
Certified Computation

Konstantine Arkoudas

AI Memo 2001-007 April 30, 2001

© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4383223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This paper introduces the notion of certified computation. A certified computation does not only
produce a result r, but also a correctness certificate, which is a formal proof that r is correct. This
can greatly enhance the credibility of the result: if we trust the axioms and inference rules that are
used in the certificate, then we can be assured that r is correct. In effect, we obtain a trust reduction:
we no longer have to trust the entire computation; we only have to trust the certificate. Typically,
the reasoning used in the certificate is much simpler and easier to trust than the entire computation.

Certified computation has two main applications: as a software engineering discipline, it can be
used to increase the reliability of our code; and as a framework for cooperative computation, it can be
used whenever a code consumer executes an algorithm obtained from an untrusted agent and needs
to be convinced that the generated results are correct.

We propose DPLs (Denotational Proof Languages) as a uniform platform for certified computa-
tion. DPLs enforce a sharp separation between logic and control and offer versatile mechanicms for
constructing certificates. We use Athena as a concrete DPL to illustrate our ideas, and we present
two examples of certified computation, giving full working code in both cases.

1.1 Introduction

1.1.1 Algorithms, soundness, and completeness

In general terms, conventional computation may be viewed as follows: we start out with an
abstract relation of interest

R ⊆ A1 × · · · ×An ×B

where the Ai are the “input domains” and B is the “output domain” of the problem. Our
task is to devise an algorithm fR that will take any given vector of elements x1, . . . , xn as
input, with each xi drawn from the domain Ai; and will produce an element y ∈ B such
that R(x1, . . . , xn, y), if such a y exists at all. Usually R is a function, and oftentimes it is
a total function as well, in which case the task of the algorithm fR is simply to compute R:
to produce the unique y such that R(x1, . . . , xn, y). For instance, R might be the greatest
common divisor (gcd) function, with two input domains, A1 and A2, the integers, which also
comprise the output domain B, and in that case fR might be Euclid’s algorithm, a procedure
that takes two numbers and produces their gcd. Or the input domain A1 might be the set
of all C programs, the output domain might be the set of all machine-language programs
for a certain computer architecture, and R might relate a C program to a machine language
program iff the two are semantically equivalent. The desired fR algorithm will then be a C
compiler for the computer at hand. Note that in this case R is not a function; for any given
input C program there will be many machine language programs with the same behavior.
All we want is to find some such program.1

For some inputs x1, . . . , xn our algorithm fR might get into an infinite loop or generate
an error. In those cases we say that fR “diverges” on x1, . . . , xn, and we indicate this by

1Of course in practice we want to maximize the efficiency of the translated program.

1

writing fR(x1, . . . , xn)↑. On the other hand, if fR successfully produces an object y ∈ B for
given x1, . . . , xn, we write fR(x1, . . . , xn)↓ and say that fR “converges” on x1, . . . , xn.

Now the soundness problem is this: we have n inputs x1, . . . , xn. We feed them to the
algorithm fR. The algorithm computes away and eventually comes back with a result y.
How do we know that y is a correct result? That is, how do we know that we indeed have
R(x1, . . . , xn, y)? The answer is simple: we don’t. We either have to take output correctness
for granted, or else we have to verify it ourselves, usually by testing it empirically. For
instance, if our gcd algorithm yields the result 26 for the inputs 442 and 1014, then we might
try to manually check that 26 divides both 442 and 1014, and that no other number between
26 and 442 has this property. This is known as “testing”, or “debugging”. As we will explain
shortly, this process has several shortcomings.

Before we proceed, let us make these ideas more precise. Let us say that our algorithm
fR is partially correct, or sound, iff

R(x1, . . . , xn, fR(x1, . . . , xn))

whenever fR(x1, . . . , xn)↓. In words, fR is sound iff it never produces any incorrect results.
Equivalently: whenever fR produces a result y ∈ B for some inputs x1, . . . , xn, that result is
correct, meaning that we have R(x1, . . . , xn, y).

Conversely, we will say that fR is complete iff fR(x1, . . . , xn)↓ whenever

(∃ y)R(x1, . . . , xn, y).

That is, if there exists an answer for a given input list x1, . . . , xn, then the algorithm converges
on x1, . . . , xn, meaning that it produces some result. That result might or might not be
correct—that is a soundness issue. But there will be a result; the algorithm will not loop
forever, nor will it halt in error.

Neither soundness nor completeness in isolation suffices to guarantee that our algorithm
works properly. Consider, for instance, an algorithm that always gets into an infinite loop,
no matter what the inputs are. Such an algorithm is trivially sound: it never produces an
incorrect result, simply because it never produces any result at all. Conversely, consider an
algorithm that always outputs a fixed element y ∈ B, again regardless of the inputs. Such an
algorithm is trivially complete. It always yields an answer, but in most cases that will be the
wrong answer. To ensure that our program works properly, we must have both properties.
Accordingly, we say that an algorithm is totally correct , or simply “correct”, iff it is both
sound and complete.

In this discussion we will only be concerned with algorithm soundness, i.e., with partial
correctness. Of course that is only half of the picture. As we explained above, for example,
any algorithm that always gets into an infinite loop or raises an exception is trivially sound,
but useless. Nevertheless, soundness is an important part of the picture, much more impor-
tant than the foregoing pathological scenario might suggest. Infinite loops and exceptions
do occur, but they are relatively rare. Most traditional computations actually produce some
result. The problem is that usually we have no idea whether that result is legitimate. It

2

would clearly be of significant practical value if we had a guarantee that the computed result
is in fact correct.

1.1.2 Testing and verification

How might we get such a guarantee? As we mentioned earlier, one alternative that suggests
itself is testing: we write a program TR, call it “the tester”, that takes the inputs x1, . . . , xn

and the output y and determines whether or not R(x1, . . . , xn, y). Then we transform our
program from a simple top-level call fR(x1, . . . , xn) to this:

let result = fR(x1, . . . , xn);
let result-holds? = TR(x1, . . . , xn, result);
if result-holds? then
output result

else
error(“Incorrect result.”).

(1.1)

For instance, if fR is a sorting algorithm then the tester TR would be a function that takes
two arrays and returns true if the second is a sorted permutation of the first, and false
otherwise. That is roughly the idea behind enforcing invariants in Eiffel [8], or using assertions
in C and C++ [12].

Clearly, this scheme does offer soundness: if 1.1 produces a result, then we can rest assured
that the result is correct—or can we? The answer is a qualified yes: we can be assured that
the result is correct only to the extent that we trust TR. Unfortunately, the tester TR is
often complicated and difficult to implement, so our faith in it might well turn out to be
almost as weak as our faith in fR, or perhaps even weaker. Even for something as simple as
sorting, testers are not straightforward to write. A corollary of this problem is inefficiency:
because the tester can be quite involved, its computational overhead imposes a significant
efficiency penalty on the overall program 1.1. Indeed, in practice even light-weight assertions
and invariants (e.g. boolean expressions that only check that certain input pointers are not
null or that an output number is positive) are only used during development. All but the
most rudimentary sanity checks are typically removed from the final code.

Another drawback of testing is that it offers little insight into why a result is incorrect.
Where does fR go wrong? The tester will not give us any clue; it will simply pontificate
that the result is wrong. By contrast, we will see that in a DPL the result is certified as it
is generated, so if we do something wrong the proof will break down at the exact point of
the problem, and the DPL run-time environment will issue a useful and informative error
message.

But perhaps the most important drawback of testing is that it might be more than just
difficult—it might well be downright impossible. It is folk wisdom in Computer Science that
verifying a solution is easier than finding one, so one would expect “the tester” TR to be easier

3

than “the finder” fR. But in fact oftentimes verification is more difficult: it can be easier to
find a solution than to check it! A prime example of this arises in compilation: although it is
possible (and even relatively inexpensive) to mechanically find a machine-language program
that simulates a given program in the source language, it is impossible to mechanically check
that a machine-language program respects the semantics of a source-language program. No
such tester exists. The best we can do is randomly probe the two programs at various points
in their input space and verify that they behave identically at those points. The degree of
confidence we will attain by doing this is commensurate to the extensiveness of our testing,
but it will never be perfect. At no point will we be able to conclude for sure that the result
is correct. As another example, consider the execution of a Prolog query. To be certain that
a positive answer from our Prolog system is correct we must be certain that the (properly
instantiated) query follows logically from the clauses of our program. Determining this with
certainty is impossible in the general case.

