
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1392 October 1992

Analytical Representation of Contours

Ronald D. Chaney

Abstract

The interpretation and recognition of noisy contours, such as silhou-

ettes, have proven to be di�cult. One obstacle to the solution of these

problems has been the lack of a robust representation for contours. In

this paper, we present an analytical representation for contours. The

contour is represented by a set of pairwise tangent circular arcs. The

advantage of such an approach is that mathematical properties such as

orientation and curvature are explicitly represented. We introduce a

smoothing criterion for the contour that optimizes the tradeo� between

the complexity of the contour and proximity of the data points. The

complexity measure is the number of extrema of curvature present in

the contour. The smoothing criterion leads us to a true scale-space for

contours. We describe the computation of the contour representation

as well as the computation of relevant properties of the contour. We

consider the potential application of the representation, the smoothing

paradigm, and the scale-space to contour interpretation and recogni-

tion.

Copyright c Massachusetts Institute of Technology, 1992

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts

Institute of Technology. Support for the laboratory's arti�cial intelligence research is provided

in part by the Advanced Research Projects Agency of the Department of Defense under O�ce

of Naval Research contract N00014-91-J-4038.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4383723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The interpretation and recognition of noisy contours, such as silhouettes, have

proven to be di�cult. One obstacle to the solution of these problems has been the

lack of a robust representation for contours. Improvements in the representation of

contours and the ability to manipulate the representation will lead to improvement

of interpretation and recognition procedures. Furthermore, because manipulating

contours is useful as a primitive operation in other contexts, a more robust repre-

sentation for curves is likely to lead to improved performance in a variety of higher

level functions.

Curvature has long been recognized as an important property of contours.

In 1954, Attneave[2] published an important paper in which he observed that

extrema of curvature along contours provided much of the information necessary

to recognize objects from line drawings. Attneave manually picked points that

corresponded to extrema of curvature and connected the points with straight lines.

Remarkably, recognition based on such �gures was found to be simple for human

observers. Thus, curvature is likely to play an important role in the development

of computer vision recognition systems.

Consequently, many procedures for interpretation and recognition of contours

require estimates of curvature (see Section 2). Unfortunately, curvature is a sec-

ond order derivative property of the coordinates of the curve. Because contours

extracted from real data are almost always noisy, curvature estimates are typically

unreliable. Therefore, it is critical that a robust, reliable method for smoothing

contours be available. Furthermore, it is essential that the representation provide

a robust estimate for curvature.

One barrier to the development of a robust contour representation paradigm

is that geometric relationships are very awkward to represent computationally.

In particular, the discrete nature of computers and the unavoidable roundo� error

make inference of simple geometric properties extremely di�cult[31]. For example,

two points in the continuous domain, (x1; y1) and (x2; y2) determine a line and the

midpoint, (x1+x2
2

;
y1+y2

2
), is guaranteed to be on the line. However, in the discreet

case any computation of the distance between the midpoint and the line almost

always yields a non-zero result. This leads to the paradoxical conclusion that a

point on the line has a non-zero distance from the line.

In this paper, we present a novel approach to representing contours. The curve

is represented by a list of pairwise tangent circular arcs. To account for roundo�

error, the representation paradigm uses a de�nition of tangency that is di�erent

from the pure mathematical de�nition. A variety of mathematical properties,

including curvature and orientation are represented explicitly. A variety of global

properties of the curve are computed easily from the representation.

We also introduce a novel approach to contour smoothing. We optimize a

tradeo� between the complexity of the curve and the proximity of the curve to the

1

data points. The complexity of the contour is measured by the number of extrema

of curvature of the curve. Once a particular complexity has been speci�ed, the

curve that minimizes the square-error between the data points and the curve is

chosen. A multiple scale description of the curve is obtained by computing curves

with a variety of complexities.

In Section 2, we consider previous attempts to represent and smooth contours.

In Section 3, we consider the de�nition of the contour representation and the me-

chanics of deforming the contour. In Section 4, we introduce the novel smoothing

criteria and complexity scale-space. In Section 5, we consider the computation of

a number of useful mathematical properties from the representation. In Section 6,

we discuss the potential bene�ts of the paradigm for existing algorithms. In Sec-

tion 7, we propose a framework for integrating the paradigm into a useful vision

system. Finally, in Section 8, we present our conclusions. In the Appendix, we

present the details of the computations that are necessary for completeness.

2 Background

A variety of methods of representing and smoothing contours have been proposed.

Of course, the representation of the contour has a tremendous impact on the

ability to interpret or recognize an object bounded by the contour. In this section

we consider a sample of existing contour representation paradigms. In particular,

we focus on the implications of the representation on the ability to recognize and

interpret contours.

Perhaps the simplest representation for a contour is a list of the coordinates

of points along the curve (for example, Ho�man & Richards[11], Mokhtarian

& Mackworth[24] and Lowe[20]). A curve represented in this fashion may be

smoothed by applying a Gaussian �lter to the x and y coordinates, independently.

Estimates of the orientation and curvature of the contour may be obtained from

�nite di�erence approximations of the derivatives of the local coordinates.

Unfortunately, Gaussian �ltering applied to coordinates of points su�ers from

a well-known shrinkage problem[16]. As the standard deviation of the Gaussian

�lter increases, the perimeter of the smoothed curve is guaranteed to decrease. In

fact, as the standard deviation tends to in�nity, the coordinates of the smoothed

curve tend to a single point. Therefore, the smoothed curve is guaranteed to stray

from the original data points; there is a bias toward the interior of the contour.

Lowe[20] proposes a smoothing procedure that compensates for the shrinkage

problem explicitly. This procedure reduces, but does not completely eliminate, the

shrinkage problem. Lowe points out that locally, the shrinkage problem manifests

itself as a tendency of the smoothed points to migrate toward the center of curva-

ture. Based upon the amount of smoothing and an estimate of the curvature, it is

possible to predict the amount of shrinkage that would occur with straightforward

2

�ltering. Lowe's algorithm explicitly compensates for the shrinkage based on this

estimate.

Horn and Weldon[16] propose a solution to the shrinkage problem. They rep-

resent the curve by its extended circular image[15]. The extended circular image

is obtained by mapping the curvature of a particular point on the curve to the

location of the circle that has the same orientation of the point of interest. Thus,

the extended circular image is the curvature of the curve as a function of the ori-

entation of the curve. (See Section 5.4.) Horn and Weldon show that applying

a �lter with unit DC gain to the extended circular image leaves the perimeter of

the underlying curve unchanged. Therefore, their method does not su�er from the

shrinkage problem. Filtering the extended circular image is simply smoothing the

curve in a di�erent domain. Unfortunately, the procedure is only applicable to

convex curves. Attempts to extend the procedure to general curves have proven

unsuccessful.

An alternate method is to represent the contour by a set of line segments. The

line segments are chosen using a split and merge algorithm (see Horn[13], Horowitz

& Pavlidis[26], [17], Chen & Pavlidis[7], and Grimson[9] pp.104-105). The represen-

tation is constructed recursively. The algorithm begins with a single line segment

that is de�ned by the two endpoints of the curve. The data point that deviates

the farthest from the line segment is found. If the distance of this point from the

original segment is greater than a speci�ed tolerance parameter, the segment is

split into two. Each new segment is de�ned by one of the original endpoints and

the point of maximum deviation. This process is repeated, recursively, until all

data points are within the speci�ed distance of the curve. Neighboring segments

are combined into a single segment if doing so would not cause the distance from

any data point to the segment to exceed the tolerance.

The line segment representation based upon the split and merge algorithm pro-

vides a simple, computationally e�cient means of representing the contour. The

amount of smoothing is controlled by the tolerance parameter. Orientation esti-

mates are obtained from the orientation of each line segment. Curvature estimates

may be obtained from the change in orientation of neighboring line segments and

the length of neighboring line segments. Unfortunately, the curvature estimates

obtained from this representation are only marginally useful.

It is also possible to represent a contour with circular arcs and line segments.

A popular method of acquiring this representation is to map the curve into �-

s space. At each point along the curve, estimates of the orientation and the

arclength between the point and the previous point are obtained. An estimate

of the orientation of the curve as a function of arclength is obtained. In this space,

called �-s space, a horizontal line corresponds to a line segment on the curve. A

non-horizontal line corresponds to a circular arc; the curvature of the arc is equal

to the slope of the line. By making a piecewise linear least square-error �t to the

3

data in �-s space, a representation of the curve by a set of circular arcs is implicitly

obtained. This procedure is described in more detail in Grimson[9] pp. 105-108.

The use of �-s space is particularly popular for object recognition systems (for

example, McKee and Aggarwal[23], Perkins[27], Turney et al[30], Clemens[8], and

Grimson[9], [10]).

Estimates of orientation and curvature may be obtained directly from the cir-

cular arcs and line segments in the representation. The piecewise linear �t in �-s

space is an explicit method of smoothing the curve. However, strictly speaking,

the orientation is discontinuous because neighboring arcs and segments are not

guaranteed to be tangent. Thus, the curvature is in�nite at these points. This

problem may be alleviated by a variety of ad hoc methods; however, such methods

necessarily lead to curvature estimates that are inconsistent with the representa-

tion.

Curvature estimates play a major role in most contour interpretation and recog-

nition algorithms. In many cases, such as codon coding[11], the curvature estimates

play an explicit role. In other cases, such as the medial axis transform[4], the cur-

vature of the contour has an implicit, but important, e�ect on the calculation.

The medial axis transform is an algorithm that obtains a graph with the same

topology as the region it represents. Each point on a branch of the graph is equidis-

tant from two points on the bounding contour of the region. A node of the graph

is a point equidistant from three or more points on the contour. The graph is often

called the medial axis skeleton or skeleton for short. The skeleton is useful because

it decomposes the region into simpler parts. Each part is represented as a branch

of the skeleton. Furthermore the skeleton provides a convenient representation of

the topological relationships of the parts of the region.

We may consider the skeleton to include information about the distance be-

tween each point on the graph and the bounding contour. That is, for each point

on the branch of a graph we assume the distance between that point and the two

closest points on the contour are known. In this case, there is a unique mapping

from the skeleton to the bounding contour of the region and vice versa.

Given the unique mapping between the skeleton and the bounding contour

of the region, it is not surprising that the skeleton is highly dependent on the

curvature of the contour. Each branch of the skeleton that terminates into the

contour (rather than into a node of the skeleton) does so at a positive maximum of

curvature. Furthermore, there is a simple test to determine if a positive maximum

of curvature corresponds to a terminus of a branch of the contour. If the osculating

circle at the maximumof curvature lies in the interior of the contour, the maximum

is associated with a terminus of a branch of the skeleton. Otherwise, there is no

terminus associated with the maximum. Consequently, the local curvature of the

bounding contour plays an important role in the topology of the skeleton. In fact,

the well-known sensitivity of the skeleton to small perturbations in the contour is

4

completely characterized by the e�ect of the perturbation on the local curvature.

