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Abstract

In order to recognize an object in an image, we must determine the best-�t transformation which maps an
object model into the image. In this paper, we �rst show that for features from coplanar surfaces which
undergo linear transformations in space, there exists a class of transformations that yield projections
invariant to the surface motions up to rotations in the image �eld. To use this property, we propose
a new alignment approach to object recognition based on centroid alignment of corresponding feature
groups built on these invariant projections of planar surfaces. This method uses only a single pair of 2D
model and data pictures. Experimental results show that the proposed method can tolerate considerable
errors in extracting features from images and can tolerate perturbations from coplanarity, as well as cases
involving occlusions. As part of the method, we also present an operator for �nding planar surfaces of an
object using two model views and show its e�ectiveness by empirical results.
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1 Introduction

A central problem in object recognition is �nding the
best transformation that maps an object model into the
image data. Alignment approaches to object recognition
[6] �nd this transformation by �rst searching over possi-
ble matches between image and model features, but only
until su�ciently many matches are found to explicitly
solve for the transformation. Given such an hypothesized
transformation, it is applied directly to the other model
features to align them with the image. Each such hy-
pothesis can then be veri�ed by search near each aligned
model feature for supporting or refuting evidence in the
image.

One of the advantages of Alignment approaches to
recognition [6] is that they are guaranteed to have a
worst case polynomial complexity. This is an improve-
ment, for example, over correspondence space search
methods such as Interpretation Trees [5], which in gen-
eral can have an exponential expected case complexity.
At the same time, the worst case complexity for align-
ment can still be expensive in practical terms. For ex-
ample, to recognize an object with m features from an
image with n features, where the projection model is
weak perspective, we must search on the order of m3

n
3

possible correspondences [6], where m and n can easily
be on the order of several hundred. One way to control
this cost is to replace simple local features (such as ver-
tices) used for de�ning the alignment with larger groups
(thereby e�ectively reducing the size ofm and n). In this
paper, we examine one such method, by showing that
for features from planar surfaces which undergo linear
transformations in space, there exists a class of transfor-
mations that yield projections invariant to the surface
motions up to rotations in the image �eld.

This allows us to derive a new alignment approach to
object recognition based on centroid alignment of corre-
sponding feature groups built on these invariant projec-
tions of the planar surface. This method uses only a sin-
gle pair of 2D model and data pictures, and is quite fast;
in our testing, it took no more than 15 msec (0.015sec)
per sample model and data pair, each with 50 features.

As part of the method, we also present an operator
for �nding planar surfaces of an object using two model
views and show its e�ectiveness by empirical results.

2 Problem de�nition

Our problem is to recognize an object which has pla-
nar portions on its surface, using a single pairing of 2D
model and data views as features. Thus, we assume that
at least one corresponding region (which is from a pla-
nar surface of the object) including a su�cient number
of features exists in both the model and data 2D views.
Although we do not explicitly address the issue of ex-
tracting such regions from the data, we note that sev-
eral techniques exist for accomplishing this, including the
use of color and texture cues [12, 14], as well as motion
cues(e.g.[15, 10]). We devise a method for �nding an
alignment between features of these planar regions. It is
important to stress that our method is not restricted to
2D objects. Rather it assumes that objects have planar

sections, and that we are provided with 2D views of the
object model that include such planar sections. Once we
have solved with the transformation between model and
image, we can apply it to all the features on a 3D object,
either by using a full 3D model [6] or by using the Linear
Combinations method on 2D views of the object [16].

The basis for our method is the consistency of an ob-
ject's structure under some simple transformations. To
see how this works, we �rst summarize the derivation of
the constraint equation of the 2D a�ne transformations
which describe the motion of the object in space (see,
e.g.[11, 8]).

Let O;P1; P2; P3 be four non-coplanar points on an
object. Then, any point on the object can be represented
by the vector sum:

OP =

3X
i=1

�iOPi (1)

where the �i's are real coe�cients. When the object
undergoes a linear transformation caused by its motion
in space, this equation will be transformed as

O
0
P
0 =

3X
i=1

�iO
0
P
0

i (2)

where the primes indicate the position of the features
after the motion. Taking the orthographic projections
of these points to the xy image plane yields

op =

3X
i=1

�iopi (3)

o
0
p
0 =

3X
i=1

�io
0
p
0

i (4)

Since the opi's and o
0
p
0

i's are independent of one another,
there exists a unique 2D a�ne transformation L; !, such
that,

o
0
p
0

i = Lopi + w (5)

where L is a 2� 2 matrix and ! is a 2D vector. Then,
combining (3), (4) and (5), for an arbitrary point we get,

o
0
p
0 = Lop+ ! +

� 3X
i=1

�i � 1
�
! (6)