In general, a tester TR is really nothing but a decision procedure for R: we give it
x1, . . . , xn, y and ask it to tell us whether or not R(x1, . . . , xn, y), i.e., whether y is a correct
solution for the inputs x1, . . . , xn. For many interesting problems the relation R is undecid-
able, and hence there is no tester for it. In those cases testing simply cannot offer us any
correctness guarantee.

Another approach is traditional program verification, whereby we prove once and for all
that the algorithm will never produce incorrect results. In principle this is clearly a superior
approach, but in practice it is usually feasible only for small and relatively simple algorithms.
For more sizeable and complicated algorithms verification is exceedingly difficult, even if it is
only restricted to soundness. There are too many details to deal with, and as the complexity
of the algorithm grows so does the complexity of the proof, to the point where the effort we
invest in the proof might come to equal or exceed the effort that went into the algorithm.
On the positive side, a general proof has a fixed, constant cost. Once the proof is completed
and verified, we can confidently execute the algorithm as many times as we want with zero
additional effort. By contrast, we will see that the model of certified computation we propose
here has a run-time price: the algorithm has to do extra work to certify its results every time
we use it. But this is usually easier to achieve than general verification.

1.1.3 The deductive approach

A drastically different alternative, and the one we will advocate here, is the relational, or
deductive approach: use inference instead of computation, and do away with the algorithm
fR altogether. That is, instead of having an algorithm fR that takes x1, . . . , xn and produces
some value y, have instead an inference method that takes x1, . . . , xn and proves a theorem
of the form R(x1, . . . , xn, y), on the basis of certain axioms about R. This conveys much
more useful information than the algorithm fR can give us. All fR can do is output a value
y; we have no idea whether or not that value is related to the inputs x1, . . . , xn in the desired
manner. By contrast, the deductive approach yields not just a value y, but also an assertion
of correctness, namely, that y is related to x1, . . . , xn via R. If our inference method is sound,

4

i.e., if it can only generate statements that follow logically from the axioms, then, modulo
the truth of the axioms, the said assertion will hold: y will indeed be a correct answer.
The difference between the two approaches, algorithmic and deductive, may be depicted
graphically as follows:

Input Output
Computation (algorithm fR):

Deduction (method mR):
x1, . . . , xn A value y

x1, . . . , xn A theorem R(x1, . . . , xn, y)

The idea of using deduction for computational purposes is not new. It is the cornerstone
of the school of relational logic programming, which dates back at least to the inception of
Prolog in the early 1970s. The term “relational” is meant to emphasize the shift of focus
from functions (algorithms fR) to relations (R itself). In this setting the program is a
theory—usually first-order, though not necessarily. The programmer is concerned with a
given problem domain, which consists of a certain collection of objects, operations on those
objects, and relations amongst them. A logic vocabulary is introduced for the purpose of
referring to these entities, and then a first-order theory is set up, as a collection of axioms and
inference rules, that describes whatever aspects of the problem domain are of interest. It is
of paramount importance that this theory be consistent. In particular, the problem domain
(which is “the intended interpretation”), when viewed as an abstract relational structure,
should be a model of the theory.

Computation in such a framework amounts to deriving theorems. In other words, we
deduce logical consequences of our theory. The computational value of this scheme lies
in constructive proofs of existentially quantified statements, since finding a y such that
R(x1, . . . , xn, y) is reducible to having a constructive proof of the statement

(∃ y)R(x1, . . . , xn, y). (1.2)

Computation in this setting is described by the well-known slogan of Kowalski:

Computation = Logic + Control.

The Logic part is our theory: a collection of axioms and inference rules allowing us to
produce conclusions of the form R(x1, . . . , xn, xn+1). Once we specify this part, the set of
theorems that can be derived becomes fixed. The Control part amounts to a theorem-proving
strategy: how we plan to use the logic part in order to prove 1.2, once we are given some
inputs x1, . . . , xn. The chief requirement on the control part is soundness: if our control
engine produces a proposition R(x1, . . . , xn, y), that proposition must be derivable from the
axioms and the inference rules specified in the logic part.

In logic programming, however, the control part is fixed and immutable. It is baked into
the underlying framework and cannot be extended. Users cannot specify and use arbitrary
proof strategies of their own devising. In other words, they cannot determine how the proof
effort will proceed, given the inputs. They can only specify the logic part, and they can

5

do that only with axioms, not with arbitrary inference rules, since that would impact the
control engine. That is a deliberate choice, made in the quest for declarative problem-solving,
whose central tenet is that the users should only have to state the facts of the problem
(the “what”), and let the system do the rest (take care of the “how”). The holy grail of
the declarative approach is for the user to describe the relation R via axioms, formulate a
query R(x1, . . . , xn, ?y), sit back, and eventually get an instantiated answer ?y �→ · · · , or an
indication to the effect that (∃ y)R(x1, . . . , xn, y) does not follow from the axioms.

Certified computation with DPLs is quite different in that the user is given unrestricted
freedom in structuring the control part. The framework does not offer any built-in proof
mechanisms. Rather, it offers mechanisms for conveniently expressing arbitrary proofs and
proof methods. This admittedly represents a shift from the declarative to the procedural,
but it has several advantages: generality, adaptability, and extensibility. We will elaborate
these in Section 1.4, but observe that the declarative idea is not lost: a powerful inference
mechanism can be built and then offered as a library that people can use to solve problems
declaratively. For instance, we can implement linear resolution as a proof strategy and then
offer that as a module that people can use to do customary logic programming: simply write
down declarative Horn clauses, add them to the assumption base, and let the resolution
method do the proof search. This has been implemented in Athena. In addition, our frame-
work allows for the explicit construction of certificates: the system does not only produce a
theorem R(x1, . . . , xn, y), but also a proof of R(x1, . . . , xn, y). This means that we no longer
have to trust the control part of the system (the part that performs the proof search): as
long as we are given a proof, we do not care how the proof was obtained. We will discuss
these points in more detail later on, but first let us look at an example.

1.2 A simple example

As a very simple example, consider the following problem: given any natural number n, find
the parity of n.

We start by defining the natural numbers as a simple inductive structure:

(structure Nat
zero
(succ Nat))

We may now identify the natural numbers with the ground terms we can built from
the constructors of this structure: zero, (succ zero), (succ (succ zero)), and so on.
Next we introduce two unary relation symbols, Even and Odd, which are intended to assert
that a given natural number is even (or odd, respectively). In Athena, relation and function
symbols are strongly typed (“sorted”), and may be polymorphic. Relation symbols are simply
function symbols having Boolean as their range. We thus issue the following declarations:

(declare Even (-> (Nat) Boolean))

(declare Odd (-> (Nat) Boolean))

6

Intuitively, the first declaration says that Even is a function that takes a natural number
and produces either true or false (Boolean is a predefined structure that has only two
elements, true and false); and likewise for Odd.

At this point we only have a domain of values, Nat, and two completely uninterpreted
unary relations on them, Even and Odd. To make things interesting we need to specify the
semantics of these two relations. We do this by postulating a small number of axioms. Our
first axiom will simply assert that zero is even:

(define zero-axiom (Even zero))

Our next axiom specifies that if any number n is even, then its successor is odd:

(define odd-succ-axiom
(forall ?n
(if (Even ?n)

(Odd (succ ?n)))))

Note that an object-level variable in Athena consists of a question mark ? followed by an
identifier. Further, although variables are sorted, the user does not need to explicitly indicate
their sorts; Athena figures that out automatically. In this case, Athena would infer that the
sort of the variable ?n is Nat.