Therefore, the e�ect of the contour representation on curvature is critical to the

computation of the medial axis skeleton. Typically, the sensitivity of the skeleton

to perturbations in the contour is reduced by computing an approximation to

the medial axis skeleton. For example, Leymarie & Levine[19] compute a skeleton

that minimizes a cost function that includes the distance from the true medial axis

skeleton and a smoothness term for the resulting skeleton. Such an approach may

provide a reasonable result for the skeleton itself. However, the resulting skeleton

and the bounding contour are inconsistent. Such inconsistency is undesirable.

Codon coding, popularized by Ho�man & Richards[11], is another method for

interpreting the region bounded by a contour that makes use of curvature estimates

explicitly. A codon is a portion of the curve delimited by two minima of extrema.

It is desirable to decompose the curve in this fashion because the boundary of

subjective parts of an object often occur at negative extrema of curvature. Thus,

the list of codons provides an explicit interpretation of the contour as the set of

its salient parts.

The work of Richards et al [11], [12], [28] on codons has been widely referenced

in the literature. However, as a practical matter, the direct implementation of

these ideas has been elusive. The largest obstacle has been the inability of contour

representation and smoothing schemes provide reliable estimates for curvature.

Asada and Brady[1] construct a \primal sketch" for contours. A set of primi-

tives are delimited by positions of \signi�cant curvature changes." The primitives

are detected and localized across a variety of resolutions of Gaussian �ltering. The

primitives include corners and \smooth joins" (large discontinuities in curvature)

as well as compound primitives such as ends (two nearby corners of the same sign),

cranks (nearby corners of opposite sign), bumps and dents (two nearby cranks).

Presumably, such an intermediate representation could be used by a higher level

process to make inferences about the contour.

Mokhtarian and Mackworth[24] propose an alternativemethod of describing the

shape of a contour. The curve is represented by a list of coordinates along the curve;

smoothing is accomplished with a Gaussian �lter. The shape is represented by the

position of the zero-crossings of curvature as a function of arclength along the curve.

A scale-space representation reminiscent of Witkin[32] is obtained by considering

the position of the zero-crossings parametric in the amount of smoothing applied

to the data points. Mokhtarian and Mackworth develop a contour recognition

algorithm that compares the scale-space representation of a contour to the elements

of a library of such contours.

We have considered only a limited sample of existing methods for representing

contours. We have touched on some of the issues related to smoothing, interpreta-

tion, and recognition of the contours. In particular, we have noted that curvature

and orientation estimates often play critical roles in interpretation and recognition

5

systems. An historical review of contour representation prior to 1980 may be found

in Pavlidis[25]. For a mathematical treatment of curves and their properties, see

Koenderink[18].

3 Computation of the Contour Representation

Any su�ciently well-behaved curve may be approximated by a set of pairwise

tangent circular arcs. Such a representation is desirable because it provides a

richer, more meaningful description of the contour than do traditional representa-

tion schemes. The representation provides several mathematical properties explic-

itly and facilitates the analytical computation of a variety of others.

The computation of the pairwise tangent arc representation is nontrivial. For

example, simple geometric properties, such as tangency, are not conveniently com-

puted by digital processors having �nite accuracy. In this section, we consider the

computation of the contour representation from a set of sample points along the

contour.

3.1 De�nitions

We must de�ne terms necessary for describing the contour representation. While

these terms may have widely accepted geometric meanings, it is necessary to be

precise when describing their meaning in a computational context. Due to the

quantized nature of computers, it is necessary to de�ne suitable approximations

to terms such as tangency.

A simple closed curve divides the plane into two simply connected regions: the

interior and the exterior. An observer traversing the curve with the interior to his

left is said to be moving in the positive direction of the curve. If the curve turns

to the left, the curvature is said to be positive; alternatively, if the curve turns to

the right, the curvature is said to be negative.

For any point along the curve, the normal vector is de�ned as the vector per-

pendicular to the curve pointing in the direction of the exterior. The normal vector

speci�es the orientation of the curve at the point. The angle of the normal vector

is called the angle of orientation. The angle of orientation increases when travers-

ing a segment of positive curvature. Conversely, the angle of orientation decreases

when traversing a segment of negative curvature.

A circle is a locus of points equidistant from a particular point (xc; yc), the

center of the circle. The distance from the center to any point on the circle is the

radius, R. An arc of a circle is delimited by two end angles denoted by �1 and �2.

The curvature of an arc is denoted by �, and

j�j =
1

R
: (1)

6

The curvature is positive if the arc is traversed in the counterclockwise direction

around the center, negative if the arc is traversed in the clockwise direction. The

coordinates of the arc parametric in arclength may be expressed as

x(s) = xc +R cos (s�+ �1) ; (2)

y(s) = yc +R sin (s�+ �1) ; (3)

where s is the distance traversed along the arc.

Two circles are said to be externally tangent i� the distance between their

centers is equal to the sum of their radii. Because it is impossible to compute

distances exactly, we must use an approximation to this de�nition for computa-

tional purposes. Thus, two circles are considered to be externally tangent i� the

di�erence of the sum of their radii and the distance between their centers is less

than some parameter, �. Speci�cally, two circles are externally tangent i�����R1 +R2 �
q
(xc1 � xc2)

2
+ (yc1 � yc2)

2

���� < �: (4)

Two circles are said to be internally tangent i� the sum of one radius and the

distance between the centers is equal to the other radius. Again, we must allow

for quantization. Without loss of generality we assume R1 < R2. Under this

condition, the circles are internally tangent i�����R1 �R2 +
q
(xc1 � xc2)

2
+ (yc1 � yc2)

2

���� < �: (5)

Note that the parameter, �, is dependent on the precision of computation. As

the precision of the computation device increases, the necessary value of � de-

creases. Thus, � is not an internal parameter that signi�cantly a�ects the outcome

of the computation. It is a computational necessity due to quantization error.

Two circles intersect when the distance between their centers is less than the

sum of their radii but greater than the magnitude of the di�erence of their radii.

For consistency, we must add the condition that the circles are not tangent as

de�ned above. So two circles intersect i� they are not tangent as de�ned above

and

jR1 �R2j <
q
(xc1 � xc2)

2
+ (yc1 � yc2)

2
< R1 +R2: (6)

Two circles are said to be external when the distance between their centers is

greater than the sum of their radii. Two circles are external i� they are not

tangent and

R1 +R2 <

q
(xc1 � xc2)

2
+ (yc1 � yc2)

2
: (7)

Circle1 is said to be internal to circle2 when circle1 lies completely in the interior

of circle2. Circle1 is internal to circle2 i� the circles are not tangent and

R2 �R1 >

q
(xc1 � xc2)

2
+ (yc1 � yc2)

2
: (8)

7

A curve is represented by an ordered list of circular arcs. Each arc is speci�ed

by its center point and curvature. The end angles of each arc are determined

by the points of tangency with the neighboring arcs. Neighboring arcs that have

the same sign of curvature must be internally tangent; neighboring arcs that have

di�ering signs of curvature must be externally tangent.

3.2 Curve initialization

In this section we consider the computation of an arbitrary curve that passes

through each data point. Once such a curve is found, it may be deformed to �nd

a suitably smooth curve. We consider the computation of deformations of a curve

and a particular smoothness criterion below.

At each data point, a circular arc is computed that passes through the point.

Since three points determine a circle, two other points must be speci�ed. The

midpoint between the point of interest and one of its neighbors is used as the

second point. The midpoint between the point and its other neighbor is the third.

The circle determined by these points is used as the initial arc for the point of

interest.

The initial arcs from two neighboring points are guaranteed to intersect at the

midpoint between the points. A third arc must be computed that is mutually

tangent to each initial arc. The radius of the third arc is arbitrarily chosen and its

position is de�ned by tangency constraints. This procedure is described in greater

detail in the Section A.2. Figure 1 illustrates the computation of the initial curve.

Figure 1: Initialization of a curve from the data points. The small squares indicate

the location of the data points. The lines protruding from the curve represent radii

of the circular arcs. Each arc in (a) passes through a data point and the midpoints

between the data point and its neighbors. Radii are drawn from the center of

curvature of each arc to the corresponding midpoints between the data points. In

(b) additional arcs have been added between each neighboring pair so that each

arc is tangent to its neighbor. Radii are draw from the center of curvature to the

endpoints of each arc.

8

This initialization procedure yields an arbitrary curve that passes through each

data point. The initial curve must be deformed to obtain a more reasonable

representation of the data. The computational means of the curve deformation

are described in the next section. Later, we introduce a reasonable criterion for

choosing an appropriately smooth curve.

3.3 Deformation of the curve

In this section we consider the mechanisms for deforming a curve locally. There

are three types of deformation of interest to us. First, we consider changing the

curvature of a single arc. Next, we consider the rotation of two neighboring arcs

without modifying their curvature. Finally, we consider the deformation of a single

arc into two separate arcs. These operations provide the ability to transform the

curve into a more desirable curve. In Section 4, we shall consider the criteria for

choosing deformations of the curve such that they lead to a more desirable curve.

3.3.1 Modi�cation of the curvature of a single arc

Consider the deformation of a curve by modifying the curvature of a single arc.

We shall call the arc of interest the new arc and the adjacent arcs neighbor1

and neighbor2, respectively. During the operation the circles associated with the

neighboring arcs are considered to be �xed.

A number of constraints must be maintained during the deformation. First, the

new arc must be tangent to each neighbor. Furthermore, the type of tangency must

be consistent with the sign of curvature. For example, if neighbor1 and the new

arc have the same sign of curvature, they must be internally tangent. Conversely,

if they have opposite signs of curvature they must be externally tangent. The same

constraints apply to the new arc and neighbor2.

Because the new arc must be tangent to each of its neighbors, the center point

is constrained to lie on a locus of points speci�ed implicitly by

����
q
(xcn � xc1)

2
+ (ycn � yc1)

2 �R1

���� =
����
q
(xcn � xc2)

2
+ (ycn � yc2)

2 �R2

���� ; (9)

where fxc1; yc1; R1g and fxc2; yc2; R2g denote the respective neighboring circles and
(xcn; ycn) denotes a legal center of curvature for the new arc. The value of the left

side of the equation is the distance from the new center point to the point of

tangency with neighbor1 and the right side is the same measure for neighbor2.

The value of either side of the equation is the radius of the new circle.

The curves de�ned by Equation 9 are ellipses and/or hyperbolae. An ellipse is

the locus of points whose distances from two �xed points (called the foci) have a

constant sum (see, for example Thomas and Finney[29], p.411). The foci are the

9

two centers of the neighboring arcs. The constant sum is equal to jR1 �R2j, where
the plus or minus sign depends on the relationship of the two circles.

Similarly, a hyperbola is the locus of points whose distances from two �xed

points (called the foci) have a constant di�erence (see, for example Thomas and

Finney[29], p.418). The foci of the ellipse are the centers of the neighboring arcs.