Hence, as a constraint equation for the motion of a plane,
we obtain the well known result:

o
0
p
0 = Lop + ! (7)

Thus, the new position of any point (after the motion)
is described by an a�ne transformation, and that trans-
formation can be found by matching a small number
of points across images. The direct use of 2D a�ne
transformations in object recognition was made earlier
by Huttenlocher[6]. The issue in which we are interested
is whether there are properties of the a�ne transforma-
tion which we can use to e�ciently and reliably �nd the
parameters of that transformation.
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3 A class of 2D projections of planar

surfaces invariant to linear

transformations

In this section, we show a class of transformations of 2D
image features from planar surfaces which yield a unique
projection up to rotations in the image �eld, regardless
of the pose of the surface in space. First, the following
useful observation is made.

[De�nition]
Let H be a positive de�nite symmetric matrix, expressed
as

H = U
T�U

where U is an orthogonal matrix and � is an eigenvalue
matrix of H, speci�cally,

� = diag(�1; �2)

where �i's are the eigenvalues ofH which are all positive.

The square root matrixH
1

2 of the matrixH is de�ned
by,

H
1

2 = U
T�

1

2U

where

�
1

2 = diag(�
1

2

1 ; �
1

2

2 ) (8)

It is known that the positive de�nite symmetric square
root matrix of a positive de�nite symmetric matrix is
unique[7].
2

[De�nition]
The covariance matrix of a feature distribution of vectors
fXig with a mean vector M and a probability density
function P (X) is given by,

�X =

NX
i=1

P (Xi)(Xi �M )(Xi �M )T

where N is the number of features.
2

[Proposition 1]
Let X be a model feature position and X

0 be the cor-
responding data feature position. We can relate these
by

X
0 = LX + ! (9)

Now suppose both features are subjected to similar
transformations

Y = AX + B (10)

Y
0 = A

0
X

0 +B
0 (11)

Y
0 = TY + C (12)

Then a necessary and su�cient condition for these trans-
formations to commute (i.e. to arrive at the same values
for Y 0) for all X;X 0 is that (see Figure 1)

H
01

2 UH
�

1

2 = T (13)

X

X’

Y

Y’

AX + B

A’X’ + B’

LX + w TY + C

Figure 1: Commutative Diagram of Transformations
Given model feature X and corresponding data feature X 0,

we seek conditions on the transformations A;A0 such that

this diagram commutes.

for some orthogonal matrix U , where H
1

2 and H
01

2 are
square root matrices of H and H0 respectively, and

H
0 = A

0�X0A
0T (14)

H = A�XA
T (15)

where �X and �X0 represent the covariance matrices of
X and X0 respectively.

Proof:
First, we show the necessity of the condition (13).
Substituting (9) to (11) into (12), we have,

(A0
L� TA)X +A

0
! +B

0
� TB �C = 0: (16)

Since this must hold for any X, we have

A
0
L = TA: (17)

Applying (9) to the covariances of X0 and X, we have

�X0 = L�XL
T
: (18)

Substituting (18) into (14) yields

A
0
L�XL

T
A
0T = H

0
: (19)

On the other hand from (15) we have

�X = A
�1
H(AT )�1 = A

�1
H(A�1)T : (20)

Then, substituting (20) into (19) yields

(A0
LA

�1)H(A0
LA

�1)T = H
0
: (21)

SinceH andH0 are positive de�nite symmetric matrices,
(21) can be rewritten as

(A0
LA

�1
H

1

2 )(A0
LA

�1
H

1

2 )T = H
01

2 (H
01

2 )T (22)

where H
1

2 , H
01

2 are again positive de�nite symmetric
matrices.
Then, from (22)

A
0
LA

�1
H

1

2 = H
01

2 U: (23)

Thus, we get

A
0
LA

�1 = H
01

2 UH
�

1

2 (24)
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where U is an orthogonal matrix.
Then, combining (17) and (24) �nally we reach (13).
Clearly, (13) is also a su�cient condition.
2

Note that this property is useful because it lets us
relate properties of object and data together. In partic-
ular, if the projection of the object into the image can
be approximated as a weak perspective projection, then
we know that this de�nes a unique a�ne transforma-
tion of the planar object surface into the image[6]. The
proposition gives us strong conditions on the relation-
ship between linear transformations of the object, and
the induced transformation of its projection into the im-
age.

Now, if we limit T to orthogonal transformations, the
following proposition holds.

[Proposition 2]
A necessary and su�cient condition that T in (13) is an
orthogonal matrix for any U is

H
0 = H = c

2
I (25)

where I is the identity matrix and c is an arbitrary scalar
constant.