Finally, we define one more axiom that allows us to conclude that non-zero numbers are
Even:

(define even-succ-axiom
(forall ?n
(if (Odd ?n)

(Even (succ ?n)))))

Our logic is done. All that is left now is to assert these axioms, i.e., to postulate them.
This is done with the directive assert. An assertion is of the form

(assert P1 · · ·Pn)

and its effect is to add the propositions P1, . . . , Pn to the current assumption base. We thus
write:

(assert zero-axiom odd-succ-axiom even-succ-axiom)

At this point we have our first-order theory. Let us now see how we can use this theory for
computational purposes. Our task is to write a method (a “proof strategy”) infer-parity,
that will take any Nat object n as input and will derive a result of the form (Even n) or
(Odd n). In pseudo-code, our method might proceed as follows:

• If n is zero, invoke zero-axiom to conclude (Even zero).

7

• Otherwise, if n is of the form (succ k), apply infer-parity recursively to k. This
will presumably result in a theorem of the form (Even k) or (Odd k). Without
loss of generality, suppose that the first is the case, i.e. that the recursive call has
proven that k is even. Call that theorem T . Now, having proven (Even k), we
can easily prove that (succ k)—namely, n—is odd, via odd-succ-axiom, in two
steps: first, instantiating odd-succ-axiom with k in place of ?x gives the conditional
(if (Even k) (Odd (succ k))); then applying modus ponens to this conditional and
theorem T yields the result (Odd (succ k)). Similar reasoning applies when the re-
cursive call yields the theorem (Odd k) instead of (Even k).

We can straightforwardly transcribe this into Athena code as follows:

(define (infer-parity n)
(dmatch n
(zero (!claim zero-axiom))
((succ k) (dlet ((T (!infer-parity k)))

(dmatch T
((Even _) (!mp (!uspec odd-succ-axiom k) T))
((Odd _) (!mp (!uspec even-succ-axiom k) T)))))))

Here uspec is Athena’s primitive inference rule for universal quantification: uspec takes
two arguments, a proposition P and a term t. If P is of the form (forall ?I Q) and is
contained in the current assumption base; and if the term t has a sort that is consistent
with the sort of the variable ?I in Q; then the result of uspec is the proposition obtained
from Q by replacing every free occurrence of ?I by t.2 Otherwise uspec generates an error.
The primitive method mp is Athena’s modus ponens rule. It expects two propositions as
arguments, which must be in the current assumption base and must be of the form (if P Q)
and P , respectively. In that case, mp yields the conclusion Q; otherwise an error is generated.
Finally, dmatch is a special form for “deductive matching”, comprising a discriminant phrase
M and a sequence of pattern-deduction pairs (π1 D1) · · · (πn Dn). First M is evaluated,
producing a value V . That value is then successively matched against the patterns π1, π2, . . .,
until a match is found. When a πi is found that matches V , deduction Di is performed, under
whatever bindings were produced as a result of matching V against πi. The result of the
entire dmatch is then the result of Di. An error is generated if no match is found.

We can now apply the method infer-parity to an arbitrary number to deduce its parity,
e.g.,

>(!infer-parity (succ (succ (succ zero))))

Theorem: (Odd (succ (succ (succ zero))))

>(!infer-parity (succ (succ zero)))

Theorem: (Even (succ (succ zero)))

2Taking care to perform alphabetic renaming in order to avoid any variable captures.

8

Despite its simplicity, the behavior of infer-parity exhibits a pattern that is typical of
much more complicated methods. The run-time evaluation of such a method call typically
consists of two stages:

1. Backwards search (analysis): During this stage we seek to decompose a given input
into k > 0 simpler inputs such that if and when we have managed to prove appropriate
results T1, . . . , Tk for these simpler inputs, then we can prove an appropriate theorem T
for the original input by applying some primitive method to the “lemmas” T1, . . . , Tk.
The decomposition is typically performed by applying the method recursively to the
smaller inputs.

2. Forward proof (synthesis): Once we have reached an input that cannot be simplified
any further, we usually invoke some axiom that proves an appropriate statement for
that input. Then the stack of recursive method calls piled up during the previous stage
begins to unwind, and as we move back up the recursion tree we keep applying appro-
priate primitive methods to the results that were obtained recursively. This essentially
builds a regular forward proof on the fly, whose final conclusion is the desired theorem
about the original input. It is the “justification” stage of the certified computation, and
where the payoff of deduction is realized: every result generated during this stage is a
lemma that follows logically from the axioms and the primitive inference rules of our
logic. This is guaranteed by the semantics of DPLs, which ensure that the assumption
base is properly threaded throughout.

We can depict the flow of control in this two-stage process for a typical method call such
as (!infer-parity (succ (succ zero))) with a diagram like the one shown in Figure 1.1.
Evaluation begins at the upper left corner and proceeds counter-clockwise. The downward
arrows on the left side correspond to recursive calls; they represent the analytic stage of input
decomposition. The upward arrows on the right side correspond to primitive method calls;
they represent the synthetic part of constructing the proof.

The semantics of Athena are such that if any method produces a proposition P in an
assumption base β, then P can be proved in β by primitive methods only. This means that
if the primitive methods are sound and β contains true propositions, then the result P will
also be true—it will be a logical consequence of β. That, as we mentioned before, is the
fundamental theorem of the λδ calculus, and is the reason why every time Athena reports
the result of a deduction, it confidently pronounces it a theorem. However, we do not have
to take this at face value: we can ask Athena to explicitly produce this detailed proof that
uses nothing but primitive methods and the axioms of the assumption base. This is done
by issuing the command expand-next-proof. Then the next deduction that the user enters
will be expanded into a long primitive proof, which will be assigned to the system variable
last-proof:

>(expand-next-proof)

OK.

9

(!infer-parity (succ (succ zero)))

?
(!infer-parity (succ zero))

?
(!infer-parity zero) -

zero-axiom (Even zero)

6
uspec, mp

(Odd (succ zero))

6
uspec, mp

(Even (succ (succ zero)))

Figure 1.1: Control flow, shown counter-clockwise, for the method call
(!infer-parity (succ (succ zero))).

>(!infer-parity (succ (succ zero)))

Theorem: (Even (succ (succ zero)))

>(print last-proof)

(dbegin
(!claim (Even zero))
(!uspec (forall ?n (if (Even ?n) (Odd (succ ?n)))) zero)
(!mp (if (Even zero) (Odd (succ zero)))

(Even zero))
(!uspec (forall ?n (if (Odd ?n) (Even (succ ?n)))) (succ zero))
(!mp (if (Odd (succ zero)) (Even (succ (succ zero))))

(Odd (succ zero))))

(): Unit

Sure enough, when we ask Athena to print the result of the expansion, we get a long proof
that uses nothing but universal instantiation (uspec), modus ponens (mp), and the three
axioms zero-axiom, odd-succ-axiom, and even-succ-axiom.3 This is the certificate that is
produced by applying the method infer-parity to the input (succ (succ zero)), and can
be regarded as the justification for the result

(Even (succ (succ zero))). (1.3)

Observe that the above certificate is precisely what a human would adduce to convince some-
one that (succ (succ zero)) is even. The reasoning is as follows: to begin with, zero is even.
But if zero is even then (succ zero) is odd (this follows from the first universal instantiation

3Strictly speaking, the special form dbegin is also used in order to compose the intermediate inferences,
ensuring that the assumption base is properly threaded from each inference to the next. As a construct for
putting proofs together, it is the lowest common denominator offered by a DPL. It is analogous to the proof
composition operator ; of ND.

10

and application of modus ponens). And if (succ zero) is odd, then (succ (succ zero)) is
even (the second universal instantiation and modus ponens). In more traditional notation:

1. zero is even. By zero-axiom.
2. If zero is even then (succ zero) is odd. Specialize odd-succ-axiom.
3. (succ zero) is odd. 2, 1, modus ponens.
4. If (succ zero) is odd then (succ (succ zero)) is even. Specialize even-succ-axiom.
5. (succ (succ zero)) is even. 4, 3, modus ponens.