The constant di�erence is equal to jR1 �R2j where the plus or minus sign depends

on the relation of the two neighboring circles.

Equation 9 may specify as many as four distinct curves on the plane. However,

two of the curves are eliminated by the constraint that the new arc have the ap-

propriate tangency type with its neighbors. The two remaining curves correspond

to the cases where the new arc has positive and negative curvature, respectively.

However, computing points that satisfy equation 9 is non-trivial. Rather than

solving the equation, an iterative procedure is employed to compute legal center

points for the new arc. Upon computation of the center point, the radius and,

therefore, the curvature of the new arc are determined by computing the distance

from the new center to either of the neighbors (using either side of equation 9).

For each legal center point, there is a unique point of tangency with neighbor1

and also with neighbor2. Conversely, each point on the circle of neighbor1 is

associated with a particular legal center point. That is, the choice of a tangent

point with neighbor1 uniquely speci�es the center point and therefore uniquely

speci�es the tangent point of the new arc and neighbor2.

Therefore, by sweeping the location of the tangent point along the circle of

neighbor1, the algorithm may implicitly sweep along the locus of legal center

points. In essence, there is a single degree of freedom for choosing the new arc.

The point of tangency of the new arc with the circle of neighbor1 is a computa-

tionally convenient parameterization for the operation of deforming the curvature

of an arc.

Given a point of tangency on the circle of neighbor1 it is necessary to compute

a center point and radius that specify a circle tangent to both neighbors. It is

instructive to note that when two circles are tangent, the centers and the tangent

point are colinear. Consequently, the center of the new arc must lie on the line

determined by the center of neighbor1 and the point of tangency. It is necessary

to search along this line systematically to determine the appropriate center point

for the new arc. A description of the procedure used to �nd the appropriate center

point may be found in Section A.1.2. The modi�cation of the curvature of a single

arc is illustrated in Figure 2.

There is a particular choice of the center point that causes the arclength of one

of the neighbors to be zero. When this occurs, the zero-length neighbor is elimi-

nated from the representation. This case also acts as a delimiter since deforming

the curvature of the new arc further would lead to an illegal con�guration of the

arcs.

10

Figure 2: Deformation of the curve by changing the curvature of a single arc. In (a)

the curves represent candidate arcs that are internally tangent to two neighboring

arcs. In (b) the curves represent candidate arcs that are externally tangent to two

circles.

3.3.2 Rotation of two neighboring arcs

Consider the deformation of a curve by rotating two neighboring arcs. In this

case, the two arcs change position rather than curvature. We refer to the two

arcs as arc1 and arc2. We refer to their neighbors as neighbor1 and neighbor2,

respectively. The circles of neighbor1 and neighbor2 are considered �xed during

the operation.

First, consider circle1 with a �xed center and radius. Consider circle2 with

a �xed radius but a variable center point. Circle2 is allowed to move under the

constraint that the two circles remain tangent. Under these conditions, the center

of circle2 follows the path of a circle whose center is coincident with the center of

circle1. Moving circle2 in this manner is, therefore, equivalent to rotating circle2

about a center of rotation coincident with the center of circle1.

Now, if the position of arc1 is modi�ed such that it remains tangent to neigh-

bor1, it may be described by a rotation about the center of neighbor1. After the

modi�cation, arc1 and arc2 are no longer tangent. It is necessary to compute

the appropriate position for arc2 such that it is tangent to arc1 and neighbor2.

Since arc2 must remain tangent to neighbor2, this modi�cation of position may be

described as rotation about the center of neighbor2.

The rotation of two neighboring arcs is an operation with a single degree of

freedom. If the position of arc1 is perturbed by a small amount then the position

of arc2 must be changed also to maintain tangency between arc1 and arc2. A

computationally convenient parameterization of this operation is the tangent point

11

of arc1 and neighbor1. This tangent point (along with the constraint that tangency

type must be consistent with the curvature) uniquely speci�es the position of arc1.

Given the positions of the arc1 and neighbor2, there are typically two positions

of arc2 for which arc2 is mutually tangent to arc1 and neighbor2. It is always

possible to determine which of these two positions is appropriate for arc2 based

on the original position of arc1 and arc2. Typically, this ambiguity is of little

consequence in practice.

Once an appropriate tangent point between arc1 and neighbor1 is chosen, it is

necessary to compute the new center points of arc1 and arc2. The center point of

arc1 is determined by computing the appropriate point on the line speci�ed by the

center of neighbor1 and the desired tangent point (see Section A.1.2). The new

center point of arc2 is determined by searching for the tangent point between arc2

and neighbor2 that results in the appropriate tangency between arc2 and arc1 (see

Section A.1.3). This operation is illustrated in Figure 3.

Figure 3: Deformation of the curve by rotating two neighboring arcs. An initial

arrangement of two arcs and their neighbors is shown in (a). Candidate deforma-

tions of the curve involving a change in position of arc1 and arc2 are shown in (b).

The curvatures associated with arc1 and arc2 are not a�ected by the operation.

There is a particular choice of rotation for which one of arc1, arc2, neighbor1,

or neighbor2 has exactly zero arclength. When this rotation is chosen, the zero-

length arc is eliminated from the representation. This case also acts as a delimiter

since further rotation would lead to an illegal con�guration of the arcs.

3.3.3 Splitting an arc into two arcs

Consider the deformation of a single arc into two separate arcs. This is accom-

plished by choosing two arcs such that they are tangent to their respective neigh-

bors and to each other. This operation provides a mechanism for increasing the

number of arcs in the curve representation. We refer to the new arcs computed in

this operation as arc1 and arc2 and their neighbors as neighbor1 and neighbor2.

12

This operation, as de�ned in the previous paragraph, has three degrees of

freedom. Consequently, it is necessary to provide an additional constraint. This

is accomplished by constraining the tangent point between arc1 and arc2 to lie

on a line that is tangent to the original arc. The choice of the constraint line is

dependent on the context of the computation. Criteria for the choice are described

Section 4.3.3. The constraint eliminates two degrees of freedom leaving only one.

Again, a convenient parameterization for this operation is the tangent point

between neighbor1 and arc1. For a particular choice of the tangent point, a circle

is computed that is tangent to neighbor1 and the constraint line. The point of

tangency between arc1 and the constraint line is taken to be the point of tangency

between arc1 and arc2. Arc2 is determined by computing the circle tangent to

arc1 and neighbor2 with the speci�ed point of tangency between arc1 and arc2.

This operation is illustrated in Figure 4.

Figure 4: Deformation of the curve by splitting a single arc into two arcs. In (a)

the original con�guration of an arc and its neighbors is shown. In (b) each member

of the family of curves consists of the two original neighbors joined by two new

arcs. The point of tangency between the new arcs lies along the constraint line

illustrated in (a).

Once again, there is a particular deformation that leads to an arclength of zero

for one of the neighboring arcs. If this deformation is chosen, the arc with zero

arclength is eliminated. As above, this particular choice of parameters is a limiting

case for legal deformations of this type.

13

4 Contour Smoothing

A smoothing operation on a contour involves a tradeo� between some measure of

smoothness and the proximity of the curve to data points. Traditionally, smooth-

ness of a contour has been measured by some function of the magnitude of the

curvature[14]. However, in this paper, we consider a novel approach to this trade-

o�. We propose that the complexity of the curve, rather than the magnitude of

the curvature, be minimized.

4.1 Smoothness criterion

We propose a two-fold criterion for smoothness and proximity. The �rst part of

the criterion is that the contour shall have minimum complexity as measured by

number of curvature extrema, as described below. The second part of the criterion

requires that for a given complexity, the contour shall be chosen to minimize the

square-error between the contour and the data points.

A reasonable measure of the complexity of a curve is the number of extrema

of curvature of the curve,M . As described in Section 2 Ho�man and Richards[11]

have used extrema of curvature for interpreting and classifying contours. Their

approach, called \codon coding", is based on the observation that extrema of

curvature occur at the natural break points of the contour. That is, a human

observer asked to break a contour into salient parts would place the breaks at

extrema of curvature. Thus, the number of extrema of curvature of the contour

is related to the number of subjective \parts" of the contour. Hence, reducing

the number of extrema of the contour is tantamount to reducing the number of

features that may be encoded in the contour.

Of course, there must be a reasonable criterion for deciding how many extrema

and, therefore, how many features of the contour to retain in the representation.

A fundamental tradeo� exists between the number of extrema of curvature and

the proximity of the curve to the data points. A reasonable method of quantizing

this tradeo� is to constrain the curve to pass within a speci�ed tolerance, �, of

each data point. When the tolerance is small, it is necessary that the curve have

a relatively large number of extrema to meet the constraint. When the constraint

is relaxed, fewer extrema are required.

The proximity constraint de�nes a tolerance circle about each data point. The

center of each tolerance circle is the associated data point and the radius is the

tolerance, �. The curve is constrained to pass within each tolerance circle. Thus,

we seek to �nd an instance of the curve that has the minimum complexity measure

and passes within each tolerance circle.

In general, there are in�nitely many curves that meet the proximity constraint

and minimize the complexity. From these, it is desirable to choose the one that

minimizes the square-error between the data and the curve. The result is a curve

14

that is smooth in the sense has the minimum complexity and close to the data in

the square-error sense.

The tolerance acts as a scale parameter. As the tolerance is increased, fewer

extrema and, therefore, fewer subjective features are present in the contour repre-

sentation. Conversely, for smaller values of the tolerance, more subjective features

are present. Hence, the representations computed for di�ering values of � lead to

descriptions of the contour with di�ering level of detail.

The two-fold criterion leads us to a two-stage algorithm. The �rst stage of

the smoothing algorithm computes a curve that has the minimum complexity,

M , under the constraint that the curve must pass within each tolerance circle.

The second stage of the smoothing algorithm seeks the curve that has complexity

measure M and minimizes the square-error between the data and the curve.

4.2 Computation of the Minimum Complexity Curve

An iterative procedure is used to compute the curve of minimum complexity given

a particular tolerance, �. At each iteration the algorithm seeks to reduce the

di�erence of curvature between neighboring extrema of curvature. In doing so,

the number of extrema are decreased when the curve is deformed such that the

di�erence in curvature of a maximum and a neighboring minimum becomes zero.

At each step, the curve must remain within the tolerance circle for each data

point. Deformations that would move the curve outside any tolerance circle are

disallowed.

Consider a case where a maximum of curvature exists during an intermediate

stage of the computation. The algorithm attempts to decrease the curvature of

the arc by deforming it as described in Section 3.3.1. If the algorithm �nds an

arc that has reduced curvature and passes within the tolerance of all the relevant

points, the new arc replaces the original arc; the endpoints of the neighboring arcs

are updated appropriately. Conversely, in the case of a minimum of curvature, the

algorithm attempts to increase the curvature of the extremum arc. Again, if the

algorithm �nds an arc that increases the curvature and passes within the tolerance

of the relevant data points, the arc is replaced.

