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1 Introduction

In 1950 W. Kuhn and A. Katchalsky produced a �ber which contracts in response

to changes in pH (Kuhn 1950). In their demonstration a single �ber immersed in a

uid repeated raised and lowered a weight proportional to the hydrogen ion content

of the solvent. It was proposed at the time that such a device could be used as a

linear actuator. One of the major drawbacks however was the exceeding slow response

time, on the order of minutes. Since then a number of innovations have made this

arti�cial \muscle" worthy of further study. First, �bers have been produced which

contract in seconds and even tenths of seconds (DeRossi 1987; Suzuki 1989). Second,

some �bers support considerable loads, on the order of 100N/cm2 (DeRossi 1988).

The contraction rates and forces have become comparable, and in some cases even

exceeding, that of a human muscle. Third, the physics of �ber contraction (or gels

as they are more generally called) have become well understood (Tanaka 1973a -

87b). Finally, technological innovations such as robotics and implantable arti�cial

biological organs have created a demand for such devices. A number of contractile

gel devices have already been constructed, such as a robot gripper (Caldwell 1990), a

multi�ngered hand (Toyota 1990), and an arti�cial urethral sphincter (Chiarelli 1988;

DeRossi 1985; 86).

The design of these devices from a practical engineering perspective, particularly

with regard to dynamic modeling and control has only been considered recently (Gen-

uini 1990).

In this paper we will consider the design of a simple linear actuator based on

contractile gel �bers as well as the design and simulation of single mechanical linkage

controlled by two antagonist muscles. The �rst section will discuss the design of

a simple linear actuator and the second will present a dynamic model along with

approximate parameter estimates. The third section will introduce a nonlinear sliding

mode controller which achieves desired trajectory tracking for model inputs.

Figure 1-1. Two antagonist arti�cial muscles control a single link.

2 Design

Although there are many possible actuator designs, this paper will focus on the

direct chemical to mechanical energy conversion through the control of the hydro-
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gen ion content in the muscle �bers. The basic concept is to use high performance

miniature valves to the control the inow of acid or base to modulate pH and control

contraction. A schematic diagram of the proposed actuator is shown in �gure 2-1.

Two input lines containing 0.1M HCL and 0.1M NaOH enter the muscle at the base.

A miniature value placed into the base material controls the inow of uid. An irri-

gation system design to facilitate mixing is composed of numerous small tubes which

are interspersed among the �bers. Finally, a drainage tube allows the waste uid (i.e.

salt water) to be removed.

The tubes and wetting surfaces of the valves are constructed from teon which

is chemically inert and the �bers are made from Poly-Vinyl Alcohol PVA. Although

many di�erent contractile materials exist (Tanaka 1990), PVA has been used suc-

cessfully by a number of researchers and has a relatively high tensile strength. The

tendons are made of Spectra and the tendon to PVA connections are machined Del-

ran. The �bers are a�xed at their terminations with epoxy which is also chemically

inert.

Figure 2-1. Two uid microvalues meter desired amounts of acid or base
through an irrigation system to a bundle of contractile �bers.

3 Model

The dynamic model of the system is composed of three basic parts: the uid

conveyance system, the hydrogel contractile �bers and the mechanical linkage. The

following sections will address each of these systems in detail.

3.1 Fluid System

A schematic diagram of the uid system is shown in �gure 3-1. It is assumed the

inlet uid line is under a moderate pressure Po and a microvalve with controllable

resistance Rv modulates the inow of uid. The system of irrigation lines is modeled

as a uid resistance RT and an inertance I. Finally, the compliant sheath into which

the uid ows is modeled as a capacitance C and the exit line, a resistance Re.
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Figure 3-1. The uid model consists of a pressure source Po at the inlet of
the system. The valve, tubes and drain line are modeled as uid resistances
Rv, RT and Re respectively. Finally, a uid inertance I is included to
account for the mass of the uid and a capacitance C to model the expansion
of the actuator chamber.

Valve

Although there are commercially available metering valves which continuously modu-

late ow, they are generally too large from this application. Commercial piezo-electric

or solenoid uid values also exist in the appropriate size, although they have only two

states, open and closed. It may be possible to use binary state valves in a pulse width

modulation scheme to meter uid, but this may introduce undesirable a�ects such as

water hammer, excessive part wear and slower response. Alternatively there are some

experimental metering valves and pumps which are of the correct dimension (in fact

some are signi�cantly smaller than this application demands creating the possibility

of very small linear actuators). It may also be possible to use molecular valves in

the form of biological or arti�cial membranes whose porosity is controlled by small

voltages.