Now that we have the certificate, we can go ahead and check it, to reconfirm the result:

>(dbegin
(!claim (Even zero))
(!uspec (forall ?n (if (Even ?n) (Odd (succ ?n)))) zero)
(!mp (if (Even zero) (Odd (succ zero)))

(Even zero))
(!uspec (forall ?n (if (Odd ?n) (Even (succ ?n)))) (succ zero))
(!mp (if (Odd (succ zero)) (Even (succ (succ zero))))

(Odd (succ zero))))

Theorem: (Even (succ (succ zero)))

Note that checking the certificate is considerably more efficient than discovering it. In
essence, we have eliminated the effort on the left-hand side of Figure 1.1, which is half
of the work that infer-parity does (the analytic half). Also note that Athena does not
construct explicit certificates by default. Instead, a certificate is tacitly constructed and
validated every time we evaluate a deduction. Consider, for instance, the evaluation of
the method call (!infer-parity (succ (succ zero))), as depicted in Figure 1.1. As the
call stack unwinds, on the right-hand side of the picture, we are essentially building and
simultaneously validating the relevant certificate on the fly. In that light, it is not unrea-
sonable to view the call (!infer-parity (succ (succ zero))) itself as the certificate of the
result 1.3. This view is encouraged by the design of the language, since a phrase such as
(!infer-parity (succ (succ zero))) is, syntactically, a deduction, not an expression; and
it is fully backed up by the semantics, which ensure that a method call can only produce
a result that follows from primitive methods and the assumption base. But if we need to
convince a skeptic, or if we are striving for a minimal trusted computing base, or if we just
wish to satisfy our own curiosity, we have the option of requesting an explicit certificate, via
expand-next-proof, and Athena will be happy to oblige.

The main practical drawback of infer-parity, and of certified computation in general,
is the computational expense incurred by deduction. The difference from a conventional
algorithm is intuitively easy to understand: a conventional algorithm will simply generate
the result, whereas a certifying algorithm will both generate and justify it. The justification
effort is the extra cost of certification. For instance, contrast the method infer-parity given
above with a plain parity-computing algorithm:

(define (parity n)

11

(match n
(zero ’Even)
((succ k) (match (parity k)

(’Even ’Odd)
(’Odd ’Even)))))

The recursive decomposition of a given input is the same here as it was in the case of
infer-parity. However, the difference becomes clear during the synthetic part of putting the
solution together, once we reach the base case zero and start moving back up the recursion
tree. As the call stack of parity unwinds, all we have to do at each step is simply flip
one bit, from ’Even to ’Odd and vice versa. By contrast, as the call stack of infer-parity
unwinds, we are actually constructing a proof: at each step, we have to apply inference rules
to certain premises and generate the appropriate conclusions, which will serve as premises at
some future step.

Note, however, that the total expense of justification is proportional to the complexity
of the conventional algorithm. Justification only adds a comparable amount of extra work
at each step of the process—in this case a constant amount. It does not blow up the overall
asymptotic complexity by any non-trivial (non-constant) factor, e.g., from log n to n, or from
n to n2, etc. According to our experience, that appears to be the case in most situations,
not just in the simple parity example. But that is an empirical observation; we have not
addressed the question formally. Still, whether or not the overhead is acceptable depends on
the situation at hand. For performance-conscious applications it might not be an option. But
for correctness-critical applications, or in situations where we need to execute code supplied
by an untrusted source, it will be a reasonable price to pay for the gained assurance.

In any event it becomes clear that a desired property of any platform for certified com-
putation is partiality: We should be able to apply this methodology to selected parts of
a software system rather to the whole thing. Certified computation should not be all-or-
nothing. The motivation for partiality is efficiency: in many cases it will be impractical to
certify the result of the entire computation. However, we might still profitably seek some
extra assurance by applying logical certification to certain safety-critical modules. For ex-
ample, compiler writers are not likely to certify lexical analyzers and parsers. These parts
are so well understood and so routinely automated by highly reliable tools that it would
be counter-productive to expend too much effort on them. However, we might still want
to certify the optimizing part of the compiler’s back end, or a type inference algorithm, or
some other module whose correctness is crucial. DPLs are ideal for such partial certification
thanks to their natural integration of deduction and computation. All we have to do is write
the module we wish to certify as a method, rather than a function. Then every call to it
becomes a method call, which represents a deduction, rather than a function call (which rep-
resents an arbitrary computation). Method calls can appear anywhere within a computation;
the semantics of the λδ-calculus ensure that the results are soundly derived, and seamlessly
integrated into any further computation, just as if they had been generated by conventional
procedure calls.

12

1.3 Another example: unification

As a more involved example, in this section we will use certified computation to implement
first-order unification. A conventional unification algorithm takes as input two terms s and t
and produces a most general unifier (“mgu”) θ for them, if one exists; otherwise the algorithm
fails. By contrast, our unification prover will take s and t as inputs and will not simply
produce θ, but will in fact prove that θ is an idempotent mgu for s and t. In other words,
the output of our prover will be a theorem of the form imgu(s, t, θ), asserting that θ is an
idempotent mgu of s and t.

The first step is to formulate a logic—a collection of axioms and inference rules—that
allows us to derive judgments of this form. The rules should be sound, i.e., they should not
allow us to “prove” that some θ is a mgu for s and t when in fact it is not. Then, based on
this logic, we can start to implement a unification procedure as a DPL method.

For the remainder of this section, fix a set F of function symbols, each with a unique
non-negative arity, and a disjoint set V of variables. In what follows, by “term” we will mean
a first-order Herbrand term over F and V: either a variable or an “application” f(t1, . . . , tn),
where f ∈ F has arity n and each ti is a term. By “equation” we will mean an ordered pair
of terms 〈s, t〉, which will be more suggestively written as s≈ t; and by “substitution” we
will mean a function from V to the set of terms over F and V that is the identity almost
everywhere. We use the letters x, y, and z as typical variables; f , g, and h as function symbols;
s and t for terms; and θ, σ, and τ for substitutions. We write {x1 �→ t1, . . . , xn �→ tn} for the
substitution that maps each xi to ti (we assume that the variables x1, . . . , xn are distinct),
and every other variable to itself; and we write θ for the unique homomorphic extension of a
substitution θ.

1.3.1 A conventional algorithm

Martelli and Montanari in 1982 [7] introduced a particularly elegant formulation of unification
based on a set of transformations akin to those used by Gauss-Jordan elimination in solving
systems of linear equations. Although they were the first ones to discuss such transformations
explicitly in the context of unification, the basic ideas were already present in Herbrand’s
thesis [5] in the 1930s. In what follows we will use the acronym HMM as an abbreviation for
“Herbrand-Martelli-Montanari”.

The HMM algorithm approaches unification from a more general angle than other pro-
cedures, dealing with finite systems of equations rather than with single equations. By a
system of equations here we will mean a list of the form

E = 〈s1 ≈ t1, . . . , sn ≈ tn〉. (1.4)

We write E1, E2 for the list obtained by concatenating E1 and E2. For convenience, we
will sometimes treat a single equation as an one-element list, e.g. writing E, s≈ t instead of
E, 〈s≈ t〉. Finally, for any substitution θ and system E of the form 1.4, we write θ(E) for

13

the system
〈θ(s1)≈ θ(t1), . . . , θ(sn)≈ θ(tn)〉.

Recall that a system of equations E of the form 1.4 is unifiable iff there exists a substi-
tution θ that unifies every equation in E, i.e., such that θ(si) = θ(ti) for i = 1, . . . , n. We
call θ a unifier of E. If θ is more general than every σ that unifies E then we say that θ is a
most general unifier (“mgu”) of E. Most general unifiers are unique up to composition with
a renaming, and in that sense we may speak of the mgu of some E. We write U(E) for the
set of all unifiers of E, where we might of course have U(E) = ∅ if E is not unifiable. Thus
the traditional unification problem of determining whether two given terms s and t can be
unified is reducible to the problem of deciding whether the system 〈s≈ t〉 is unifiable.