Each of these operations always leads to a decrease in the arc lengths of the

neighboring arcs. Often the neighboring arcs are \engulfed" in the process. That

is, when the arclength of one of the neighbors becomes zero, the arc is removed

from the representation. During the process, the number of extrema of curvature

is reduced as multiple arcs are regrouped into single arcs.

Each extremum of curvature is updated iteratively until it is no longer possible

to �nd an improvement. At this point, each arc in the representation that is an

extremum of curvature is tangent to a \tolerance circle" around one of the data

points. We call such a data point a critical point. If an extremum arc were not

tangent to the tolerance circle of a critical point, it would be possible to modify the

15

curvature further. The local deformation of a curve to �nd the minimum number

of extrema of curvature is illustrated in Figure 5.

Figure 5: The reduction of the complexity of the curve. The two curves in (a)

di�er in their complexity measure by two. The curve that more closely follows

the data points has three extrema of curvature. The extrema are indicated by the

tolerance circles drawn about the critical data points. Note that the curve with

the smaller complexity measure must deviate more severely from the data points.

These curves result from di�erent values of the scale (tolerance) parameter. The

curves in (b) illustrate a possible set of intermediate states of the curve as it is

transformed from higher to lower complexity. At each stage of computation, the

curve is deformed such that the curvature at each maximum is reduced and the

curvature at each minimum is increased.

At this point, there is no guarantee that the curve has the minimum possible

number of extrema of curvature. Consequently, a veri�cation algorithm is applied

to the curve. The purpose of the veri�cation algorithm is to determine if each

extremum is necessary given the constraints of the tolerance circles. If each ex-

tremum is veri�ed as necessary, an instance of the minimum complexity curve has

been found and the �rst stage is complete. However, if there exist extrema that

are not veri�ed, the veri�cation algorithm yields information that is helpful for

choosing the appropriate deformation to reduce the number of extrema of curva-

ture. Extrema that may be eliminated by an appropriate deformation of the curve

are called nonessential extrema.

The veri�cation algorithm is based on the following geometric idea: Consider

three circles (corresponding to tolerance circles) that are mutually external. It is

desirable to �nd the curve passing within each circle that has the smallest possible

value of its maximum of curvature. It is straightforward to show that such a curve

is itself a circle. Furthermore, this circle is tangent to each of the tolerance circles.

Similarly, the curve passing within each tolerance circle having the largest possible

value for the minimum of curvature is also a circle tangent to each of the tolerance

circles. An example for each type of constraint is shown in Figure 6.

16

Figure 6: Determination of the upper bound of the minimum curvature and the

lower bound of the maximum curvature. Three data points and their respective

tolerance circles are depicted. Any curve passing within each of these tolerance

circles has a maximum and minimum curvature, �max and �min, respectively. The

curve having the lowest value for �max is the circle illustrated in (a). Thus, the

curvature of this circle is a lower bound for the maximum curvature of a curve

passing through each of the tolerance circles. Similarly, the curve having the

largest possible value of �min is the circle illustrated in (b). The curvature of this

circle is the upper bound for the minimum curvature of any curve passing through

each of the tolerance circles.

Thus, for any set of three data points (whose tolerance circles do not overlap)

it is possible to determine an upper bound for the minimum curvature of any curve

passing through the tolerance circles. Similarly, it is also possible to determine a

lower bound for the maximum curvature of a curve passing through the tolerance

circles. By comparing the bounds of neighboring extrema, it is often possible to

deduce that an extremum must be present. In this case, the extremum is veri�ed.

More speci�cally, consider three neighboring extrema of curvature, a maximum

that is adjacent to two minima. Note that each extremum has a critical data point

associated with it, as described above. We assume for simplicity that these critical

points are mutually external. In the proximity of the maximum, it is desirable to

determine a lower bound for the maximum curvature. The lower bound circle is

computed for the three tolerance circles of the extrema as illustrated in Figure 6a.

Assume that the lower bound for the maximum curvature is given by �max lb.

Similarly, the upper bound for the minimum curvature for each of the minima of

curvature may also be obtained. Assume that these values are given by �min ub1 and

�min ub2, respectively. Under the condition that �max�lb > �min�ub1 and �max�lb >

17

�min�ub2, a maximum of curvature must exist along the curve between the two

critical points associated with the minima of curvature. A minimum of curvature

may be veri�ed similarly.

In the case where two consecutive extrema are nonessential, it is desirable to

modify the curve further to eliminate these extrema. Consider two nonessential

extrema and their respective neighboring essential extrema. Of course, one of the

essential neighbors is a maximum and the other is a minimum. It is appropriate

to increase the curvature of the neighboring essential maximum. Similarly, it is

appropriate to decrease the curvature of the neighboring essential minimum. After

doing this, it is possible to continue to deform the portion of the curve between the

essential extrema to eliminate the nonessential extrema. The operation is analo-

gous to backing out of a local minimum and resuming the original computation.

An example of this operation is shown in Figure 7.

Figure 7: The elimination of an extrema pair with the aid of the veri�cation tech-

nique. The curve in (a) is more complex than necessary given the scale parameter

that is illustrated by the tolerance circles. However, the initial algorithm is unable

to eliminate the unnecessary extrema pair. Upon application of the veri�cation

algorithm, it is determined that the maximum in the lower right is necessary while

the two extrema just above it are unnecessary. The algorithm increases the curva-

ture of the necessary maximum and proceeds. The algorithm is able to eliminate

the unnecessary extrema. The result, a less complex curve, is shown in (b).

The algorithm to reduce the complexity of a contour coupled with the veri-

�cation algorithm typically yields an instance of the optimal solution. However,

when the scale parameter, �, is near a critical value, the algorithm may have di�-

culty �nding the optimal solution. Consider an experiment where the value of � is

changed in very small increments. Typically, a small change in � yields no change

18

in the optimal value of the complexity measure,M . However, at particular values

of �, the optimal value of M decreases by a discrete amount (typical two). This

occurs at a critical value of �. When � is equal to a critical value, a portion of

the curve is uniquely de�ned in the section where the extrema were most recently

eliminated. Thus, any arbitrarily small perturbation from the curve in this section

of the curve would lead to a suboptimal result. Therefore, when � is close to a

critical value, the algorithm may fail to obtain an optimal solution.

Figure 8: Minimumcomplexity curves for the silhouette of an airplane. Each curve

is an instance of a minimum complexity curve for a particular tolerance value. The

critical data points are indicated by the tolerance circle drawn about each such

point. The radius of each of these circles is equal to �, the scale parameter.

This property of the algorithm would be troublesome if the \optimal" value of

the scale parameter were chosen by some criterion. In this case, a small change

19

in the \optimal" scale parameter would lead to signi�cantly di�erent results. Fur-

thermore, if the \optimal" scale parameter were chosen to be close to a critical

value of � for some curve, the minimum complexity solution might not be found,

thereby defeating the purpose of the \optimal" scale parameter. However, ob-

taining a multiple-scale representation of the contour alleviates these problems. If

the algorithm fails to eliminate a non-essential pair of extrema at one scale, it is

certain that the non-essential extrema will be eliminated in the next more coarse

scale. Furthermore, there is no sensitivity to the choice of the \optimal" scale near

critical values of � since no choice is made.

Example results of the computation of the minimum complexity curve for the

silhouette of an airplane are shown in Figure 8. Each curve shown in the �gure

represents the output with a di�erent scale parameter and, consequently, a di�erent

complexity measure. As the scale parameter increases, the details of the curve are

lost and only the gross structure of the airplane remains.

4.3 Computation of the Least Square-Error Curve

An iterative procedure is used to compute the curve with least square-error under

the constraint that the curve have the complexity determined in �rst stage. The

curvature and position of each arc are modi�ed locally until the change in the

square-error of the curve from the data points tends to zero. The output of this

stage is the desired result.

The least square-error curve is computed with the aid of a mechanical analogy.

Under the analogy a frictionless spring is attached between each data point and

the curve. The force exerted by the spring is linearly proportional to the distance

between the point and the curve. The energy stored in each spring is the square of

the distance. Hence, the total energy in the system is the square-error between the

data points and the curve. We exploit this analogy to determine the appropriate

deformation of the curve that reduces the energy of the system and analogously

the square-error. The deformations are carried out under the constraint that they

do not increase the complexity of the curve. The curve is deformed until it is no

longer possible to reduce the square-error.

4.3.1 Rotation of two neighboring arcs

Consider the deformation of the curve by rotating a pair of neighboring arcs. The

torque on each of the arcs is computed analogous to the mechanical system de-

scribed above. By combining the torques appropriately, it is possible to determine

which direction the arc pair would be inclined to rotate. Once this is determined,

the algorithm attempts to �nd new positions of the arcs that are consistent with

the rotation calculated from the analogy. The position that most improves the

square-error is chosen; the curve is updated appropriately.

20

As in section 3.3.2, consider two adjacent arcs, arc1 and arc2, and their re-

spective neighbors, neighbor1 and neighbor2. The position of arc1 is modi�ed by

rotating it about the center point of neighbor1. The position of arc2 must also be

modi�ed to maintain tangency with arc1. Arc2 is also rotated; the center point of

neighbor2 acts as the fulcrum for this rotation.

Under the mechanical analogy, each data point associated with a particular

arc exerts a force on the arc proportional to the distance from the data point to

the arc. The torque applied by a particular data point is the cross-product of the

force applied by the data point and the lever arm. Positive torque corresponds to

rotation in the clockwise direction about the fulcrum; negative torque corresponds

to counterclockwise rotation. The sum of the torques applied by each data point

yields the total torque acting on the arc by it data points.

Now consider the pair of arcs. Each has a set of data points acting to rotate

the arc. Perhaps the forces act in such a way that the arcs rotate in a consistent

direction, perhaps not. In the case where the torques oppose each other, it is

necessary to determine which direction of rotation prevails. That is, it must be

determined which direction of rotation would lead to a reduction in the local

square-error of the curve.

