheme in which dis-
crepancies between the visualized estimate and the in-
put image drives further cycles of analysis-synthesis and
comparison (see Mumford, 1992). It may also be rel-
evant in explaining a role in mental \imagery" of the
neurons in IT (see Sakai and Miyashita, 1991).

A few remarks follow:

1. Transformation parameters may be estimated from
images of objects of a class; some degree of view
invariance may therefore be achievable for new ob-
jects of a known class (such as faces or bilaterally
symmetric objects (see Poggio and Vetter, 1992)).
This should be impossible for unique objects for
which prior class knowledge may not be used (such
as the paperclip objects, B�ultho� and Edelman,
1992).

2. From the computational point of view it is possible
that a \coarse" 3D model { rather like a marionette
{ could be used successfully to compute various
transformations typical for a certain class of ob-
jects (such as faces) to control 2D representations
of the type described earlier for each speci�c ob-
ject. Biologically, this coarse 3D model may be
implemented in terms of learned transformations
characteristic for the class.

3. We believe that the classi�cation approach { the
one summarized by �gures 1, 3, as opposed to the
visualization approach { is the main route to recog-
nition, which should be used with real example
views when a su�cient number of training views
is available. Notice that this approach is memory-
based and in the extreme case of many training
views should be very similar to a look-up table.
When only one or very few views of the speci�c ob-
ject are available, the classi�cation approach may
still su�ce, if either a) view-invariant features are
discovered and then used or b) virtual examples
generated by the transformation approach are ex-
ploited. But this is possible only for objects be-
longing to a familiar class (such as faces). The
analysis-synthesis route may be an additional, sec-
ondary strategy to deal with only one or very few
real model views 6.

6It turns out that the RBF-like classi�cation scheme and
its implementation in terms of view-centered units is quite
di�erent from the linear combination scheme of Ullman and
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4. We have assumed here a supervised learning frame-
work. Unsupervised learning may not be of real bi-
ological interest because various natural cues (ob-
ject constancy, sensorimotor cues etc.) usually pro-
vide the equivalent of supervised learning. Unsu-
pervised learning may be achieved by using either
a bootstrap approach (see Poggio, Edelman and
Fahle 1992) or an appropriate cost-functional for
learning or special network architectures.

5 Critical predictions and experimental

data

In this section we list a few points that may lead to in-
teresting experiments both in psychophysics and physi-
ology.

Predictions:

� Viewer-centered and object-centered cells.
Our model (see the module of Figure 2) predicts
the existence of viewer-centered cells (in the \hid-
den" layer) and object-centered cells (the output of
the network). Evidence pointing in this direction
in the case of face cells in IT is already available.
We predict a similar situation for other 3D objects.
It should be noted that the module of Figure 2 is
only a small part of an overall architecture. We
expect therefore to �nd other types of cells, such
as for instance pose-tuned, expression-tuned and
illumination-tuned cells. Very recently N. Logo-
thetis and Pauls (in press) have succeeded in train-
ing monkeys to the same objects used in human
psychophysics and in reproducing the key results
of B�ultho� and Edelman (1992). As we mentioned
above, he also succeeded in measuring generaliza-
tion �elds of the type shown in Figure 5 after train-
ing on a single view. We believe that such a psy-
chophysically measured generalization �eld corre-
sponds to a group of cells tuned in a Gaussian-like
manner to that view. We conjecture (though this
is not a critical prediction of the theory) that the
step of creating the tuned cells, i.e. the centers,
is unsupervised: in other words it would be su�-
cient to expose the monkeys to the objects without
actually training them to respond in speci�c ways.

� Cells tuned to full views and cells tuned to

parts. As we mentioned, we expect to �nd high-
dimensional as well as low-dimensional centers, cor-
responding to full templates and template parts.
Physiologically this corresponds to cells that re-
quire the whole object to respond (say, a face) as
well as cells that respond also when only a part of
the object is present (say, the mouth).