A system E is said to be in solved form iff the set of equations that occur in E is of the
form {x1 ≈ t1, . . . , xn ≈ tn}, where the variables x1, . . . , xn are distinct and xi does not occur
in tj for any i, j ∈ {1, . . . , n}.4 It is straightforward to show that a system E in solved form
determines a unique substitution

θE = {x1 �→ t1, . . . , xn �→ tn}

that is an idempotent most general unifier of E.
The HMM algorithm attempts to transform a given set of equations into solved form by

repeated applications of the following rules:

• Simplification: E1, t≈ t, E2 =⇒ E1, E2;

• Decomposition: E1, f(s1, . . . , sn)≈ f(t1, . . . , tn), E2 =⇒ E1, s1 ≈ t1, . . . , sn ≈ tn, E2;

• Transposition: E1, t≈ x,E2 =⇒ E1, x≈ t, E2—provided that t is not a variable;

• Application: E1, x≈ t, E2 =⇒ {x �→ t}(E1), x≈ t, {x �→ t}(E2)—provided that x occurs in
E1, E2 but not in t.

For any two systems E and E′, we write E =⇒ E′ to signify that E′ can be obtained
from E by one of the rules.

The qualification in the transposition rule is needed to guarantee the termination of the
transformation process. The same goes for the qualification that x must occur in E1, E2

in the last rule (the second qualification of that rule also ensures that the process does not
proceed in the presence of an equation x≈ t where x occurs in t, since such an equation is
not unifiable). Thus we see that these are not pure inference rules, in the sense that they
have control information built into them, intended to ensure that they cannot be applied
indefinitely. This point will be made clear when we come to build our theorem prover, at
which point it will be shown that these rules essentially perform search rather than inference.

Now the idea behind using these transformations as an algorithm for unifying two terms
s and t is this: we start with the system E1 = 〈s≈ t〉 and keep applying rules (non-
deterministically), building up a sequence E1 =⇒ E2 =⇒ · · · =⇒ Ek, until we finally arrive
at a system of equations Ek to which no more rules can be applied. It is not difficult to

4Note that this definition allows E to have multiple occurrences of an equation.

14

prove termination (i.e., that it is impossible to continue applying rules ad infinitum), and
that if s and t are indeed unifiable then the final system Ek will be in solved form, i.e.,
of the form Ek = 〈x1 ≈ t1, . . . , xn ≈ tn〉, where the variables x1, . . . , xn are distinct and xi

does not occur in any tj. Accordingly, the substitution θEk
= {x1 �→ t1, . . . , xn �→ tn} is an

idempotent mgu of Ek. Further, we can show that if Ei+1 is obtained from Ei by one of
the rules—i.e., if Ei =⇒ Ei+1—then U(Ei) = U(Ei+1), so that any substitution that unifies
Ei also unifies Ei+1 and vice versa. Thus it follows that θEk

is also an idempotent mgu of
Ek−1, Ek−2, . . . , E1, and hence an idempotent mgu of s and t. On the other hand, if the final
set of equations Ek is not in solved form then we may conclude that the initial terms s and
t are not unifiable.

As an example, here is a series of transformations resulting in a most general unifier for
the terms f(x, g(z), b, z) and f(a, y, b, h(x)):

1. 〈f(x, g(z), b, z) ≈ f(a, y, b, h(x))〉 =⇒ Decompose
2. 〈x≈ a, g(z) ≈ y, b≈ b, z ≈ h(x)〉 =⇒ Apply x≈ a

3. 〈x≈ a, g(z) ≈ y, b≈ b, z ≈ h(a)〉 =⇒ Transpose
4. 〈x≈ a, y ≈ g(z), b ≈ b, z ≈ h(a)〉 =⇒ Simplify
5. 〈x≈ a, y ≈ g(z), z ≈ h(a)〉 =⇒ Apply z ≈ h(a)
6. 〈x≈ a, y ≈ g(h(a)), z ≈ h(a)〉

The system 〈x≈ a, y ≈ g(h(a)), z ≈ h(a)〉 is in solved form, and thus the substitution

{x �→ a, y �→ g(h(a)), z �→ h(a)}

is an idempotent mgu of the given terms.

1.3.2 A logic for proving unification judgments

We will now set up a calculus U for proving that a system of equations E is unifiable. We
could use such a calculus to show that two given terms s and t can be unified by adducing a
proof to the effect that the system 〈s≈ t〉 is unifiable. Such a proof would start from axioms
asserting that certain systems are evidently unifiable, and proceed by applying inference rules
of the form “If E1, . . . , En are unifiable then so is E”. The HMM transformation rules are
not appropriate for that purpose because they proceed in the reverse direction: they start
from the equations whose unifiability we wish to establish and work their way back to sets
of equations whose unifiability is apparent. In that sense, they are analytic, or “backwards”
rules: they keep breaking up the original equations into progressively simpler components.
By contrast, we want synthetic rules that will allow us to move in a forward manner: starting
from simple elements, we must be able to build up the desired equations in a finite number
of steps. In fact we will see shortly that the HMM algorithm is, in a very precise sense, a
backwards proof-search algorithm for the deduction system we will set up below.

15

[Solved-Form]
�U 〈x1 ≈ t1, . . . , xn ≈ tn〉 : {x1 �→ t1, . . . , xn �→ tn}
provided 〈x1 ≈ t1, . . . , xn ≈ tn〉 is in solved form

�U E1, E2 : θ [Reflexivity]
�U E1, t≈ t, E2 : θ

�U E1, s≈ t, E2 : θ [Symmetry]
�U E1, t≈ s,E2 : θ

�U E1, s1 ≈ t1, . . . , sn ≈ tn, E2 : θ [Congruence]
�U E1, f(s1, . . . , sn)≈ f(t1, . . . , tn), E2 : θ

�U E1, x≈ t, E2 : θ [Abstraction]
�U E′

1, x≈ t, E′
2 : θ

provided {x �→ t}(E′
1, E

′
2) = E1, E2.

Figure 1.2: A logic for deducing idempotent most general unifiers.

We must now decide exactly what form the judgments of our calculus will have. One
simple choice is to work with judgments of the form �U E, asserting that the system E is
unifiable. However, we will instead opt for more complex judgments, of the form �U E : θ,
asserting that the substitution θ is an idempotent most general unifier of E. The advantage
of such a judgment is that it conveys more information that the mere fact that E is unifiable;
it includes a substitution θ that actually unifies E. In addition, the judgment guarantees
that θ is idempotent and most general. This design choice will enable us to use our logic
for computational purposes, namely, to write a method that takes two terms s and t and—
provided that s and t are unifiable—returns a theorem of the form 〈s≈ t〉 : θ.

The logic comprises one axiom and four unary rules, shown in Figure 1.2 The axiom
[Solved-Form] asserts that every system of equations E = 〈x1 ≈ t1, . . . , xn ≈ tn〉 in solved
form is unifiable, and that, in particular, θE = {x1 �→ t1, . . . , xn �→ tn} is an idempotent mgu
of E. The rules [Reflexivity], [Symmetry], and [Congruence] are self-explanatory, and their
soundness should be clear (it is straightforward to prove formally that all five rules are sound
[1]). Observe that if we read the rules in a forward manner then, in relation to the HMM
transformations, reflexivity can be viewed as the inverse of simplification, symmetry as the
inverse of transposition, and congruence as the inverse of decomposition. We will also see
that abstraction is the inverse of application. Also notice that these are pure inference rules,

16

in the sense that no control information is embedded in them. Restrictions such as found in
the transposition rule of the HMM system will instead be relegated to the control structure
of a method that automates the logic U , keeping the logic itself cleaner.

Finally, consider the rule [Abstraction]. The key here is the proviso

{x �→ t}(E′
1, E

′
2) = E1, E2.

This means that the equations in E′
1, E

′
2 are abstractions of the equations in E1, E2 obtainable

from the latter by replacing certain occurrences of t by x. Alternatively, the equations in
E1, E2 are instances of the equations in E′

1, E
′
2, obtained from the latter by applying the

substitution {x �→ t}. (Indeed, that is how the rule would be applied in a backwards fashion,
and we will see that this is precisely the sense in which the HMM application rule is the
inverse of abstraction.) Accordingly, the equations of E′

1, E
′
2 are more general than those of

E1, E2; and this is why the rule is called “abstraction”: it takes us from the specific to the
general.