To reconcile possibly di�ering directions of rotation, it is necessary to compute

the e�ective force of one arc acting on the other. Without loss of generality, we

consider the e�ective force of arc1 acting on arc2. Assume that the torque acting

on arc1 by its associated data points is T1. The force, Fe, that arc1 applies to arc2

is related to T1 by

T1 = r1 � Fe; (10)

where r1 is the vector given by

r1 =

����� x12 � xcn1

y12 � ycn1

����� ; (11)

where the point (xcn1; ycn1) is the center point of neighbor1 and (x12; y12) is the

tangent point of arc1 and arc2. The direction of Fe is always along the line

determined by the center points of arc1 and arc2. Therefore, if �12 is the end angle

of arc1 at the tangent point with arc2, Fe2 may be written,

Fe = Fe

����� cos �12sin �12

����� : (12)

By combining equations 10 and 12, Fe, the scalar of the equivalent torque, may be

written

Fe =
T1

r1 �

����� cos �12sin �12

�����
: (13)

21

The total torque acting on arc2, Tt2 may be written

Tt2 = T2 + r2 �Fe; (14)

where the r2 is the lever arm for the e�ective force acting on arc2, r2, is given by

r2 =

����� x12 � xcn2

y12 � ycn2

����� : (15)

If Tt2 is positive, a small counterclockwise rotation of arc1 along with the

appropriate rotation of arc2 leads to a decrease in the square-error. Conversely,

if Tt2 is negative, a small clockwise rotation of arc1 leads to a decrease in the

square-error. Of course, if Tt2 is zero, the arcs are in equilibrium with respect

to rotation and rotation in either direction would increase the square-error. The

geometric aspects of the mechanical analogy for rotation of two neighboring arcs

are illustrated in Figure 9.

Once the appropriate direction of rotation has been determined, the algorithm

�nds the limiting case of rotation. That is, for some particular amount of rotation

in the appropriate direction, the arclength of a particular arc becomes zero. This

is the greatest extent to which the rotation may be carried out; further rotation

would lead to an illegal con�guration of arcs.

If the limiting case of rotation yields a reduction in the square-error of the

curve, the rotation is chosen and the curve is updated appropriately. If the limiting

rotation does not yield a reduction in the square-error, rotations of successively

smaller extent are computed. If any rotation is found to reduce the square-error,

it is chosen and the curve is updated appropriately. If no rotations are found to

reduce the square-error, the curve is not modi�ed by this operation.

More speci�cally, the rotation of two neighboring arcs has one degree of free-

dom. As described in Section 3.3.2, a convenient parameterization for the operation

is the tangent point between neighbor1 and arc1. A particular position of the tan-

gent point speci�es the position of arc1. Given the position of arc1, the position

of arc2 is speci�ed, since arc2 must be tangent to both arc1 and neighbor1.

During the course of iteration, a particular tangent point between neighbor1

and arc1 may not lead to an improvement in the square-error. When this occurs,

a new tangent point is chosen such that it is the midpoint between the previous

tangent point and the original tangent point. In this way the extent of rotation is

cut in half at each attempt. When the attempted tangent point is within a speci�ed

tolerance, �, of the original tangent point, no more rotations are attempted and

the curve is not modi�ed.

4.3.2 Modi�cation of the curvature of a single arc

Consider the deformation of the curvature of a single arc. The derivative of the

energy in the system with respect to the curvature of the arc is the total deforma-

tion force acting on the arc. If the derivative of energy with respect to curvature

22

Figure 9: Torque acting to rotate neighboring arcs. Under the mechanical analogy,

each data point applies a force to the curve. The resulting torque of data point

(xi; yi) is the cross product of the force and the lever arm. Because the rotation of

two neighboring arcs is coupled, it is necessary to compute the e�ective total force

of one of the arcs acting on the other. The e�ective force is related to the total

torque acting on the arc and the lever arm, r1.

is positive, the curvature of the arc is decreased. Conversely, if the derivative of

energy with respect to curvature is negative, the curvature is increased. The curve

is updated appropriately.

Consider an arc with a single data point, pi. The force acting to deform the

curvature of the arc is equal to the distance from the point to the arc. The force

vector Fi is given by

Fi =

�q
(xi � xc)

2
+ (yi � yc)

2 �R

� ����� cos �isin �i

����� ; (16)

where �i is the angle of the vector from the center of the arc to the ith data point.

23

The energy related to the ith point is given by

Ei =

�q
(xi � xc)

2
+ (yi � yc)

2 �R

�2
: (17)

The modi�cation of the curvature of the arc occurs under the constraint that

the arc must remain tangent to both of its neighbors. For small perturbations of

the curvature, the e�ect of this constraint is approximated by requiring the arc to

remain tangent to the two lines that are each tangent to the arc and one of its

neighbors. Under this approximation, the center of the arc is constrained to lie on

the line de�ned by the original center point of the arc and the intersection of the

two tangent lines. Figure 10 illustrates this geometric constraint.

Figure 10: The force acting to deform the curvature of a single arc. The force

acting on the arc by each associated data point is equal to the distance from the

point to the arc. For small perturbations of the curvature, the constraint that the

arc must remain tangent to its neighbors is approximated by requiring the arc to

remain tangent to each line tangent to the arc and one of its neighbors.

The scalar force acting on the center of the arc, Fc, is the derivative of the energy

with respect to motion along the constraint line. Let di =
q
(xi � xc)

2
+ (yi � yc)

2
.

24

The force may be written,

Fc =
dE

ds
= 2 (di �R)

"
ddi

ds
�
dR

ds

#
; (18)

where s is the scalar distance along the constraint line. The radius of the circle

may be written as R = c cos �, where � is half the angular width of the arc and c

is the distance between the center of the circle and the intersection of the tangent

lines. Conveniently, dc

ds
= 1 and dR

ds
= cos�. Similarly, ddi

ds
= cos �i, where �i is the

angle between the constraint line and the data point. Thus, Equation 18 may be

simpli�ed

Fc = 2 (di �R) (cos�i � cos �) = 2Fi (cos �i � cos�) : (19)

In the derivation of Equation 19, we have tacitly assumed that the angle of the

sector of the arc is less than �. If the angle is greater than �, the force acting on

the center of curvature is given by

Fc = �2Fi (cos�i � cos �) : (20)

When two or more data points are associated with the arc, the total force acting

on the center of the circle is the sum of the individual forces associated with the

individual points. If the total force is positive, then the center point is inclined to

move along the constraint line toward the intersection point of the tangent lines.

That is, a small perturbation of the center toward the intersection of the tangent

lines leads to a reduction of the local square-error of the curve. If the total force

is negative, the center point is inclined to move in the opposite direction.

From the direction of preferred motion, it is possible to determine whether the

arclength of the neighbors will increase or decrease. Equivalently, it is possible to

determine the direction of motion of the tangent points of the neighbors. Because

the computation of the deformation of curvature is parameterized by the location

of the tangent point with one of the neighbors, this provides enough information

to compute candidate arcs.

There is a particular deformation of the arc that leads to an arclength of zero for

one of the neighbors. This is the limiting case of legal deformations of curvature.

If this deformation would lead to a reduction in the square-error of the curve, it

is chosen and the curve is updated appropriately. If the deformation does not

lead to a decrease in the square-error, successively less severe deformations are

attempted. On each iteration, the new deformation is chosen to be midway between

the location of the previous tangent point and the original tangent point. If any

of the deformations reduces the square-error of the curve, it is chosen. If not, the

iteration is halted when the candidate tangent point is within a distance � of the

original tangent point.

25

4.3.3 Splitting an arc into two arcs

Consider the deformation of an arc by splitting it into two arcs. This is necessary

when data points in one segment of the arc are acting to increase the curvature

of the arc while in another segment the data points are acting to decrease the

curvature. The ability to split an arc provides additional degrees of freedom that

make it possible to further reduce the square-error. Again, we refer to the new arcs

as arc1 and arc2 and to their respective neighbors as neighbor1 and neighbor2.

Figure 11: Setup of the operation to split an arc into two. By splitting an arc into

two, it is possible to increase the curvature of one of the new arcs while decreasing

the curvature of the other. For the choice of the constraint line shown, the forces

are acting to decrease the curvature of arc1 and increase the curvature of arc2.

It is necessary to determine the appropriate location of the break in the original

arc. This is accomplished by considering a number of candidate break points

along the arc and choosing the best location in the sense described below. The

candidate split locations are chosen such that they lie at the midpoint of each pair

of neighboring projections of data points onto the arc.

At each candidate split point a constraint line is constructed such that it is

26

tangent to the original arc. Conceptually, the arc is broken into two sub-arcs that

have the same curvature. For each sub arc, the curvature deformation force is

computed as described in Section 4.3.2. That is, the tendency of each sub-arc

to increase or decrease curvature is determined. If the sub-arcs have consistent

tendencies then it is not appropriate to split the arc at that point. However, if

one of the sub-arcs has a total force acting to increase its curvature while the

other sub-arc has a force acting to decrease its curvature, splitting the arc would

lead to a decrease in the square-error of the curve. This condition is illustrated in

Figure 11.

Figure 12: Minimum complexity/least-square-error curves for the silhouette of

an airplane. In each case the least-square error curve that has the complexity

determined from the �rst stage of the computation is shown. The scale parameter

for each case is (a) � = 2:0, (b) � = 4:0, (c) � = 8:0, and (d) � = 16:0.

27

There may be multiple candidate break points that would lead to a decrease in

the square-error of the curve. The candidate break point is chosen that minimizes

the derivative of square-error with respect to the position of the tangent point

between arc1 and arc2 along the constraint line. This measure is chosen because

the deformation is ultimately parameterized by this location.

We de�ne S, the tendency of an arc to split, as the derivative of the energy

with respect to the position of tangency along the constraint line. That is,

S =
dE

ds
; (21)

where s is a parameter that speci�es the position of the tangent point of arc1 and

arc2 along the constraint line. S may be written

S = Fc1 sin �1 + Fc2 sin�2; (22)

where Fc1 and Fc2 are the respective forces acting on the centers of each sub-arc

and �1 and �2 are the respective half-angles of the sub-arcs. The expression on the

right side of Equation 22 is a result of the chain rule applied to Equation 21. As

described in Section 4.3.2, Fc is the derivative of energy with respect to position

of the center point. Here, sin� is the derivative of the position of the center point

with respect to the location of the position along the tangency constraint line.

Once the break point has been chosen, the arc is deformed as described in

Section 3.3.3. The limiting case of the deformation is computed explicitly. That

is, there is a particular deformation that leads to a zero arclength for one of the

neighbors. If the limiting case results in a reduction of the square-error, the defor-

mation is chosen and the curve is updated appropriately. Otherwise, successively

smaller deformations are chosen until one is found that improves the square-error.

As above, the iteration is terminated when the candidate tangent point is within

� of the original tangent point.

The results of this stage applied to the silhouette of an airplane are shown in

Figure 12. Notice that as the complexity of the curve decreases, the �ne details

of the silhouette are lost. However, the global structure of the airplane remains

intact.

4.3.4 Discussion

The least square-error curve is computed by iterating over the arcs of the curve.

The operations described above are applied to each arc. For each operation, the

square-error is guaranteed to decrease or remain the same. The algorithm stops

when the curve is not modi�ed on a particular cycle or when the decrease in

square-error is negligible.

For each operation, the constraints acting on each arc are highly non-linear.

Thus, it is not possible to ensure that the optimal solution is always found. In

28

practice, however, it is likely that the algorithm will provide a solution that is close

to optimal.