In any case it is assume some mechanical valve of the appropriate dimension can

be constructed, either a commercial two-state valve or an experimental multi-state

valve. Based on commercial data sheets for uid resistance we can approximate the

resistance of a valve by

Rv = a(buv)
n;

where Rv is uid resistance in N
1=2sm�4, a = 4:09�103 N1=2sm�4, b = 2:5�10�4 m/v,

and n = �1:7925 are constants. For two-state valves we will assume uv = uo+sgn(u)

and for multi-state valves uv = uo + u, where uo is some small value and u is the

control signal input, 0 to 12 v. These parameters where roughly based on values

given for the LEE Interface Fluidic 2-way (normally closed) microvalve. This valve

is energized with 12 v at 250mW, switches in 1.5 msec and operates in a 0 to 7 psi

pressure range. The relation of pressure to ow is given by

R2
v
Q2

v
= Pv;

where Qv is ow rate in m3/s, Pv is pressure in N/m2 and Rv is uid resistance

N1=2sm�4.
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Irrigation System

Multiple porous tubes attempt to uniformly enter and mix the uid to increase the

response time of the actuator. Consider a single tube as shown in �gure 3-2. The

tube has an inner radius r = 0:76 mm and a straight length l = 10 cm after a 90�

elbow of radius re = 4r = 0:30 cm. Small holes of radius 0:1 mm are punctured in the

teon tubes. The holes are small enough so that an initial pressure Pm is necessary

to induce ow. This prevents back ow into the acid-base lines, but for this initial

model we will assume Pm is zero. The holes are place at 90� intervals about the cross

section and every 1 mm along the length.

Suppose the tube as we describe is non-porous and open at the end. If we assume

a fully developed ow under an entrance pressure of Po =1 kPa (above atmospheric),

the uid ow is

Q =
�Por

4

8�l
; (1)

where � = �� = 10�3 kg/m s (for water, 25�C), r = 7:60 � 10�4 m, and l = 0.1 m.

This yields a ow of Q = 1:3 � 10�6 m3/s and an average uid velocity of uavg =

Q=�r2 = 0:72 m/s. The Reynolds number is Re = vd=� = 1089, where v = uavg,

d = 1:52�10�3 m and � = 10�6m�2/s, which is below the critical value Red;crit = 2300;

therefore we may assume the ow is laminar. For higher pressures, equation 1 yields

Reynolds numbers in the turbulent range, but the signi�cant resistance o�ered by the

sealed porous tube reduce the ow rates and maintains laminar conditions. As we

will later show the maximum ow rate is approximately Qmax = 1:65 � 10�7 m3/s,

which yields uavg = 0:1 m/s and Re = 152; which is certainly laminar. Finally, the

entrance region before the fully developed ow is approximately le = 0:06 Re d = 1:4

cm; therefore we can assume the boundary layer is fully develop within the entire

length of the tube.

The wall shear force will result in a head loss and thereby create non-uniformity

ows through the small irrigation holes. However, since the ow will decrease along

the length due to seepage, the head loss will not be linear as in the case of homogeneous

circular tubes. To approximate the head loss we will assume continuous porosity and

a uniform fully developed ow at each point x of tube. The wall shear stress is given

by

�w(x) =
4�Q(x)

�r3
;

which results in a pressure gradient

dP (x)

dx
=
�8�Q(x)

�r4
:
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If we assume a ow loss due to porosity

dQ(x)

dx
= �aP (x);

we have the resulting di�erential equation

dP (x)2

d2x
= bP (x);

where b = 8a�=�r4. If we solve this di�erential equation with boundary conditions

P (0) = Po and Q(l) = 0, we have the head loss as a function of length

P (x) =
Po

1 + e2cl
(ecx + e2cle�cx);

where c =
p
b = 3:4 m�1. The head loss in the tube is not signi�cant in this case as

shown in �gure 3-2.
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Figure 3-2. Head loss due to wall shear force in the circular porous tube
can generally be ignored.