Computationally, this means that instead of high-
dimensional centers any of several lower dimen-
sional centers are often su�cient to perform a

Basri (1990). On the other hand a regularization network
used for synthesis { in which the output is the image y {
is similar to their linear combination scheme (though more
general) because its output is always a linear combination of
the example views (see Beymer, Poggio and Shashua, 1993).

given task. This means that the "and" of a high-
dimensional conjunction can be replaced by the
"or" of its components { a face may be recognized
by its eyebrows alone, or a mug by its colour. To
recognize an object, we may use not only templates
comprising all its features, but also subtemplates,
comprising subsets of features. Splitting the rec-
ognizable world into its additive parts may well be
preferable to reconstructing it in its full multidi-
mensionality, because a system composed of several
independently accessible parts is inherently more
robust than a whole simultaneously dependent on
each of its parts. The small loss in uniqueness of
recognition is easily o�set by the gain against noise
and occlusions and the much lower requirements on
system connectivity and complexity.

� View-invariant features. For many objects and
recognition tasks there may exist features that are
invariant at least to some extent (colour is an ex-
treme example). One would expect this situation
to occur especially in basic-level recognition tasks
(but not only). In this case networks with one or
very few centers and hidden units { each one be-
ing invariant { may su�ce. One or very few model
views may su�ce.

� Generalization from a single view for \nice"

and \not nice" object classes. An example of
a recognition �eld measured psychophysically for
an asymmetric object of a "not nice" class after
training with a single view is shown in �gure 5.
As predicted from the model (see Poggio and Edel-
man, 1990), the shape of the surface of the recog-
nition errors is bell-shaped and is centered on the
training view. If the object belongs to a familiar
and \nice" class of objects { such as faces { then
generalization from a single view is expected to be
better and broader because information equivalent
to additional virtual example views can be gener-
ated from familiar examples of other objects of the
same class. Ullman, Moses and Edelman (1993)
report evidence consistent with this view. They
use two "nice" classes of objects, one familiar { up-
right faces { and one unfamiliar { inverted faces.
They �nd that generalization from a single train-
ing view over a range of viewpoint and illumina-
tion transformations is perfect for the familiar class
and signi�cantly worse for the unfamiliar inverted
faces. They also report that generalization in the
latter case improved with practice, as expected in
our model.

Notice again that instead of creating virtual views
the system may discover features that are view in-
variant for the given class of objects and then use
them.

� Generalization for bilaterally symmetric ob-

jects. Bilaterally symmetric objects { or objects
that may seem bilaterally symmetric from a sin-
gle view { are a special example of nice classes.
They are expected from the theory (Poggio and
Vetter, 1992) to have a generalization �eld with
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Figure 5: The generalization �eld associated with a sin-
gle training view. Whereas it is easy to distinguish be-
tween, say, tubular and amoeba-like 3D objects, irre-
spective of their orientation, the recognition error rate
for speci�c objects within each of those two categories
increases sharply with misorientation relative to the fa-
miliar view. This �gure shows that the error rate for
amoeba-like objects, previously seen from a single atti-
tude, is viewpoint-dependent. Means of error rates of six
subjects and six di�erent objects are plotted vs. rotation
in depth around two orthogonal axes (B�ultho�, Edelman
and Sklar, 1991; Edelman and B�ultho�, 1992). The ex-
tent of rotation was �60� in each direction; the center of
the plot corresponds to the training attitude. Shades of
gray encode recognition rates, at increments of 5% (white
is better than 90%; black is 50%). From B�ultho� and
Edelman (1992). As predicted by our model viewpoint
independence can be achieved by familiarizing the sub-
ject with a su�cient number of real training views of the
3D object. For objects of a nice class the generalization
�eld may be broader because of the possible availability
of virtual views of su�cient quality.

additional peaks. The prediction is consistent with
old and new psychophysical (Vetter, Poggio and
B�ultho�, 1994) and physiological data (Logothetis
and Pauls, in press).
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