The energy function, de�ned above, may be viewed as a Liapunov function

when the computation is su�ciently close to the optimal solution (see, for exam-

ple, Luenberger[21]). If the energy is not allowed to increase, the state of compu-

tation remains within a �nite neighborhood of the optimal solution. Furthermore,

decreasing the energy always yields a smaller neighborhood about the optimal.

Therefore, if the initial state of the computation is close enough to the optimal

solution, the optimal solution will be found. The output of the �rst stage of the

computation is a natural starting curve. The curve is constrained to be close

(within �) to each data point. Hence, it is likely that the algorithm typically

produces reasonable results.

There is room for improvement in the algorithm, however. It is possible to

deform any arbitrary curve into any other arbitrary curve using the deformations

described above. However, it is not guaranteed that there is a path from an initial

state to the optimal state such that each step along the path yields a non-increasing

energy function. There are alternative deformations that would provide additional

options at each step of the computation. The implementation of such options is

likely to reduce the frequency that the algorithm �nds local minima rather than

the optimal solution.

5 Mathematical Properties of the Contour

In this section we describe the computation of a number of mathematical properties

associated with contours.

5.1 Point Properties of the Contour

The curve is represented as a list of N circular arcs. The ith arc is speci�ed by its

center (xci; yci), the radius, Ri, the curvature, �i, and two end angles, �1i and �2i.

The ith arc is always tangent to the i+ 1th arc.

The coordinates of points on the curve may be described parametric in ar-

clength, s, as

x(s) =

8>>>><
>>>>:

xc1 + R1 cos (s�1 + �11) 0 < s < s1;

xc2 + R2 cos ((s� s1) �2 + �12) s1 < s < s2;

...

xcN + RN cos ((s� sN�1) �N + �1N) sN�1 < s < sN :

(23)

Similarly,

y(s) = yci +Ri sin ((s� si�1)�i + �1i) si�1 < s < si: (24)

29

The orientation of the curve at a particular point is speci�ed by the normal

vector at that point. The normal vector is perpendicular to the tangent to the

curve and points away from the interior of the curve. The normal vector points in

the same direction as the radius of the circular arc when the curvature is positive.

The normal vector points in the opposite direction of the radius when the curvature

is negative. The unit normal vector for any point on the ith arc is given by

n̂i (s) = sgn (�i)

����� cos ((s� si�1)�i + �1i)

sin ((s� si�1) �i + �1i)

����� si�1 < s < si: (25)

5.2 Points interior and exterior to the contour

The determination of whether a point is in the interior or the exterior of a curve is

a global operation. That is, the entire curve must be considered. Given the curve

representation described here, it is straightforward to determine the relations of

the point to the curve.

It is desirable to �nd the closest arc of the curve to the point. The point of

interest is guaranteed to be within the sector of the closest arc. This follows from

the de�nition of the distance from an arc to a point and the constraint that the

arcs are mutually tangent. Two cases must be considered for the computation of

the distance from a point to an arc. If the point is within the sector of the arc, the

distance to the arc is simply the distance to the circle. If the point is not within

the sector, the distance to the arc is the minimum of the distances to each of the

endpoints.

If the closest arc has positive curvature and the point is in the interior of the

circle associated with the arc, the point is in the interior of the curve. If the closest

arc has positive curvature and the point is in the exterior of the circle, the point is

in the exterior of the curve. Conversely, if the closest arc has negative curvature,

the relations are reversed (interior of the circle implies exterior of the curve and

vice versa).

5.3 Perimeter and Area

The perimeter of the region bounded by the curve may be computed. The perime-

ter is equal to the sum of the arclengths of the individual arcs. The perimeter, P ,

may be expressed

P =
NX
i=1

Ri j�i � �i�1j : (26)

The area of the interior of the curve may be computed by using Green's

Theorem[29]. With appropriate application of Green's Theorem, the area, A, may

be computed

A =

ZZ
R

dx dy =
1

2

I
C

(x dy � y dx) : (27)

30

This integral may be expressed

A =
NX
i=1

Ai =
NX
i=1

1

2

Z
s=si

s=si�1

x(s)

@x

@s
ds� y(s)

@y

@s
ds

!
; (28)

where each term of the sum is an integral over a single circular arc. The ith term

of this sum is simply an integral over a single circular arc. By suitable change of

variable, the integral may be written,

Ai =
1

2

Z
�2i

�1i

x(�)

@y

@�
d� � y(�)

@x

@�
d�

!
; (29)

where � is the angular displacement of the arc. Making appropriate substitutions,

each term may be written

Ai =
1

2

Z
�2i

�1i

((xc +R cos �) (R cos �)� (yc +R sin �) (�R sin �)) d�; (30)

=
1

2

(
Rxc

Z
�2i

�1i

cos � d� +R
2

Z
�2i

�1i

�
sin2 � + cos2 �

�
d� �Ryc

Z
�2i

�1i

sin � d�

)
; (31)

=
1

2

n
Rxc [sin �]

�2i

�1i
+Ryc [cos �]

�2i

�1i
+R

2 [�2i � �1i]
o
: (32)

The sum over all of these terms yields a closed form expression for the area of the

interior of the curve.

5.4 Extended Circular Image

The extended circular image has been proposed as a useful description of the shape

of a curve[16]. The value of a particular point of the extended circular image,C(),

for a convex curve is

C(a) =
1

�(sa)
; (33)

where a refers to a particular orientation angle and �(sa) is the curvature of the

curve at the location where the unit normal vector makes an angle a with the

x-axis. If the curve is not convex, more than one point of the curve maps onto

a particular point of the extended circular arc. In that case, the value of the

extended circular image is the sum of the curvatures of all points on the curve

with the appropriate orientation.

The value of a single point on the extended circular image is easily determined

from the curve representation. All points on the contour with the appropriate

orientation must be found. The value of the extended circular arc is the sum of

the reciprocal of the curvature associated with each of these points.

The extended circular image may be computed as a function as well. A single

arc of the curve contributes a constant value (the value of the reciprocal of its

31

curvature) over a particular range of orientations. That range of orientations is, of

course, the range of orientations of the arc. Consequently, the extended circular

image for any curve represented by piecewise circular arcs is piecewise constant.

The break points of the piecewise constant function are the orientations at the

curve points where neighboring arcs are tangent.

6 Discussion

A variety of approaches have been proposed for interpreting and recognizing con-

tours. Many of these approaches depend on the estimation of properties such

as the orientation or curvature of the contour. In the past, a hurdle to such ap-

proaches has been the inability of the contour representation paradigms to capture

these properties; the estimates are typically extremely noisy. However, the rep-

resentation presented here yields reasonable estimates for these properties. The

improvement in the ability to measure mathematical properties of contours will

lead to improvement in the ability to interpret and recognize them.

The results of several existing interpretation paradigms would be improved by

use of the analytical representation. For example, the use of codons for classifying

contours may be greatly improved by exploiting the advantages of the represen-

tation described here. The approach of Ho�man and Richards[11] is to partition

the curve at locations of extrema of curvature; the segments of the curve between

the extrema are codons. Under the paradigm proposed here, the curvature is rep-

resented explicitly in the analytical representation. Furthermore, the complexity

scale-space introduced here is natural for their approach. In essence, one may

view a reduction of the complexity of the curve to be a reduction in the number

of codons allowed to describe the curve.

Another example is the curvature primal sketch of Asada and Brady[1]. The

curvature primal sketch is a description of the curve based on primitives delimited

by signi�cant curvature changes. If such a set of primitives were desired, they

would be extracted more easily from the analytical representation than from the

method proposed by Asada and Brady. Furthermore, the complexity scale-space

proposed here yields a more well de�ned concept of feature or primitive than does

the curvature primal sketch.

Similarly, the analytical representation may be used to improve the results

obtained by Mokhtarian and Mackworth[24]. In their approach, the shape of the

contour is characterized by the positions of zero-crossings of curvature along the

contour. Again, if such a representation were desired, the analytical representation

would provide a more robust estimate of the zero-crossing position. Furthermore,

the analytical representation provides a richer description of curves than does

this approach; there is a broad class of curves having no curvature zero-crossings

whatsoever (convex curves without straight segments) that are indistinguishable

32

in the Mokhtarian-Mackworth representation.

The contour representation also improves the ability to compute the medial

axis transform[4] of the region bounded by the contour. It is well-known that the

computation of the medial axis transform is extremely sensitive to noise in the

contour (see Ballard and Brown[3], for example). Given the ability to reduce the

e�ects of noise on the contour, it is possible to compute the skeleton more reliably.

The complexity scale-space introduced here also has direct implications for the

medial axis skeleton. A reduction in the number of extrema of curvature of the

contour typically leads to a reduction in the number of branches of the skeleton.

The number of branches of the skeleton is a reasonable measure of the complexity

of the skeleton. Thus, it is natural to develop a complexity scale-space for the

medial axis transform. We consider this concept further in a companion memo[6].

The minimumcomplexity smoothing paradigm has a variety of advantages over

existing methods. For example, the minimum complexity paradigm does not su�er

from the shrinkage problem as does Gaussian �ltering applied to the data points.

The least square-error criterion ensures that there is no bias in the solution.

Another advantage of the minimum complexity paradigm is that it provides

a true scale-space representation of the contour. The most desirable property

of a scale-space representation is that �ner scales possess a greater amount of

detail than is present at the more coarse scales. The complexity measure explicitly

guarantees that this is the case. The number of features present in the contour

decreases as the scale becomes more coarse.

Most other approaches, such as those that rely on Gaussian �lters with di�erent

spatial widths, are more accurately described as resolution-spaces. As the standard

deviation of the Gaussian �lter increases, the resolution diminishes. That is, the

ability to localize the features diminishes. However, the level of detail, as measured

by the number of salient features, may or may not decrease.

The advantage of a true scale-space, in this sense, is that whenever a feature

is present, it is localized as accurately as possible. Furthermore, when a feature

is not present, it is completely eliminated from in the representation. There is no

advantage in representing features with less accuracy than possible, as is done in

the more coarse resolutions of a resolution-space.

One disadvantage of the minimum complexity smoothing paradigm is that it

is substantially more expensive computationally than other methods. In addition,

the minimum complexity paradigm is more complicated to implement than its

competitors. However, as the paradigm continues to be developed, it is likely

that more e�cient and simpler implementations will be found. In the mean time,

it remains an open question whether the improved capabilities of the approach

outweigh the added computational expense and complexity of implementation.

33

7 Future Work

The use of the analytical representation of contours holds promise for improving

the capabilities of machine vision systems. We have discussed the improvement

to existing algorithms. Unfortunately, as is often the case, the obvious, naive

extensions of these algorithms contain numerous pitfalls. In this section, we con-

sider the most glaring problem. Then, we propose a framework for integrating the

representation into a useful vision system.

It is wishful thinking to believe that the outlines of objects will be provided to

a recognition system. Edge detection, as it has been traditionally de�ned, does not

provide a robust description of the physical discontinuities present in the image.