Proof:
Using the assumption that T is an orthogonal matrix,
from (13), we have

I = TT
T (26)

= fH
01

2 UH
�

1

2 gfH
01

2 UH
�

1

2 g
T (27)

= H
01

2 UH
�1
U
T
H

01

2 : (28)

Rearranging this, we get

U
T
H

0 = HU
T (29)

In order for any orthogonal matrix U to satisfy (29), as
H and H0 are positive de�nite,

H = H
0 = c

2
I (30)

where c is an arbitrary scalar constant.
2

It should be noted that it is not possible that T in
(13) is the identity matrix for any U . Thus, we are not
allowed to align each model and data feature by just set-
ting H and H0 to some matrices, and solving for A and
A
0. This is because the distributions have been normal-

ized, so that their second moments are already useless
for determining the orientations of the distributions.

Proposition 2 allows us to provide the following useful
proposition.

[Proposition 3]
Any solution for A and A0 in (25), that is,

A
0�X0A

0T = A�XA
T = c

2
I

can be expressed as

A = cU��
1

2�T (31)

A
0 = cU

0�0�
1

2�0T (32)

where � and �0 are eigenvector matrices and � and �0

are eigenvalue matrices of the covariance matrices of X
and X0 respectively, U and U

0 are arbitrary orthogonal
matrices, and c is an arbitrary scalar constant.

Proof:
Clearly,

~A = c��
1

2�T (33)

~A0 = c�0�
1

2�0T (34)

are solutions for (25).
Let an arbitrary solution A of (25) be expressed as

A = U ~A. Then,

A�XA
T = U ~A�X ~ATUT (35)

= c
2
UU

T (36)

= c
2
I (37)

Therefore, A can be expressed as

A = U ~A (38)

where U is an arbitrary orthogonal matrix and c is an
arbitrary scalar constant.
In the same way,

A
0 = U

0 ~A0 (39)

where U 0 is an arbitrary orthogonal matrix.
2

By combining Proposition 2 and the following two
properties, we can derive the major claim of this sec-
tion.

[Lemma 1]
When U is an orthogonal matrix,

U is a rotation matrix() det[U ] > 0
U is a reection matrix() det[U ] < 0

Proof :
When U is an orthogonal matrix, U can be expressed as

U =

8>><
>>:

�
c �s

s c

�
when U is a rotation matrix�

c s

s �c

�
when U is a reection matrix

(40)

where c2 + s
2 = 1. Hence, the lemma is proved.

2

[Lemma 2]
When a planar surface is still visible after the motion in
space, det[L] > 0.

Proof:
As is well known, any plane can be made parallel to
the xy image plane by rotations around the x and y

axes. The e�ect of these rotations in the xy plane can
be expressed by a shear S and a subsequent dilation D.
Speci�cally,

S =

�
1 0
� �

�
(41)

D =

�
 0
0 1

�
(42)
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When this motion of the plane takes place so that it is
always visible, clearly � > 0, � > 0,  > 0. Thus, we
have det[DS] > 0. When we do this operation to the
object planar surface both at the pose for the model and
the data by respectively DS and D

0
S
0, it is easy to see

that the following relation holds,

RDS = D
0
S
0
L (43)

for some rotation matrix R.
Then, from lemma 1 we get,

det[L] = det[S0�1D0�1
RDS] > 0 (44)

2

Finally, the following constructive property allows the
claims presented above to become the basis of a practical
tool for recognizing planar surfaces.

[Theorem 1]
When (9) represents the motion of a plane, and the
transformation for model and data are respectively (33)
and (34) such that both � and �0 represent rota-
tions/reections, then T in (12) is a rotation matrix.

Proof:
From proposition 1,

A
0
L = TA (45)

where A and A0 are chosen as in (33) and (34) such that
both � and �0 represent rotations/reections.
Then, from lemma 1 and 2, we have

det[T ] = det[A0
LA

�1] > 0: (46)

2

What does this imply? If we have a set of model
features and data features related by an a�ne transfor-
mation (either due to a weak perspective projection of
the object into the image, or due to a linear motion of
the object image between two image frames), then if we
transform both sets of features linearly in a well de�ned
way (via (33) and (34)), we derive two distributions of
features that are identical up to a rotation in the image
�eld. This implies that the transformed distributions
are unique up to their shapes. More importantly, it also
provides an easy method for �nding the related transfor-
mation.