For the purposes of the dynamic model, it may be more more useful to repre-

sent the entire porous tube system as a uid resistance RT . Following a simpli�ed

convention, we will assume the uid resistance is given by

R = Ro + �l;

where R is uid resistance Ro is the resistance due to the entrance, � is the resistance

per unit length and l is the length of the tube. The entrance resistance is given by

Ro = adn; (2)
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where d is the inner diameter of the tube in meters, a = 4:1� 103 and n = �1:8. For
the tubes 0:152 cm in diameter Ro = 4:6 � 108 N1=2sm�4. The resistance per unit

length

� = a�d
n� ;

where a� = 1:22� 106 N1=2sm�4, n� = �2, and d is the inner diameter. For the tube

described above, the resistance per unit length is � = 5:3 � 108N1=2sm�5, thus the

total resistance for the tube is 5:13 � 108 N1=2sm�4. Using equation ?? to compute

the resistance of the irrigation holes, we have a resistance 4:0 � 1010 N1=2sm�4 for

holes 0:1 mm in diameter. However with 80 holes/cm and 10 cm of tube, the total

resistance is 1:6� 108 N1=2sm�4.

For the acid and base systems we will have six irrigation tubes each, resulting in

a total uid resistance of RT = 9:65 � 107 N1=2sm�4 The relation between pressure

and ow is again given by,

R2
T
Q2

T
= PT :

Inertance

Although the inertance of the uid is small, fast switching times may cause its e�ects

to be important. The inertance is given by

I =
�l

A
;

where � = 103 kg/m2 is the uid density, l = 0:1 m is the length of the tubes and

A = 1:1�10�5 m2 is the total cross sectional area. For this system, the uid inertance

is I = 9:2� 106kg/m4 and the dynamics are given by

I _QI = PI :

Suppose the uid accelerates to 1:3� 10�6 m3/s in 10 ms under a pressure of 1 kPa.

Then the inertance I would be 7:7�106 kg/m4. This is comparable to the value given

for the model. So for switching times on the order of 1 ms, inertance e�ects become

signi�cant.

Capacitance

In this particular design, the �ber system is covered with a compliant sheath. Since it

is exible, it can be approximated as a uid capacitance; that is, when uid is forced

into the chamber the sheath will stretch and resist the ow. If we model the sheath as

a thin-walled uniform cylinder with closed ends, the elemental stress tensor is given
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by �r = 0, �� = Pr=t, �z = Pr=2t and �ij = 0, where P is the pressure, t is the wall

thickness and r is the radius. Given the generalized stress-strain relations,

�r =
�

E
(�� + �z)

�� =
1

E
(�� � ��z)

�z =
1

E
(�z � ���);

and the strain-displacement equations

�r = r��

�l = l�z;

we can solve for the change in volume as a function of pressure

�V =

 
�r3l(3 � 4�)

2Et

!
P;

where E is the Elastic Modulus and � is Poisson's ratio. Therefore the uid capaci-

tance is

C =
�r3l(3� 4�)

2Et
:

If r = 1 cm, l = 10 cm, E = 106 N/m2 (approximate for rubber), � = 0:5 and t = 0:1

mm,

C = 1:6 � 10�15 m5=N:

With a uid ow of Q = 1:3 � 10�6 m3/s, this capacitance will become signi�cant

if the pressure changes more than 1 MPa in a 1 ms. Therefore we will ignore the

capacitance.

Drain

The drain line consists of a single tube de = 0:3 cm and a check valve. Employing

equation ??, this results in a uid resistance of Re = 2:22� 108 N1=2sm�4, for a drain

line 20 cm in length.

Fluid dynamic equations
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The elemental pressures are related by

Po = Pv + PI + PT + Pe

and the ows by

Q = Qv = QI = QT = Qe:

Substituting the elemental relations, we have

_Q =
1

I

h
Po � (R2

v
+R2

T
+R2

e
)Q2

i

where Q is the ow into the �bers. Note the steady state ow rate for the open valve

is

Qss =

s
Po

R2
v
+R2

T
+R2

e

:

For a fully open value Qss = 1:65�10�7 m3/s. Note the total volume of injected uid

is
_V = Q:

Mixing and Di�usion

When the uid (either acid or base) is injected into the �ber network there is a certain

lag time before the entire system uniformly equilibrates to the new concentration. We

could model this mixing as the di�usion of HCl or NaOH in water. If the tubes are

uniformly spaced as in �gure 3-3, we can draw concentric circles around each with

radius ro equal to half the distance between the tubes. The mixing time could be

approximated, as the time for the �bers at radius ro to experience a certain concen-

tration of uid. As a simpli�cation we can approximate the di�usion with the one

dimension di�usion equations

J = �D@c

@r
@c

@t
=

@2c

@r2
;

where J is the di�usion ux per unit area, c is the concentration in moles per volume

and D is a constant. The solution is the standard di�usion model

c = co

"
1� erf

 
r

2
p
Dt

!#
;
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where

erf(x) =
2p
�

Z
x

o

e�y
2

dy:

The boundary concentration co, of course, decreases as particles di�use into the liquid.

However, as a �rst order approximation to the di�usion time, we assume co is constant.

Then the concentration at ro is one-half its initial value when t = 1:4 ms for D =

3:05 � 10�4 m2/s (0.1M HCL at 25�C) and ro = 1:5� 10�3 m.

Figure 3-3. Arrangement of acid and base lines in the cross section of the
muscle.

The di�usion model, however, is highly inaccurate since the exit velocity from the

pores in the teon tubes is relatively high and together with the motion of the �bers

will cause turbulent mixing, not di�usion. Therefore as a simple approximation, we

will assume the uid mixing and di�usion is a �rst order lag, hence

�m _c+ c = co; (3)

where c is the concentration of acid or base in the solvent, �m is a time constant

which we will take to be �m = 1:4 ms (based roughly on the previous discussion) and

co = Vi=VT ratio of solute to solvent, where VT is the total volume of the actuator,

VT = 2:92� 10�5 m3.

3.2 Contractile Fibers

pH

The contractile �bers respond roughly linearly to pH, so it is important to calculate

the pH in the solution based on the amount of acid or base entered into the chamber.

An acid is a chemical species having the tendency to lose a proton and a base is a

species tending to accept a proton. The quantitative measure of acid strength is the

acid dissociation constant; that is the equilibrium constant for the reaction

HA+ H2O = H+
3O+A� K =

[H+
3O][A

�]

[HA]
:
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Along with this reaction there is always the self dissociation of water

[H+
3O][OH

�] = Kw:

If the original amount of acid A added to the solution is [HA]o, then the material

balance relation is given by

[HA]o = [HA]+ [A�]:

Also the solution must be electrically neutral, hence

[H+
3O] = [A�] + [OH�]:

Solving these equations for the hydrogen ion concentration yields the cubic

[H+
3O]([H

+
3O]�Kw=[H

+
3O])

[HA]o � [H+
3O] +Kw=[H

+
3O]

= K

However, we may assume that the H+
3O from water is negligible compared to that

from the acid, hence [H+
3O] = [A�]. We may assume that for strong acids there is

complete dissociation; that is [A�] = [HA]o, which yields the trivial result

[HA]o = [H+
3O]:

Similarly, for base a B we have equilibrium

B + H2O =+ HB+� OH K =
[HB+][�OH]

[B]
;

mass balance,

[B]o = [B] + [+BH]

and electric neutrality

[BH+] + [H+
3O] = [�OH]:

Now we can assume total dissociation

[B]o = [+BH];

which is a valid except for very high concentrations. Also we can assume the contri-

bution of �OH from self-ionization of water is negligible, hence

[H+
3O] =

Kw

[�OH] =
Kw

[B]o
:
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Considering the strong acid and base together we can assume

[H+
3O] =

(
[HA]o � [B]o [HA]o� [B]o > 0

Kw=([B]o � [HA]) otherwise
:

Since pH is pH = � log[H+
3O], we have

pH =

(
� log([HA]o� [B]o) [HA]o� [B]o > 0

14 + log([B]o � [HA]) otherwise
:

Di�usion

Besides the lag due to mixing among the �bers, there is a lag due to the di�usion

within the �bers themselves. This lag is due to bulk macromolecular rearrangement

of the polymers in the network and is approximately proportional to the square of

the cross sectional diameter. The time constant is

� = cd2;

where d is the diameter in meters and c = 2 � 109 s/m2. Thus for �bers 10 �m in

diameter contract in approximately 0.1 s. This can also be approximated to the �rst

order by

� _pH + pH = pH
s
;

where � = 0:2, pH is the pH in the �ber and pHs is that in the solvent. Notice this

time constant is substantially slower than the one given in equation ??. Therefore

we will ignore the lag due to mixing and consider only the di�usion within the �ber

as the major delay.