Furthermore, there is presently no reliable way of connecting edges together to

form coherent, meaningful contours. The Canny[5] edge detector, for example,

yields only sparse, unconnected data points. Following the data points may yield

fragments of a meaningful contour, but this almost never yields a complete outline

of an object.

However, the paradigm described in this memo does provide capabilities that

are useful for incorporation in vision systems. Although the paradigm does not in-

terface well with current early vision processes, this does not preclude development

of more advanced feature extraction algorithms. It is possible, if not likely, that

more robust methods for obtaining salient features will emerge to replace tradi-

tional edge detection. While these features are unlikely to demark complete objects

explicitly, it is likely that they will be less primitive than collections of edge points.

If the features consist of contours or regions (each implicitly bounded by a con-

tour), the paradigm described here will be helpful for representing and interpreting

the shape of the features. Improvement of the representation of these hypothetical

features would necessarily lead to improvement in the ability to synthesize rea-

sonable interpretations of images, recognize objects, and track the features for the

purpose of motion estimation.

In future work, I plan to develop an alternate feature set based upon salient

regions bounded by zero-crossings of the Laplacian of Gaussian �lter. While zero-

crossings have been proposed as edge locations in the past (most notably, Marr

and Hildreth [22]), they do not provide robust results. In areas of the image where

contrast is low, the zero-crossings tend to wander o� the subjective location of

the physical discontinuity. Rather than enclosing regions of the image that are

subjectively of similar brightness, such regions tend to blend or merge together.

Figure 13 illustrates this phenomenon.

Typically, the zero-crossing contour has an extremum of curvature at or near

the location where neighboring salient regions appear to blend together. Thus, by

breaking the contour at the extrema of curvature, as suggested by Ho�man and

Richards[11], it may be possible to decompose larger regions bounded by zero-

crossings into smaller, simpler regions. These simpler regions are more likely to

34

Figure 13: Zero-crossings of the Laplacian of Gaussian �lter. Ideally, the zero-

crossings of the Laplacian of Gaussian �lter demark discontinuities in the bright-

ness of the image. However, it is well known that in areas of low contrast, the

zero-crossings often wander away from the subjective location of the discontinu-

ity. Furthermore, nearby regions tend to interfere with one another such that the

subjective regions blend together. A synthetic image of a rectangle and a triangle

on a textured background is shown in (a). The zero-crossings of a Laplacian of

Gaussian �lter illustrate the undesired e�ects in (b). Notice that the zero-crossings

wander away from the rectangle at the top and the triangle blends together with

the rectangle.

correspond to subjective, salient features in the image. We call such regions simple

region features.

Simple region features consist of the region bounded by the zero-crossing as

well as the zero-crossing itself. Thus a measure of the strength or signi�cance of

the feature may be obtained from the average power of the signal contained within

the region. Conversely, the signi�cance of edge points is typically measured by

comparing the values of a pair of points adjacent to the zero-crossing. Because of

this greater spatial support of the signi�cance measure, the acquisition of simple

region features is likely to be more robust and reliable than the acquisition of edge

points.

As we describe in a companion memo[6], the analytical representation lends

itself quite well to the computation of the medial axis skeleton. Such a capability

is also bene�cial for the computation of simple region features. The skeleton could

be used as an alternate means of breaking the complex regions into simple region

features. Each branch of the medial axis skeleton corresponds to a salient portion

of the region. Hence, each of these subregions may act as a simple region feature.

35

We consider the future development of simple region features here because the

contour reprepresentation described here is the key ingredient necessary to make

their computation possible. The analytic representation paradigm allows for math-

ematical treatment of the contour and in particular allows for the computation of

reasonable estimates of curvature. In addition, the complexity scale-space provides

the basis for a multiple complexity decomposition of the larger regions into simple

region features. Furthermore, the discussion provides a retrospective motivation

for the development of the contour representation paradigm.

8 Conclusion

In this paper, we consider an analytical representation of contours. A contour is

represented as a list of pairwise tangent circular arcs. The representation leads

to improved computation of mathematical properties of the contour such as the

curvature, orientation, bounded area, and the medial axis transform. We present a

novel approach to contour smoothing. The complexity, rather than the magnitude

of curvature, is employed in the smoothness criteria. We propose a scale-space

based on the complexity measure. This space is truly a scale-space rather than

a resolution-space. The improved representation and smoothing capability for

contours will lead to better interpretation and recognition results. Furthermore,

the paradigm is promising for the development of a more robust feature set than

is currently available.

References

[1] H. Asada and M. Brady. The curvature primal sketch. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(1):2{14, Jan. 1986.

[2] F. Attneave. Some aspects of visual perception. Psychology Review, 61:183{

193, 1954.

[3] D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood

Cli�s, NJ, 1982.

[4] H. Blum. A transformation for extracting new descriptions of shape. In

Symposium on Models for the Perception of Speech and Visual Form. MIT

Press, Cambridge, MA, 1964.

[5] J. Canny. A computational approach to edge detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 8(6):679{698, 1986.

[6] Ronald D. Chaney. Complexity as a scale-space for the medial axis transform.

AI Memo 1397, MIT Arti�cial Intelligence Laboratory, November 1992.

36

[7] P. C. Chen and T. Pavlidis. Segmentation by texture using a co-occurrence

matrix and a split-and-merge algorithm. Computer Graphics and Image Pro-

cessing, 10(2):172{182, June 1979.

[8] D. T. Clemens. The recognition of two-dimensional modeled objects in images.

Master's thesis, Massachusetts Institute of Technology, Dept. of Elec. Eng. &

Comp. Sci., 1986.

[9] W. E. L. Grimson. Object Recognition by Computer: The Role of Geometric

Constraints. MIT Press, Cambridge, MA, 1990.

[10] W. E. L. Grimson. On the recognition of curved objects in two dimensions.

In H. Nasr, editor, Automatic Object Recognition. SPIE Optical Engineering

Press, 1991.

[11] D. D. Ho�man and W. A. Richards. Parts of recognition. Cognition, pages

65{96, 1984.

[12] D. D. Ho�man and W. A. Richards. Representing smooth plane curves for

recognition: Implications for �gure-ground reversal. In W. A. Richards, editor,

Natural Computation, pages 76{82. MIT Press, Cambridge, MA, 1988.

[13] B. K. P. Horn. The Binford-Horn LINEFINDER. AIMemo 285, MIT Arti�cial

Intelligence Laboratory, December 1973.

[14] B. K. P. Horn. The curve of least energy. ACM Transactions on Mathematical

Software, 9(4):441{460, Dec. 1982.

[15] B. K. P. Horn. Extended Gaussian images. Proceedings of the IEEE,

72(12):1671{1686, December 1984.

[16] B. K. P. Horn and E. J. Weldon Jr. Filtering closed curves. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 8(5):665{668, Sept. 1986.

[17] S. L. Horowitz and T. Pavlidis. Picture segmentation by a tree traversal

algorithm. Journal of the ACM, 23(4):368{388, April 1976.

[18] Jan J. Koenderink. Solid Shape. MIT Press, Cambridge, MA, 1990.

[19] F. Leymarie and M. D. Levine. Simulating the grass�re transform using an

active contour model. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14(1):56{75, Jan. 1992.

[20] D. G. Lowe. Organization of smooth image curves at multiple scales. Inter-

national Journal of Computer Vision, 3(2):119{130, June 1989.

37

[21] David G. Luenberger. Introduction to Dynamic Systems: Theory, Models, &

Applications. John Wiley & Sons, New York, 1979.

[22] D. H. Marr and E. C. Hildreth. Theory of edge detection. Proceedings of the

Royal Society of London B, 204:301{328, 1980.

[23] J. W. McKee and J. K. Aggarwal. Computer recognition of partial views of

curved objects. IEEE Transactions on Computers, 26(8):790{800, 1977.

[24] F. Mokhtarian and A. K. Mackworth. Scale-based description and recognition

of planar curves and two-dimensional shapes. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(1):34{43, Jan. 1986.

[25] T. Pavlidis. Algorithms for shape analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 4:301{312, July 1980.

[26] T. Pavlidis and S. L. Horowitz. Segmentation of plane curves. IEEE Trans-

actions on Computers, 23(8):860{870, Aug. 1974.

[27] W. A. Perkins. Simpli�ed model-based part locator. IEEE Transactions on

Computers, 27(2):126{143, Feb. 1978.

[28] W. A. Richards, B. Dawson, and D. Whittington. Encoding contour shape by

curvature extrema. In W. A. Richards, editor, Natural Computation, pages

83{98. MIT Press, Cambridge, MA, 1988.

[29] G. B. Thomas, Jr. and R. L. Finney. Calculus and Analytical Geometry.

Addison Wesley Publishing Co., Reading, CA, 5 edition, 1980.

[30] J. L. Turney, T. T. Mudge, and R. A. Volz. Recognizing partially occluded

parts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

7(4):410{421, 1985.

[31] Paul Wallach. Garbage in, garbage out: Simple geometry brings supercom-

puters to their knees. Scienti�c American, page 126, Dec. 1990.

[32] A. P. Witkin. Scale space �ltering. In Proc. 7th International Conference on

Arti�cial Intelligence, pages 1019{1021, Karlsruhe, 1983.

38

Appendix

A Computational Details

In this appendix we consider the details of the computation of the curve represen-

tation.

A.1 Geometric calculations

In this section we consider several simple geometric calculations involving circles.

First, we consider the computation of the center point of a circle tangent to an-

other known circle when the direction of the point of tangency from the known

circle and the radius of the unknown circle are speci�ed. Next we consider the

computation of a circle that is tangent to two known circles when the direction

from one center point to the unknown center point is speci�ed. Finally, we consider

the computation of a circle tangent to two known circles when the radius of the

unknown circle is speci�ed.

A.1.1 A circle tangent to another circle

Determining the center point and radius of a circle (circle2) under the constraint

that it be tangent to a �xed circle (circle1) is a common required for the contour

representation paradigm. We assume that the direction of the tangent point from

the center of the �xed circle is given in the form of an angle, �. Furthermore, a

desired value of the radius (and curvature) of the new circle is also speci�ed. The

di�erence between the desired value of the radius, R2d and the value ultimately

computed, R2 is due to roundo� error.

First, It is necessary to compute the distance, d12 between the between the

centers of circle1 and the circle2. If the circles are to be externally tangent, the

distance is given by

d12 = R1 +R2d: (34)

If the circles are to be internally tangent,

d12 = jR1 �R2dj : (35)

These relations follow from the de�nitions of internal and external tangency de-

scribed in Section 3.1

The position of the center of circle2may be computed from the distance between

the circles and the direction of tangent point from circle1. The center point of

circle2 (xc2; yc2) is given by

xc2 = xc1 � d12 cos�; (36)

yc2 = yc1 � d12 sin�: (37)

39

The minus signs are appropriate when the circles are internally tangent and R2d >

R1. Otherwise, the plus signs are appropriate.