Let us illustrate with our earlier example. We wish to show that f(x, g(z), b, z) and
f(a, y, b, h(x)) are unifiable, or more precisely, that the substitution

θ = {x �→ a, y �→ g(h(a)), z �→ h(a)}

is an idempotent mgu of these two terms. The following deduction proves this:

1. �U 〈x≈ a, y ≈ g(h(a)), z ≈ h(a)〉 : θ [Solved-Form]

2. �U 〈x≈ a, y ≈ g(z), z ≈ h(a)〉 : θ 1, [Abstraction] on z ≈ h(a)

3. �U 〈x≈ a, y ≈ g(z), b ≈ b, z ≈ h(a)〉 : θ 2, [Reflexivity]

4. �U 〈x≈ a, g(z) ≈ y, b≈ b, z ≈ h(a)〉 : θ 3, [Symmetry]

5. �U 〈x≈ a, g(z) ≈ y, b≈ b, z ≈ h(x)〉 : θ 4, [Abstraction] on x≈ a

6. �U 〈f(x, g(z), b, z) ≈ f(a, y, b, h(x))〉 : θ 5, [Congruence]

Note that the only rule that creates—or in any way affects—the substitution θ of a
judgment E : θ is the axiom [Solved-Form]. All the other rules simply pass along the
substition of the premise unchanged. Thus a substitution is created only once, for a system
in solved form, and from that point on it is carried along from system to system via the
various rules, until it is finally attached to the desired system.

1.3.3 Implementation

In this section we implement our unification logic in Athena, giving complete working code
that the readers can use for experimentation. First we must decide on a representation for
terms. We choose the following simple representation:

(structure Term
(Var Ide)
(App Ide (List-Of Term)))

17

where List-Of is the following polymorphic structure:

(structure (List-Of T)
Nil
(Cons T (List-Of T)))

and Ide is a pre-defined domain of “identifiers”. This domain is used whenever we wish to
represent a set of object-level variables. Every string consisting of a single quote followed by
an Athena name is a constant of sort Ide: ’X, ’a-long-identifier, ’foo, etc. Since these
are constant Athena symbols, we can reason about them, e.g., we can quantify over them:

>(exists ?I (= ?I ’foo))

Proposition: (exists ?I:Ide (= ?I ’foo))

Thus a variable such as x is represented as (Var ’x); a constant a is represented by the
term (App ’a Nil); and an application such as f(x, a) by

(App ’f (Cons (Var ’x) (Cons (App ’a Nil) Nil))).

The following simple structure models an equation between two terms:

(structure Equation
(== Term Term))

Thus the term (== (Var ’x) (App ’a Nil)) represents the equation x≈ a. The function
equate given below will come handy later: it takes two lists of terms s1, . . . , sn and t1, . . . , tn
and “zips” them into a list of equations s1 ≈ t1, . . . , sn ≈ tn:

(define (equate terms1 terms2)
(match [terms1 terms2]
([Nil Nil] Nil)
([(Cons s rest1) (Cons t rest2)] (Cons (== s t) (equate rest1 rest2)))))

We will also need the following five classic list functions:

(define (map f l)
(match l
(Nil Nil)
((Cons x rest) (Cons (f x) (map f rest)))))

(define (append l1 l2)
(match l1
(Nil l2)
((Cons x rest) (Cons x (append rest l2)))))

(define (for-each l f)
(match l
(Nil true)
((Cons x rest) (& (f x) (for-each rest f)))))

18

(define (for-some l f)
(match l
(Nil false)
((Cons x rest) (|| (f x) (for-some rest f)))))

(define (reverse l)
(letrec ((rev (function (l1 l2)

(match l1
(Nil l2)
((Cons x rest) (rev rest (Cons x l2)))))))

(rev l Nil)))

Note that & and || are special Athena forms for short-circuit evaluation of “and” and
“or”.5 We also define a negation function that maps true to false and vice versa:

(define (~ b)
(match b
(true false)
(false true)))

A substitution is modelled as a list of ordered pairs, each of which consists of an identifier
and a term:

(structure (Pair-Of S T)
(Pair S T))

(define Substitution (List-Of (Pair-Of Ide Term)))

For instance, the substitution {x �→ a, y �→ f(z)} is represented by

(Cons (Pair ’x (App ’a Nil))
(Cons (Pair ’y (App ’f (Cons (Var ’z) Nil)))

Nil))

By convention, substitution-representing lists grow on the left, so to find the value of a
substitution theta for a given variable, say (Var ’x), we scan the list theta from left to right
until we find a pair of the form (Pair ’x t). If we find such a pair, then t is the desired value;
otherwise the substitution is undefined on the given variable. The function apply-sub-to-var
implements this:

(define (apply-sub-to-var sub x)
(match sub
(Nil (Var x))
((Cons (Pair (val-of x) t) _) t)
((Cons _ rest-sub) (apply-sub-to-var rest-sub x))))

5Both of these forms perform computation on the two-element set {true, false}, and should not be
confused with the propositional constructors and and or.

19

The higher-order function lift below defines the homomorphic extension θ of a given sub-
stitution θ. For convenience, we define θ so that it can be applied not just to a single term,
but to an equation s≈ t as well, producing the equation θ(s)≈ θ(t):

(define (lift sub)
(function (t)
(match t
((Var x) (apply-sub-to-var sub x))
((App f args) (App f (map (lift sub) args)))
((== t1 t2) (== ((lift sub) t1) ((lift sub) t2))))))

Next we write a function occurs that takes a variable x and a term t and returns true
if x occurs in t and false otherwise. Again for convenience, we write occurs so that it can
also take an equation t1 ≈ t2 instead of a single term, in which case it will return true if x
occurs in t1 or in t2, and false if it occurs in neither:

(define (occurs x t)
(match t
((Var (val-of x)) true)
((Var _) false)
((App _ terms) (for-some terms (function (s) (occurs x s))))
((== t1 t2) (|| (occurs x t1) (occurs x t2)))))

Systems of equations are modelled by lists:

(define System (List-Of Equation))

The following function returns true or false depending on whether or not the given system
is in solved form:

(define (solved? E)
(for-each E
(function (eq)
(match eq
((== (Var x) s) (for-each E

(function (eq)
(match eq
((== (Var (val-of x)) t) (& (equal? s t)

(~ (occurs x t))))
((== _ t) (~ (occurs x t)))))))

(_ false)))))

Next we introduce a relation symbol imgu that is predicated of an equation system and a
substitution:

(declare imgu (-> (System Substitution) Boolean))

A proposition (imgu E θ) is intended to express the judgment �U E : θ of our unification
calculus. It asserts that θ is an idempotent mgu of E.

20

We are now in a position to introduce primitive Athena methods modelling the inference
rules of that calculus. Unlike a defined method, whose body has to be a deduction, a primitive
method has an expression as a body, which means that it can perform any computation it
wishes on its arguments, as long as it eventually produces a proposition. Once defined,
primitive methods can be used just as defined methods. Primitive methods are thus a very
powerful mechanism, allowing us to formulate inference rules with arbitrarily complicated
behaviors. Just like axioms, they should not be abused. We should always be able to
convince ourselves (and others!) that a primitive method application will never produce a
proposition that is not logically entailed by the assumption base in which the application
takes place.6

We begin with a primitive method solved-form that models the corresponding inference
rule of �U. This method takes a system E, and if E is in solved form 〈x1 ≈ t1, . . . , xn ≈ tn〉,
then it produces a proposition asserting that the substitution {x1 �→ t1, . . . , xn �→ tn} is an
idempotent mgu of E:

(primitive-method (solved-form E)
(check ((solved? E) (imgu E (make-sub E)))))

Here make-sub is a function that takes a system E in solved form and produces the unique
substitution θE determined by it:

(define (make-sub E)
(match E
(Nil Nil)
((Cons (== (Var x) t) rest) (Cons (Pair x t) (make-sub rest)))))

The rest of the primitive methods are straightforward; they are listed in Figure 1.3. They all
use the top-level Athena function holds?, which takes a proposition P and returns true if
P is in the current assumption base and false otherwise. Note how closely these definitions
capture the inference rules of Figure 1.2. Each method:

1. takes as parameters all the pieces of data that appear in the corresponding inference
rule (e.g. sym takes E1, E2, s, t, and the substitution θ, which are precisely the “free
variables” of rule [Symmetry] in Figure 1.2);

2. checks to make sure that the appropriate premises (if any) are in the assumption base,
and that all relevant side conditions (if any) are satisfied;

3. and finally it produces its respective conclusion.