A physical explanation of this property is given using
Figure 2 as follows. Suppose the upper pictures show
the surfaces in space at the model and the data poses as
well as the respective orthographic projections. Looking
at the major and minor axes of the 2D model and the
data, we can change the pose of the planes so that the
major and minor axes have the same length in both the
model and data, as depicted in the lower pictures. This
is nothing but a normalization of the feature distribu-
tions, and the normalized distributions are unique up to
a rotation, regardless of the pose of the plane, i.e., no
matter whether it is from the pose for the model or for
the data.

An example of applying the proposed transformation
is shown in Figure 3.

4 Alignment using a single 2D model

view

In this section, we show how we can align the 2D model
view of the planar surface with its 2D images using the
tool derived in the last section.

4.1 Using the centroid of corresponding
feature groups

If the model and data features can be extracted with no
errors, and if the surface is completely planar, then ap-
plying the presented transformation to model and data
features will yield new feature sets with identical shapes
(up to an image plane rotation). Thus, in this case, our
problem, i.e., recovering the a�ne parameters which gen-
erated the data from the model is quite straightforward.
One way to do this is simply to take the most distant
features from the centroid of the distribution both in the
model and data, and then to do an alignment by rotat-
ing the model to yield a complete coincidence between
each model and data feature. Then, we can compute the
a�ne parameters which result in that correspondence.

However, the real world is not so cooperative. Errors
will probably be introduced in extracting features from
the raw image data, and, in general, the object surfaces
may not be as planar as we expect. To overcome these
complications, we propose a robust alignment algorithm
that makes use of the correspondences of the centroid of
corresponding feature groups in the model and data.

4



 

    

Surface in the Space
    at the Original
Model and Data Pose

Original Data
Feature Distribution

Transformed
Model Feature
Distribution

Transformed
Data Feature
Distribution

By Transformations A, A’

Original Model
Feature Distribution

Surface in the Space
   at the Pose to
  Yield Normalized 
Feature  Distribution

Figure 2: Physical explanation of the Invariant Projection
The upper pictures show the surfaces in space at the model and the data poses, as well as their orthographic projections to

the image �eld. The lower pictures show the surfaces and their projections at the poses yielding normalized distributions.
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Figure 3: An Example of the Application of Invariant Projection
Upper left: the original model features, Upper right: the original data features, Lower left: transformed model features, Lower

right: transformed data features. Transformed features from the model and the data have the same distribution up to a

rotation in the image �eld.
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Here we see an important property hold:

[Theorem 2]
When the motion of the object in space is limited to
linear transformations, the centroid of its orthographic
projection to a 2D image �eld, i.e., centroids of image
feature positions, is transformed by the same transfor-
mation as that by which each image feature is trans-
formed.

Proof:
When any point Xi on the object surface in space is
transformed to X0

i by a 3D linear transformation T , its
orthographic projection xi is transformed to x0i by

x
0

i = � T ��1
xi for i = 1 to N (47)

where N is the number of points, � represents the or-
thographic projection of object points, and ��1 is the
lifting operation. Speci�cally,

xi = �Xi (48)

x
0

i = �X0

i (49)

This is also true for any of the linear combinations of
these points, because

NX
i=1

�i x
0

i =

NX
i=1

�i�X
0

i (50)

=

NX
i=1

�i� TXi (51)

=

NX
i=1

� T ��1
�i xi (52)

= �T ��1(

NX
i=1

�i xi ) (53)

where �i
0
s are arbitrary real coe�cient. Thus, the

proposition is proved.
2

Moreover, we see that the following reliable property
holds.

[Proposition 4]
When the errors in extracting features and/or the per-
turbation of their depth from coplanarity is zero-mean,
the centroid is transformed by the same transformation,
although each feature point is no longer guaranteed to
be aligned by the same transformation.

The proof is straightforward, and is not given here.
Note that these properties are generally true for any ob-
ject surface and its motions. The coplanarity of the sur-
face does not matter. In the case when the object hap-
pens to be planar, as the motion of the 2D image feature
is described by an a�ne transformation, the centroid of
the features is also transformed by the same a�ne trans-
formation.

In [13], the use of region centroids was proposed in
the recognition of planar surfaces. Unlike our approach

for using feature group centroids, however, their method
can only be applied to planar objects, as described in
the paper.

4.2 Grouping by clustering of features

Since a�ne parameters can be determined from three
point correspondences, our problem becomes one of ob-
taining three corresponding positions in model and data,
in the presence of perturbations. Based on the obser-
vations made in the preceding sections, we propose to
group the model and data features using their trans-
formed coordinates, so that we can extract a single fea-
ture from each of a small number of groups. The goal is
to use such groups to drastically reduce the complexity
of alignment based approaches to recognition, by �nding
groups whose structure is reproducible in both the model
and the data, and then only match distinctive features
of such groups.