Hydrogel Physics

A gel is a cross-linked network of polymers immersed in a uid, which can undergo

a volume phase transition in response to changes in external conditions such as tem-

perature, solvent, pH, light and electric �elds. Three competing forces act on the

polymer gel network: rubber elasticity, polymer-polymer a�nity and hydrogen ion

pressure. Competition between these forces, collectively called the osmotic pressure,

determine the equilibrium volume of the network. The phase transition has been an-

alyzed in terms of the mean �eld theory of swelling equilibrium of gels. The osmotic

pressure of a gel is given by Flory's equation,

� = �NkT

v1

�
�+ ln(1� �) +

�F

2kT
�2
�
+ �kT

"
�

2�o

�
 
�

�o

1=3
!#

+ �fkT

 
�

�o

!
;
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where N is Avogadro's number, k is the Boltzmann constant, �F = �H � T�S

represents the di�erence between the free energies of a polymer segment-segment and

polymer-solvent interaction, and �H and �S are the enthalpy and entropy respec-

tively. In equilibrium, the osmotic pressure is zero. Thus by solving the above equa-

tion, we can theoretically compute the �ber force. However because of its complexity

and because of the availability of empirical data, we can describe the contraction of

the �ber with the simple model shown in �gure 3-4. The intrinsic force per unit area

is fm is approximately

fm = 1:0 � 105N=m
2
(7 � pH

f
);

assuming a total cross sectional area 2:92� 10�4 m2, the intrinsic force is Fm = 29:2

N(7-pHf ). Also the intrinsic sti�ness is

km = 1:43� 103N=m:

and viscous damping is roughly estimated as

bm = 30Ns=m:

Figure 3-4. Simple model of contractile �ber.

3.3 Mechanical System

A model of the mechanical system is shown in �gure 3-5. Assuming linear com-

ponents for this part of the model, we have

J �� + (B + 2R2bm) _� + 2R2km� = R(F1 � F2);

where
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J 1:28 � 10�4 kg m2 Link inertia

B neg. Joint damping

R 1:7 cm Pulley radius

bm 0.7 N s/m. Actuator damping

km 1:43 � 103N/m Actuator sti�ness

� rads Joint angle

Fi 29.2 N(7� pH
i
) Controllable force for ith actuator

Figure 3-5. Single link controlled by two antagonist muscles.

3.4 Summary

Using the model as outlined above we have the following system equations

_Qi = (Po � (R2
t
+R2

e
)Q2

i
� a2(b(uo + juj))2nQ2

i
)=I

_Vi = Qisgn(u)

_pHi = (�pH
i
� log(10�7 + Vi=VT )=�

�� = (�(B + 2R2bm) _� � 2R2km� +R(F1 � F2))=J:

However before we design a controller for this system let us consider a number of

simpli�cations. First, the lag due to the inertance of the uid is negligible compared

with the dynamics of the rest of the system. This was veri�ed in a full dynamic

simulation of the system, although it is fairly obvious since the time constant of the

uid ow is on the order of 10 ms while the di�usion lag is about 100 ms. This

assumption allows us to compute the ow Q directly from the input u. Thus we

can reduce the order of the system by two and take the input to be the ow rate

Qi. In order simplify this problem further let us assume a single-input single-output

system, by taking the co-contraction of the actuators as an o�set force and controlling

position through feedback through a single actuator. With these initial assumptions

let us write the system equations in the form

_x = f(x;u):
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Speci�cally,

_x1 = u

_x2 = a1x2 + a1 log(a2 + a3x1)

_x3 = x4

_x4 = a4x4 + a5x3 + a6 + a7x2

where

x1 = V (cm3)

x2 = pH

x3 = �

x4 = _�

and

a1 = -33 s�1

a2 = 10�7

a3 = 0.343 cm�3

a4 = -135 s�1

a5 = -6457 s�2

a6 = 2:89� 104 s�2

a7 = �3:87� 103 s�2

4 Control

We wish to control the joint angle x3 = � using the simpli�ed model presented

above. We would also like the controller to maintain zero tracking error in the presence

of modeling errors. Therefore, we will design a non-linear sliding mode controller.