Also note that all of these primitive methods are non-recursive. They are not entirely trivial,
meaning that they do perform some iterative computation, mainly via append, or in the case
of solved-form via the helper function solved?, whose running time grows quadratically
with the size of the input system. But no primitive method is defined in terms of itself, and if
we trust append, holds?, solved?, equate, map, and lift, all of which are fairly innocuous,

6The slogan to remember: a proof is only as good as its axioms and primitive methods.

21

(primitive-method (reflex E1 E2 t sub)

(check ((holds? (imgu (append E1 E2) sub))

(imgu (append E1 (Cons (== t t) E2)) sub))))

(primitive-method (sym E1 E2 s t sub)

(check ((holds? (imgu (append E1 (Cons (== s t) E2)) sub))

(imgu (append E1 (Cons (== t s) E2)) sub))))

(primitive-method (cong E1 E2 f args1 args2 sub)

(check ((holds? (imgu (append E1 (append (equate args1 args2) E2)) sub))

(imgu (append E1 (Cons (== (App f args1) (App f args2))

E2)) sub))))

(primitive-method (abstract E1 E2 x t sub)

(let ((sub’ (Cons (Pair x t) Nil))

(eq (== (Var x) t)))

(check ((holds? (imgu (append (map (lift sub’) E1)

(Cons eq (map (lift sub’) E2))) sub))

(imgu (append E1 (Cons eq E2)) sub)))))

Figure 1.3: The Athena representation of the inference rules of U .

then we should be quite confident in these methods. This is in adherence to the principle of
minimizing our trusted computing base. Because primitive methods are part of our trusted
base, they should not be computationally expensive. The more involved a primitive method
is, the more difficult it becomes to understand and use it correctly, i.e., the more difficult it
becomes to trust.

Finally, the method unify is given in Figure 1.4. The auxiliary function find-candidate
does much of the work. It takes a system E and decomposes it into three parts, a prefix E1,
an equation s≈ t, and a suffix E2, such that E1, s≈ t, E2 matches the left-hand side of one of
the four HMM transformation rules given in page 14. These three values are bundled together
in an Athena list and returned as the result of find-candidate. If no such decomposition
of the input system E exists, the empty Athena list [] is returned.

Let us see how this method handles our earlier example of the system

〈f(x, g(z), b, z) ≈ f(a, y, b, h(x))〉 :

>(define s
(App ’f (Cons (Var ’x)

(Cons (App ’g (Cons (Var ’z) Nil))
(Cons (App ’b Nil)

(Cons (Var ’z) Nil))))))

Term s defined.

>(define t
(App ’f (Cons (App ’a Nil)

22

(define (find-candidate E)

(letrec ((search

(function (remaining-list front)

(match remaining-list

(Nil [])

((Cons (bind eq (== t t)) rest)

[(reverse front) eq rest])

((Cons (bind eq (== (App f args) (Var x))) rest)

[(reverse front) eq rest])

((Cons (bind eq (== (App f args1) (App f args2))) rest)

[(reverse front) eq rest])

((Cons (bind eq (== (Var x) t)) rest)

(check

((& (for-some (append front rest)

(function (e) (occurs x e)))

(~ (occurs x t)))

[(reverse front) eq rest])

(else (search rest (Cons eq front)))))))))

(search E Nil)))

(define (unify E)

(dmatch (find-candidate E)

([] (dcheck ((solved? E) (!solved-form E))))

([E1 (== t t) E2]

(dmatch (!unify (append E1 E2))

((imgu _ sub) (!reflex E1 E2 t sub))))

([E1 (== (App f args) (Var x)) E2]

(dmatch (!unify (append E1 (Cons (== (Var x) (App f args)) E2)))

((imgu _ sub) (!sym E1 E2 (Var x) (App f args) sub))))

([E1 (== (App f args1) (App f args2)) E2]

(dmatch (!unify (append E1 (append (equate args1 args2) E2)))

((imgu _ sub) (!cong E1 E2 f args1 args2 sub))))

([E1 (== (Var x) t) E2]

(dmatch (!unify (append (map (lift (Cons (Pair x t) Nil)) E1)

(Cons (== (Var x) t)

(map (lift (Cons (Pair x t) Nil)) E2))))

((imgu _ sub) (!abstract E1 E2 x t sub))))))

Figure 1.4: The definitions of find-candidate and unify.

(Cons (Var ’y)
(Cons (App ’b Nil)

(Cons (App ’h (Cons (Var ’x) Nil))))))))

Term t defined.

>(!unify (Cons (== s t) Nil))

Theorem:
(imgu (Cons (== (App ’f (Cons (Var ’x)

(Cons (App ’g
(Cons (Var ’z) Nil))

23

!unify 〈f(x, g(z), b, z)≈ f(a, y, b, h(x))〉

?
Decompose � -Inverses

!unify 〈x≈ a, g(z)≈ y, b≈ b, z ≈ h(x)〉

?
Apply

!unify 〈x≈ a, g(z)≈ y, b≈ b, z ≈ h(a)〉

?
Apply

!unify 〈x≈ a, g(h(a))≈ y, b≈ b, z ≈ h(a)〉

?
Transpose

!unify 〈x≈ a, y ≈ g(h(a)), b≈ b, z ≈ h(a)〉

?
Simplify

!unify 〈x≈ a, y ≈ g(h(a)), z ≈ h(a)〉 -

!solved
〈x≈ a, y ≈ g(h(a)), z ≈ h(a)〉 : θ

6
!abstract

〈x≈ a, y ≈ g(z), z ≈ h(a)〉 : θ

6
!reflex

〈x≈ a, y ≈ g(z), b≈ b, z ≈ h(a)〉 : θ

6
!sym

〈x≈ a, g(z)≈ y, b≈ b, z ≈ h(a)〉 : θ

6
!abstract

〈x≈ a, g(z)≈ y, b≈ b, z ≈ h(x)〉 : θ

6
!cong

〈f(x, g(z), b, z)≈ f(a, y, b, h(x))〉 : θ

Figure 1.5: Control flow, shown counter-clockwise, for the method application
!unify 〈f(x, g(z), b, z) ≈ f(a, y, b, h(x))〉, where θ = {x �→ a, y �→ g(h(a)), z �→ h(a)}.

(Cons (App ’b Nil)
(Cons (Var ’z) Nil)))))

(App ’f (Cons (Var ’y)
(Cons (App ’b Nil)

(Cons (App ’h (Cons (Var ’x) Nil))
Nil)))))

Nil)
(Cons (Pair ’x (App ’a Nil))

(Cons (Pair ’y
(App ’g (Cons (App ’h (Cons (App ’a Nil) Nil))

Nil)))
(Cons (Pair ’z (App ’h (Cons (App ’a Nil) Nil)))

Nil))))

Figure 1.5 depicts the run-time flow of control when unify is applied to this system.
Observe the structural similarities with the diagram of Figure 1.1. In essence, every prim-
itive method call validates the work of the corresponding recursive call. By the time the
entire certificate has been constructed and checked, we have validated the original problem
decomposition and proof search.

The important point in this case is that we do not have to trust find-candidate or

24

unify, which are by far the two most complicated parts of the system. We only need to
trust our five primitive methods. This becomes evident when we ask Athena to produce the
relevant certificates. For instance, if we ask Athena to produce the certificate for the method
call

(!unify (Cons (== s t) Nil))

we will obtain the exact same proof that was given in page 17, which only uses the primitive
inference rules of our logic.

1.4 Comparison with other approaches

As we mentioned earlier, the idea of using deduction for computational purposes has been
around for a long time. There are several methodologies predating DPLs that can be used for
certified computation. In this section we will compare DPLs to logic programming languages
and to theorem proving systems of the HOL variety.