One way to group features is to employ clustering
techniques. In the selection of clustering algorithm from
the many choices, taking into account the use of the
property we have derived in the last section, that is, the
transformed model and data features are unique up to
rotations and translations, we set the following two cri-
teria: (a) invariance of the clustering criterion to rota-
tions and translations of the x; y coordinate system, (b)
low computational cost. The criterion (b) is also crit-
ical, because if the computational cost of clustering is
similar to those of conventional feature correspondence
approaches, the merit of our method will be greatly de-
creased.

We have opted to use Fukunaga's version of ISODATA
algorithms [3, 4, 9] for the following reason. The crite-
rion of this algorithm is to minimize the intraclass co-
variances of the normalized feature distribution instead
of the original distribution. Speci�cally, let the criterion
be:

J = trace[Kw] (54)

where

Kw = �Mi=1Q(!i)Ki (55)

where Q(!i) is the probability density function of the ith
cluster, M is the number of clusters, and Ki is the in-
tragroup covariance of the ith cluster for the normalized
feature set. The normalization of an original features
is performed using the same transformation as that pre-
sented in the last section. Therefore, applying ISODATA
on our transformed coordinates is equivalent to adopting
Fukunaga's method. It is clear that the criterion given
in (54) is invariant to the rotation and translation of the
x; y coordinate system.

Moreover, since the ISODATA algorithm, starting
from the initial clustering, proceeds like a steepest de-
scent method for ordered data, it is computationally very
fast. It runs in O(N ) time in terms of the number of the
features N to be classi�ed, when we set the upper limit
to the number of iteration as is often done. We should
also note that, although it is not guaranteed that it can
ever reach the real minimumof J , we know that our aim
is not to minimize/maximize some criterion exactly, but
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to yield the same cluster con�guration both in model and
data clustering. Minimization of a criterion is nothing
more than one attempt to this.

4.3 Aligning a model view with the data

Now we can describe an algorithm for aligning a 2D view
of a model with its novel view, which is assumed to be
nearly planar. Note that, however, to determine the
best a�ne transformation, �nally we must examine all
the feature groups isolated from the data, as we do not
know which group in the data actually corresponds to
the planar surface which has been found in the model.

� Step 0: For a feature set from a 2D view of a model,
compute the matrices given in (33) where U may be
set to I and generate the normalized distribution.
Cluster based on ISODATA to yield at least three
clusters. Compute the centroid of each cluster re-
produced in the original coordinate. This process
can be done o�-line.

� Step 1: Given a 2D image data feature set, do the
same thing as step 0 for the data features.

� Step 2: Compute the a�ne transformation for each
of the possible combinations of triples of the cluster
centroids in model and data.

� Step 3: Do the alignment on the original coordi-
nates and select the best-�t a�ne transformation.

Step 1 is clearly O(N ). In Step 2, computation of a�ne
parameters must be done for only a small number of
combinations of clusters of model and data features. So,
it runs in constant time. Step 3 is, like all other align-
ment approaches, of the order of the image size. Thus,
this alignment algorithm is computationally an improve-
ment over the conventional ones for object recognition.

We stress again that our method is not restricted to
planar objects. We simply require a planar surface on
an object to extract the alignment transformation. This
transform can then be applied to a full 3D model or
used as part of a Linear Combinations approach to sets
of views of a 3D model to execute 3D recognition.

5 Finding planar portions on the object

surface using two 2D model views

In this section, we derive an operator for detecting the
planar portions on the object surface without the di-
rect use of depth information. This operator uses two
2D model views with a su�cient number of correspon-
dences between features. The basic underlying idea in its
derivation is the same as those used for motion/accretion
region detection [1, 10], and for smooth/singular segment
detection along a curve [2].

5.1 Evaluating the planarity of a surface

Suppose that we have the correspondences between
model feature set fXg and data feature set fX0g. From
the expansion of (7) to x; y components, we have

x̂0 = L11x̂+ L12ŷ (56)

ŷ0 = L21x̂+ L22ŷ (57)

where â = a � �a, and ( �x0; �y0)T and (�x; �y)T are the re-
spective mean vectors of the model and data feature dis-
tributions. Clearly, the existence of Lij

0
s which satisfy

(56) and (57) is the necessary and su�cient condition
that the feature set is distributed coplanarly.

Let the covariance matrices of U = (x0; x; y) and
V = (y0; x; y) respectively be CU and CV . Then, we
see that the following lemma holds.