However before we attempt a construct a controller for this fourth order system,

let us initial consider one further simpli�cation. Based on the numerical estimates of

the model parameters the damping ratio of the linear mechanical dynamics is � = 1:4.

Therefore let us initially assume the inertia can be neglected, and produce a controller

based on the reduce third order system,

_x1 = u

_x2 = a1x2 + a1 log(a2 + a3x1)

_x3 = a4x3 + a5 + a6x2
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where

x1 = V (cm3)

x2 = pH

x3 = �

and

a1 = -33 s�1

a2 = 10�7

a3 = 0.343 cm�3

a4 = -48

a5 = 201

a6 = -28.6

Now the controllability canonical form,

x(n) = f(x) + b(x)u;

where x = [x; _x; : : : ; x(n�1)]T , can be derived by di�erentiating the equation for the

joint angle three times.

�x3 = a1a6 log(a2 + a3x1) + (a1a6 + a4a6)x2 + a24x3 + a5a4

x
(3)
3 = a1a6(a1 + a4) log(a2 + a3x1) + (a1a6(a1 + a4) + a24a6)x2

a34x3 + a4a5 +
a1a6

(a2 + a3x1)
u

Let ~x = x � xd be the tracking error on x and de�ne the sliding surface to be

S(t) = fx 2 <5js(x; t) = 0g, where

s(x; t) =

 
d

dt
+ �

!
n�1

~x;

for some positive �. Hence

s = �~x+ 2� _~x + �2~x:

Thus maintaining zero tracking error is equivalent to the �rst-order stabilization prob-

lem in s. In addition a bound on s implies a bound on the tracking error vector; that

is if js(t)j � �, then j~x(t)(i)j � (2�)i�. We must now design a controller such that for

all x 62 S(t),
1

2

d

dt
s2(x; t) � �js(x; t)j;
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for some positive �. The estimation of f is given by f̂ and the bounds on the error is

jf � f̂ j � F:

Similarly, the term b is estimated by b̂ =
p
bminbmax where 0 < bmin � b � bmax. If we

let � =
q
bmax=bmin, then

1

�
� b

b̂
� �:

and the control law

u = b̂�1(û� ksgn(s))

for s given above,

k = �(F + �) + (� � 1)jûj;
and

û = �f̂ + x
(3)

d
� ��~x � �2 _~x:

In this case we chose � = 10 s�1 to be approximately equal to the natural frequency

of the system while the estimate errors to be approximately 10% the nominal values.

5 Simulation

In order to get a sense of the model dynamics a 1Hz sinusoidal input was given to

the system. A plot of the pH as a function of time is shown in �gure 5-1 and the joint

angle in �gure 5-2. The sliding mode controller discussed in the previous section was

implemented and simulated for a desired joint trajectory

xd = sin(2�t) + 1:5:

Figure 5-3 shows the pH and �gure 5-4 shows the desired and actual joint position.

Notice desired tracking is achieved after approximately 0.5 seconds. Figure 5-5 shows

the e�ect of neglected link inertia. Note the joint trajectory is o�set by approximately

10� . Fourth and �fth order sliding mode controllers were attempted to compensate

for the link inertia and uid inertance, but were found to be numerically unstable

in the calculation of the higher order derivatives. Numerical �lters corrected this

problem, though the simulation times became unacceptable long. A more judicious

choice of numerical parameters could possibly correct this problem.

16



17



Figure 5-1. pH in the polymers �bers in response to a 1Hz input signal.
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Figure 5-2. Joint angle.
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Figure 5-3. Response of pH to control of joint trajectory.
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Figure 5-4. Desired and actual (modeled) joint trajectories. Zero tracking
error is achieved after one second.
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Figure 5-5. E�ect of neglected joint inertia.

6 Conclusion

A sliding mode controller produced reasonable tracking performance for input sine

waves on the order of 1-2 Hz, but deviated signi�cantly at higher frequencies. This

seems reasonable based on the relatively long lag times introduced by the polymer

di�usion. It has been possible more recently, to produce even smaller �bers (about 1

�m), while using UV induced transectional cross-linking to increase strength. These

and other innovations should allow faster response times for practical actuator devel-

opment and controller design.
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