Finally the value of the radius of circle2 is computed. If the circles are internally

tangent and R2d > R1, the radius is given by

R2 = R1 +
q
(xc2 � xc1)

2
+ (yc2 � yc1)

2
+R1: (38)

Otherwise, the radius is given by

R2 =

����R1 �
q
(xc2 � xc1)

2
+ (yc2 � yc1)

2

���� : (39)

Mathematically, R2 = R2d. However, it is important to use the value of R2 com-

puted above. Otherwise, roundo� error might lead to a result in which circle1 and

circle2 are not tangent.

A.1.2 A circle tangent to two circles constrained by direction

Another useful operation is the computation of a circle that is tangent to two other

known circles. We refer to the unknown circle as circle2 and the known circles as

circle1 and circle3, respectively. The direction from the center point of circle1 to

the tangent point of circle2 is speci�ed by angle �.

If two circles are tangent, their respective center points and the point of tan-

gency are colinear. Therefore, the center point of circle2 is constrained to lie along

the line speci�ed by

xc2 = xc1 + s cos �; (40)

yc2 = yc1 + s sin �; (41)

where s is a parameter of the line. Conceptually, the objective is to �nd the value

of s that corresponds to the center point of a circle that is mutually tangent to

circle1 and circle3 with the appropriate type of tangency.

The speci�c calculation required to �nd the appropriate circle is dependent

upon the relationship between circle1 and circle3 as well as the sign of curvature of

the arcs associated with circle1 and circle3. Because there are several such cases,

we consider one case and generalize. Assume that the arcs associated with circle1

and circle3 have the same sign. This implies that circle2 has the same tangency

type with circle1 that it has with circle3. Furthermore, assume that circle1 and

circle2 are external.

Under these assumptions, there are two possibilities that must be considered.

The �rst possibility is that circle2 is internally tangent to circle1 and to circle3.

The other possibility is that circle2 is externally tangent to circle1 and circle3.

First, we consider the possibility that circle2 is internally tangent to both circle1

and circle3. The algorithm iterates over candidate values of the radius of circle2.

40

For each such value, a candidate circle2 is computed that is internally tangent to

circle1 as described in Section A.1.1. Based upon the relationship of the candidate

circle with circle3, it is possible to determine whether the candidate radius is too

large or too small. The next candidate value of the radius is chosen appropriately.

For each candidate circle, it is possible to determine whether the radius is larger

or smaller than that of the desired circle2. If the candidate circle is external to

circle3, intersects circle3, or is externally tangent to circle3, the radius is too small.

If circle3 is internal to the candidate circle, the radius is too large. If the desired

circle2 is actually externally tangent to circle1 and circle3, this test always leads

to the conclusion that the candidate radius is too small.

To begin the iteration, the algorithm considers successively larger values for

the radius until an upper bound, Rmax, and a lower bound, Rmin, is found. The

�rst candidate radius, R, is chosen arbitrarily to be twice the radius of circle1.

The candidate circle is computed as described above. It is possible to determine

whether the candidate radius is too large or too small depending on the relationship

of the candidate circle to circle3. If the candidate radius is too large, its value is

assigned as Rmax = R and the algorithm moves to the next step. If the value

of R is too small, its value is assigned to the lower bound Rmin = R and a new

value for the candidate radius that is twice the previous value is attempted. This

procedure is repeated until a value of the upper bound if found. If the candidate

radius becomes larger than a speci�ed maximum, it may be concluded that circle2

is actually externally tangent to circle1 and circle2.

Once the upper and lower bounds for the radius have been determined, the

algorithm iterates to narrow the gap between the two bounds. On each iteration,

the candidate radius is chosen to be the average of the two bounds. If the can-

didate radius if found to be too small, the lower bound is updated appropriately.

Conversely, if the radius is found to be too large, the upper bound is updated.

Thus, on each iteration the di�erence between Rmin and Rmax is cut in half. This

procedure is repeated until a candidate value of the radius yields a circle that is

internally tangent to circle3.

If it is determined that circle2 is externally (rather than internally) tangent to

both circle1 and circle3, a similar procedure is used to determine the appropri-

ate radius. The initial upper and lower bounds are determined by doubling the

candidate radius until the upper bound is found. The algorithm narrows the gap

between the upper and lower bound until the appropriate circle is found. The

only signi�cant di�erence in the computation is the test to determine whether the

candidate radius is too large or too small. In this case the candidate radius is too

small if the candidate circle is external to circle3. If the candidate circle intersects

circle3, circle3 is internal to the candidate, or the circles are internally tangent,

the radius is too large.

The di�erence between the speci�c cases that we have considered here and

41

others is primarily the test to determine whether a candidate radius value is too

large or too small. In each case, the test is similar in form to that given above - test

is based upon the relationship between the candidate circle and circle3. However,

the speci�c relationships between the circles that lead to a particular conclusion

di�ers.

A.1.3 A circle tangent to two circles constrained by curvature

Consider the computation of a circle with speci�ed curvature that is tangent to

known circles. Again, we refer to the unknown circle as circle2 and the known

circles as circle1 and circle3, respectively. The curvature and, therefore, the radius

of circle2 are speci�ed. It is desirable to �nd the center point of circle2 such that

the circle is mutually tangent to circle1 and circle3.

Again, the sign of curvature of each circle places constraint on the possible

solution. That is, the signs of curvature of two tangent arcs must be consistent

with the tangency type. Given these constraints, there are typically two solutions.

The two valid center points for circle2 are symmetric about the line determined

by the center points of circle1 and circle2. However, it is almost always possible

to choose the more desirable solution based upon the context of the operation.

Now, we consider a particular case for this operation. Later, we shall generalize.

In particular, consider the case where circle1 and circle3 are external and circle2

has a sign of curvature that is opposite to both signs of curvature of circle1 and

circle3. Thus, circle2 is externally tangent to both circle1 and circle3.

The direction of the center of circle3 from the center of circle1 is given by the

angle �min and

�min = arctan (yc3 � yc1; xc3 � xc1) : (42)

The opposite direction may be speci�ed as �rmmax and

�max = arctan (yc1 � yc3; xc1 � xc3) = �min + �: (43)

The names �min and �max are chosen because these angles represent convenient

endangles for the iteration to �nd the position of circle2. That is, the direction of

the tangent point between circle1 and circle2 is between �min and �max. Note that,

for simplicity, we have tacitly chosen between the two symmetric solutions. The

other solution lies between �max and �min (modulo 2�).

The algorithm iterates over candidate values of the angle of tangency between

circle1 and circle2. On each iteration � is computed such that it bisects �min and

�max. A candidate circle is computed consistent with this tangent direction as

described in Section A.1.1. Depending on the relationship between the candidate

circle and circle3, either �min or �max is given the value of �. The algorithm iterates

until a candidate circle is found that is externally tangent to circle3.

For the case described, the value of �min is updated with the value of � whenever

the candidate circle intersects circle3. The value of �max is updated with the value

42

of � whenever the candidate circle is external to circle3. The test for narrowing

the interval for � is similar for other cases. The di�erence lies in the particular

relationships between the candidate circle and circle3 that results in a change of

�min versus �max.

A.2 Curve initialization

The curve is initialized in two steps. First, for each data point a circle is computed

that passes through the point. Second, for each pair of neighboring arcs, a circle

is computed that is tangent to each neighbor. The points of tangency delimit the

range of each arc of the circle. The result is a chain of pairwise tangent circular

arcs that pass through each data point. The initial curve is somewhat arbitrary,

but it is to be immediately modi�ed by the smoothing algorithm.

Consider the �rst step: the computation of circle that passes through a partic-

ular data point. It is desirable that the circle be chosen is such a way that it may

be joined easily to its neighbor with an arc computed in the second step. A rea-

sonable choice is the circle that passes through the data point and each midpoint

between the data point and its respective neighbor.

Each line segment determined by the data point and one of the neighbor mid-

points is a chord of the initial circle. The perpendicular bisector of a chord passes

through the center of a circle. Therefore, the center of the circle is determined

by �nding the intersection of the perpendicular bisectors of the two chords. The

radius is the distance from the center to the data point.

The sign of curvature of the initial arc is determined from the data point and

its two neighbors. Consider the line that is determined by the two neighbor points.

If the point of interest is on the right side of the line as an observer moves from

the preceding neighbor point to the following neighbor point, the curvature of the

initial arc is positive. Conversely, if the point is to the left of the line the curvature

of the initial arc is negative. Mathematically, this relation may be expressed as

sign (�) = sign ((xp � xn1) (yn2 � yn1) � (yp � yn1) (xn2 � xn1)) ; (44)

where � is the curvature of the initial arc, (xp; yp) is the center point and (xn1; yn1)

and (xn2; yn2) are the neighboring points.

Consider the second step. For each neighboring pair of circles that pass through

their respective data points, a circle must be computed that is tangent to each

neighbor. The radius of this intermediate circle is arbitrarily chosen such that it

is half the distance between the neighboring pair of data points. This choice of

radius guarantees that the data point will be within the sector of its associated

arc. Because the intermediate circle must be tangent to each neighboring circle,

there is only one legal position of the center point. The position of the center of

the circle is determined using the procedure described in Section A.1.3.

43

After the second step has been performed for all data point pairs, the result

is a list of pairwise tangent circular arcs. The endangles are determined by the

points of tangency between the neighboring arcs. The result is a legal curve, as

de�ned above, that passes through each data point in order.

A.3 Straight Lines

All previous discussion has assumed that the radii of all circular arcs are �nite.

However, in the limit where the radius of a particular arc tends to in�nity, the arc

approaches a line segment. The curvature, in this case, tends to zero.

Because it is not possible to represent the arc as having an in�nite radius with

a center point in�nitely far away, the algorithm treats zero curvature arcs as a

special case. Such a \straight arc" is de�ned by its endpoints, the points tangent

with its neighboring arcs.

It is necessary to de�ne geometric properties for the straight arc. The distance

from any point to a line is the distance between the point and the projection of

the point onto the line. Ideally, a line is tangent to a circle i� the distance between

the center of the circle and the line is equal to the radius of the circle. To account

for quantization, a line is tangent to a circle i�

jd �Rj < �; (45)

where d is the distance from the center point to the line and R is the radius of

the circle. A line intersects a circle i� the line and circular are not tangent and

the distance between the center point and the line is less than the radius. A line

is external to the circle i� the line and circle are not tangent and the distance

between the center point and the line is greater than the radius.

Deformation of the curve in the case of straight arcs is a straightforward ex-

tension of the operations described above. The mechanical analogy applies equally

well to straight arcs as to circular arcs. However, when the position of the neighbor

of a circular arc is to be modi�ed, it is appropriate to compute the component of

the force in the direction of the straight arc, rather than the torque (the motion

of the center of the arc is a translation along a line parallel to the straight arc).

44