[Lemma 3]

det[CU ] = 0 () x̂0 = L11x̂+ L12ŷ (58)

for some real (L11; L12) 6= (0; 0)

det[CV ] = 0 () ŷ0 = L21x̂+ L22ŷ (59)

for some real (L21; L22) 6= (0; 0)

This is basically the same result as that presented by
Ando[1]. A proof is given in the Appendix. By using this
property, we can evaluate to what extent a feature set is
distributed coplanarly in space, without estimating the
best-�t a�ne parameters Lij, by some method, say, least
square errors. In the following part, we concentrate the
discussion on (58). The same argument holds for (59).

In [10], claims were made for the necessity of normal-
ization of the measure. We support that argument here,
because clearly det[CU ] depends on the resolution of the
image, so we can not use det[CU ] directly to evaluate the
coplanarity. In addition, in order to remove the e�ect of
linearity of the (x; y) distribution itself from det[CU ], we
transform U to yield a normalized distribution.

�U = AU (60)

where,

A =

�
��

1

2�T 0

0 �
�

1

2

�
(61)

where � and � are respectively eigenvalue and eigenvec-
tor matrices of the covariance matrix of (x; y), and � is
the variance of x0.

Let �CU be the covariance matrix of �U . Then, guided
by the Schwarz Inequality for the eigenvalues �; �;  of
�CU , which are all positive, we get a normalized measure

1�
��

(�+�+
3

)3
=
det[C1]Cx0x0 � det[CU ]

det[C1]Cx0x0

(62)

where C1 is the covariance matrix of (x; y) and Cx0x0 is
the variance of x0.
Note that, since det[CU ] = �� indicates the square of
the volume of the distribution of U , the numerator of
(62) reects the relation in (56), while the denominator
has no direct connection to it.
In the same way, for V we get,

det[C1]Cy0y0 � det[CV ]

det[C1]Cy0y0

(63)

where Cy0y0 is the variance of y0.
Then, combining these two, �nally we get an operator P

P =
det[C1](Cx0x0 + Cy0y0 )� (det[CU ] + det[CV ])

det[C1](Cx0x0 + Cy0y0 )
(64)
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Note that P is a normalized measure which is free
from any physical dimensions, with the following impor-
tant property that is easily shown by a simple calcula-
tion.

[Lemma 4]
P is invariant to rotations and translations in the xy

image plane.

5.2 Using the operator in detecting planar
surfaces

When we set the tolerable perturbation of the surface at
the rate P � r, then we can introduce a coe�cient to
adjust the measure P so that it ranges from 1 down to
0 within the range P � r. This is done by choosing the
scalar coe�cient k such that,

det[ ~C1]( ~Cx0x0 + ~Cy0y0)� k � (det[ ~CU ] + det[ ~CV ]) = 0 (65)

where EfP ( ~CU ; ~CV )g = r, Ef�g denotes an expectation
of the P obtained through experimental results. Thus,
we have

P (k) =
det[C1](Cx0x0 + Cy0y0)� k � (det[CU ] + det[CV ])

det[C1](Cx0x0 +Cy0y0)
(66)

So, we have derived a pseudo-normalized measure for the
speci�c range of surface coplanarity with which we are
concerned. It is easy to see that P (k) is again invariant
to rotations and translations in the xy image plane.

5.3 Empirical results on the sensitivity of P

We show empirical results on the sensitivity of P to the
perturbations of feature positions caused by their depth
perturbations in space. Examinationswere performed on
two sets of model features produced by canonical statis-
tical methods. First, a set of model features were gener-
ated randomly. Then, generating random a�ne parame-
ters, in our case Lij, each model feature was transformed
by this transformation to yield another model feature
set. Finally, we added perturbations to the second set
of features according to a Gaussian model. Since the ef-
fect of depth perturbations appears only in the direction
of the translational component of the a�ne transforma-
tion, in proportion to the dislocation of the point from
the plane[11], we added perturbations only in the direc-
tion of the x axis. Perturbations along other directions
yielded similar results.

Figure 4 shows the values of the operator P versus the
deviation of the Gaussian perturbation. The horizontal
axis shows the Gaussian deviation and the vertical axis
shows the value of the operator P . Twenty model pairs
were used for each of the Gaussian perturbation, and 50
features were included in each model. In the Figure, the
average value of P from the 20 pairs is plotted versus
the Gaussian deviation. The value of the operator P
decreases monotonically as the deviation increases.

6 Experimental results

In this section, experimental results show the e�ective-
ness of the proposed algorithm for recognizing planar
surfaces.

As in the last section, we used random patterns for
model features, random values for a�ne parameters, and
additive Gaussian perturbations to simulate the feature
extraction errors and the depth perturbations of the ob-
ject surface in space from planarity. We also simulate
the case including occlusions.

[Algorithm Implementation]
In order to obtain three clusters in model and data, we
adopted a hierarchical application of ISODATA. This
is because through some tests of ISODATA, we learned
that the accuracies for generating three clusters severely
declined from those for generating two clusters. There-
fore, the actual method we took for feature clustering
was: (1) �rst do clustering on the original complete fea-
ture set to yield two clusters for model and data, (2)
then, do clustering again for each of the clusters gener-
ated in the �rst clustering to yield two subclusters from
each cluster. To �nd the best a�ne parameters Lij,
all the possible combinations of the centroid correspon-
dences between model and data clusters and subclusters
were examined. Initial clusters were produced by se-
lecting the initial separating line as the one that passes
through the centroid of the distributions to be classi-
�ed and is perpendicular to the line passing through the
centroid and the most distant feature position from the
centroid.

In Figure 5, intermediate results of the hierarchical
procedures described above are shown.

9



Sensitivity of P versus Depth Perturbation
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Figure 4: Sensitivity of the operator P to perturbations of the depth from planarity in space.
The values of the operator P are plotted versus the Gaussian deviations of the perturbations in data feature. The horizontal

axis shows the Gaussian deviation and the vertical axis shows the value of the operator P . Twenty model pairs were used for

each of the Gaussian perturbations, and 50 features were included in each model.
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Figure 5: An example of hierarchical clustering.
Upper left: results of the �rst clustering of the transformed model features, Upper right: results of the �rst clustering of the

transformed data features, Middle: subclusters yielded by the second clustering of the �rst clustering results of the model,

Lower: subclusters yielded by the second clustering of the �rst clustering results of the data.
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In each of the following experiment 100 sample model
and data with 50 features were used, and the average of
their results were taken.

[With errors in extracting features]
In Figure 6, errors in recovering the a�ne parameters
Lij, which are estimated by the following measure, are
plotted versus the rate of the Gaussian deviation to the
average distance between closest features of the data.

error =

s
�i;j(L̂i;j � Lij)2

�i;jL
2
ij

(67)

where L̂ij is the recovered values for a�ne parameters.
The average distance between closest feature points was
estimated by

average distance =

r
det[L]A

�N
(68)

where A is the area occupied by the model distribution,
and N is the number of the features included. The per-
turbation rate used to generate Gaussian deviation were
taken to be the same in both the x and y coordinates to
simulate the errors in feature extraction. In Figure 6 we
note that errors are almost proportional to the pertur-
bation rate. In Figure 7, examples of the reconstructed
data distributions, with di�erent errors in recovering the
a�ne parameters, were superimposed on the data with
no perturbations. The average errors in recovering a�ne
parameters increased, as perturbations in the data fea-
tures grew larger. However, even in such cases, errors
are still small for most samples as we can see in Table 1.
In almost all cases when the recovering of Lij results in
large errors, the �rst clustering failed due to the change
of the most distant features in model and data. The ra-
tio of this kind of failure increased as the perturbation
percentage grew. That is the reason for the error ele-
vations in such samples. But, by combining properties
other than positions of the features in giving initial clus-
ters, such as colors, this will be considerably improved.

From Figures 6 and 7, our algorithm is found to be
quite robust against considerable perturbations caused

5 10 15 20 25 30 35
| 0.01 73 52 30 21 7 3 0
0.01 - 0.05 12 17 27 31 36 37 31
0.05 - 0.1 8 10 14 16 15 14 14
0.1 - 0.2 2 3 5 4 8 10 11
0.2 - 0.3 2 2 3 6 7 5 7
0.3 - 0.4 0 2 3 5 3 5 5
0.4 | 3 14 18 17 24 26 32

Table 1: Number of Samples with Errors vs. Perturba-
tion.
The number of the samples with errors out of 100 model

and data pairs are shown versus perturbation rate. The �rst

column shows the recovery errors, and the �rst row shows the

perturbation percentages included in the data features.

5 10 15 20 25
| 0.01 7 0 0 0 0
0.01 - 0.05 24 29 21 15 1
0.05 - 0.1 19 24 34 33 28
0.1 - 0.2 4 17 2 8 18
0.2 - 0.3 6 17 8 11 8
0.3 - 0.4 11 4 1 14 10
0.4 | 29 9 34 19 35

Table 2: Number of Samples with Errors vs. Occlusion.
The number of the samples with errors out of 100 model and

data pairs are shown versus the rate of missing features in the

data. Each model has 50 features. The �rst column shows

the recovery errors, and the �rst row shows the percentages

of missing features.

by the errors in feature extractions.

[Depth perturbation from planarity]
In the same way, in Figure 8 estimation errors are shown
to simulate the case where the surface has depth pertur-
bations from planarity. As described previously, per-
turbations in the image �eld caused by depth variation
occur in the direction of the translational component of
the a�ne transformation. Therefore, the perturbation
rate was taken only for the x coordinate. Similar results
were obtained from other directions of perturbations.
From Figure 8, again, we can see that our algorithm is
quite stable against perturbations caused by the depth
variations of the points from planarity. Thus, our
method can be used to obtain approximate a�ne param-
eters for object surfaces with small perturbations from
planarity.

[With Occlusion]
In Figure 9, the errors in recovering a�ne parameters
are plotted versus the rate of the number of the miss-
ing features in the data, which is to simulate the case
including occlusions.

Roughly speaking, the errors increase as the miss-
ing features increase. The perturbations from the
monotonous elevation of the errors are caused by the
unstable initial clusterings. Actually, we note in Table 2
that even in the cases with high average errors, many of
the samples result in a good recovery, while some result
in large errors. This is because the accuracy of the ini-
tial clustering in our algorithm depends on how much the
most distant feature from the centroid remain identical
in model and data. So, when it changes critically due to
the missing of features, it becomes unstable. However,
again this can probably be �xed by combining other cues
in obtaining initial clustering.
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Recovering Error versus Perturbation Rate
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Figure 6: Errors in recovering a�ne parameters Lij from the data extracted with errors.
The horizontal axis shows the percentage of the Gaussian deviation to the average distance between closest features and the

vertical axis shows the error in recovering Lij. One hundred model and data pairs were used for each of the perturbation

ratio, and 50 features were included in the model and data. Errors are almost proportional to the the perturbation rate.
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Figure 7: Reconstructed data features by the recovered a�ne parameters
Reconstructed data features are superimposed on the data generated with no errors: with the error in recovering Lij Upper

left: 0.0027, Upper right: 0.069, Lower left: 0.11, Lower right: 0.27. White boxes shows the data features without errors,

while the black boxes show the reconstructed features.
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Recovering Error versus Perturbation Rate
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Figure 8: Errors in recovering a�ne parameters Lij from datum with depth perturbations.
The horizontal axis shows the percentage of the Gaussian deviation to the average distance between closest features and the

vertical axis shows the error in recovering Lij. One hundred model and data pairs were used for each of the perturbation

ratio, and 50 features were included in each model and data. For small depth perturbations, the recovered a�ne parameters

can work as a good approximate.
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Recoverring Error versus the Rate of Occlusion
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Figure 9: Errors in recovering a�ne parameters Lij in case with occlusion.
The horizontal axis shows the percentages of the missing features and the vertical axis shows the error in recovering Lij. The

number of model features was 50. One hundred model and data pairs were used for each of the rate of missing features in

the data.
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[Computational cost]
The run time computational cost for recovering a�ne pa-
rameters was in average less than 15 msec on SPARCsta-
tion IPX. Compared with the conventional approaches to
object recognition, this is a noticeable improvement.

7 Conclusion

It was shown that for sets of 2D image features from
a planar surface, there exists a class of transformations
that yield a unique distribution up to rotations. Also,
the use of centroid correspondences between correspond-
ing feature groups was proposed in the recognition of
objects. Then, we proposed an approach to the align-
ment of the model of a planar object with its novel view
as a combination of these two convenient tools. An al-
gorithm was presented using clustering techniques for
forming the feature groups. Then, experimental results
demonstrated the robustness and computationalmerit of
this approach. We also proposed an operator to detect
planar portions of the object surface using two object im-
ages and showed its e�ectiveness through experiments.
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Appendix

In this Appendix, we show the validity of lemma3. That
is

det[CU ] = 0 () x̂0 = L11x̂ + L12ŷ for some
real constant (L11; L12) 6= (0; 0).

Proof)
det[CU] = 0 is equivalent to that the column vectors
CU1; CU2; CU3 of CU are linearly dependent.
Speci�cally, for some constant �; �; 

�CU1 + �CU2 + CU3 = 0 (69)

This is equivalent to,X
�x̂Û + �ŷÛ + x̂0Û = 0 (70)

where Û = (x̂; ŷ; x̂0), and the summation is taken over
all the features concerned.

Premultiplying (�; �; ) to (70) yields,X
(�x̂+ �ŷ + x̂0)2 = 0 (71)
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When the number of features is su�ciently large, this is
equivalent to,

�x̂+ �ŷ + x̂0 = 0 (72)

Ignoring the case where �=�; =� have in�nite values,
we obtain

x̂+ (�=�)ŷ + (=�)x̂0 = 0 (73)

Then by setting L11 = �=� and L12 = =�, we have the
lemma.
2
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