Comparison with logic programming

The notion of “programming with logic” was a seminal idea, and its introduction and sub-
sequent popularization by Prolog was of great importance in the history of computing. Al-
though logic programming languages can be viewed as platforms for certified computation,
they have little in common with DPLs. DPLs are languages for writing proofs and proof
strategies. By contrast, in logic programming users do not write proofs; they only write
assertions. The inference mechanism that is used for deducing the consequences of those
assertions is fixed and sequestered from the user: linear resolution in the case of Prolog,
some higher-order extension thereof in the case of higher-order logic programming languages
[9, 2], and so on. This rigidity can be unduly constraining. It locks the user into formulating
every problem in terms of the same representation (Horn clauses, or higher-order hereditary
Harrop clauses [10], etc.) and the same inference method, even when those are not the proper
tools to use. For instance, how does one go about proving De Morgan’s laws in Prolog? How
does one derive ¬(∃x)¬P (x) from the assumption (∀x)P (x)? Moreover, how does one write
a schema that does this for any given x and P? How about higher-order equational rewriting
or semantic tableaux? Although in principle more or less everything could be simulated in
Prolog, for many purposes such a simulation would be formidably cumbersome.

A related problem is lack of extensibility. Users have no way of extending the underlying
inference mechanism so as to allow the system to prove more facts or different types of facts.

The heart of the issue is how much control the user should have over proof construction.
In logic programming the proof-search algorithm is fixed, and users are discouraged from
tampering with it (e.g., by using impure control operators or clever clause reorderings).
Indeed, strong logic programming advocates maintain that the user should have no control
at all over proof construction. The user should simply enter a set of assertions, sit back, and
let the system deduce the desired consequences. Advocates of weak logic programming allow

25

the user some control (e.g., witness the prune operators and the commit mechanism of Gödel
[6]), but the differences are not too great. DPLs, on the other hand, give the user complete
and unrestricted control over the proof search, without giving up soundness.

In fact the inference engines of logic programming languages are so completely insulated
from the user that not only they cannot be modified, but they cannot even be viewed.
Say that a Prolog programmer enters a list of Horn clauses, evaluates a ground query, and
magically gets a “yes” answer. Where is the proof? What is the justification for the “yes”?
We can’t tell. Knowing the theory of logic programming and trusting the implementation,
we believe that the query follows logically from our clauses, and we might even have an idea
as to why that is, but the system will not offer any concrete evidence. By contrast, in a DPL
the inference engine is written by the user (with some minimal but crucial support from the
language) and thus the user knows exactly how a fact was proved—because he was the one
who proved it. The application of a user-written method is the proof of the application’s
result.

But we can go even further: DPL implementations allow the user to request and obtain
fully explicit certificates, as we illustrated in the examples, by expanding the evaluation of
any given deduction into an elementary sequence of primitive methods. For instance, we
have written a Prolog interpreter as an Athena method. That interpreter not only verifies a
given query, but can also produce a certificate to further back up the query’s validity. That
certificate is essentially a long natural-deduction derivation of the query that uses nothing
but modus ponens and universal instantiation. All the search (unification, etc.) has been
thrown away. The produced certificate is the justification of the result. We can examine it
independently to convince ourselves that the result holds, or to gain some insight as to why
it does.

This entails a drastic reduction in the size of our trusted base. Once we have obtained
a certificate, we no longer have to trust the entire DPL implementation. Mechanisms such
as pattern matching, recursive methods, conditional branching, etc., could be defectively
implemented and yet the defects will be immaterial because these mechanisms are simply
not used in the certificate.7 The certificate only uses primitive methods, which are usually
eminently simple. As long as we trust our primitive methods and our axioms, we can trust the
entire result. By contrast, in logic programming we have to trust the entire implementation.

In addition, the exposure of the logic and its complete separation from the control is a
modularity boon: many different control engines can be used with—plugged into—a single
logic. This facilitates the interaction of a code consumer with arbitrary code producers. A
code consumer interested in unification, for example, can publicize the five primitive methods
of Section 1.3.3 as a formal theory and then solicit unification methods from arbitrary code

7This is similar, say, to a Java program that is written entirely in a very small and simple subset of Java,
e.g., a sequence of binary additions and multiplications. To execute that program properly, we don’t need
to trust that our Java interpreter correctly implements inheritance or multithreading. All we need to trust
is that it gets additions, multiplications, and assignment right. In fact since this Java subset is so small and
simple, we can write our own interpreter for it and use that instead. This is analogous to full-blown DPLs
and the certificates produced by them.

26

producers. An aspiring code producer can supply an arbitrary method M (control engine),
which the consumer can use locally in an environment that contained the said methods and
in the empty assumption base. If and when M produces a result, the consumer can safely
accept and use that result, knowing that it has been certified. The generated certificate
formally proves that the result respects—follows from—the consumer’s policy. But if M is
buggy or malicious then its evaluation will eventually generate a logical error and hence its
results will never be used, simply because they will never be generated in the first place.

This enables completely open software systems. Arbitrary code producers can come along
and offer smarter or more efficient methods. One might imagine, for example, an extensible
compiler that would allow arbitrary users to provide custom-made dataflow analyzers, ex-
pressed as methods.8 The logic would be posted by the compiler itself, and would consist
of axioms and primitive methods for deriving statements such as “variable x is live at this
point”, or “this definition of y does not reach that statement”, and so on. Different methods
for proving data flow theorems could then be supplied by arbitrary sources and the compiler
could run them confidently, knowing that their results would be sound. The capacity of such
an open compiler to reason about dataflow would be arbitrarily sophisticated—unlike current
compilers, which are necessarily limited on account of having a fixed set of dataflow algo-
rithms built into them. Similar ideas apply to other compiler phases, such as traditional code
optimizations. This theme has been pursued by Rinard et. al. in the “credible compilation”
project [11], where an optimizer—say, for constant propagation—does not only produce a
new program but also proves a bisimulation theorem relating the transformed program to
the original.

Comparison with LCF systems

Theorem-proving systems of the LCF family [3], such as HOL [4], could also be used for
certified computation. HOL, in particular, is a programming language (ML) augmented with
an abstract data type theorem and soundness-preserving ways of producing values of that
type. Manipulating theorems soundly was in fact the primary motivation behind Milner’s
pioneering work on secure type systems, which eventually led to the automatic type inference
algorithm used in ML.

There is a broad sense in which systems of this kind are similar to DPLs: in both settings
the user starts out with a piece of text that is regarded as a proof (or a proof-construction
recipe), and evaluates that text in accordance with the formal semantics of the language in
order to obtain a valid judgment. There are several significant differences, however.

Perhaps the most fundamental difference is that DPLs incorporate the abstraction of
assumption bases into the underlying semantics of the language, and this results in an alto-
gether different model of computation. If one were to give a formal denotational semantics
for HOL, the top meaning function would have a signature of the form

M : Phrase→ Env→ Store→ Cont→Val. (1.5)
8This idea is due to Olin Shivers.

27

In other words, to obtain the value (meaning) M [E] of a given HOL phrase E, we need an
environment, a store, and a continuation. This semantic model is similar for many other
conventional programming languages. The denotational semantics of Scheme, for example,
have the exact same signature, 1.5, as HOL. This reflects the fact that HOL is, in an essential
sense, a programming language.

By contrast, if we were to write a formal denotational semantics for a DPL such as
Athena, the signature of the meaning function would be different:

M : Phrase→ Env→ABase→ Store→ Cont→Val. (1.6)

What is included here but missing in the case of HOL or Scheme is the additional semantic
parameter ABase—the assumption base. This is a set of propositions, where the exact
specification of what counts as a proposition might vary from DPL to DPL. Assumption bases
are the central abstraction in informal mathematical proofs, and weaving that abstraction
into the fundamental semantics of the language enables us to capture important patterns of
informal reasoning (such as inference composition or assumption introduction and discharge)
by introducing corresponding syntactic constructs and formally specifying their behavior in
terms of how they manipulate the assumption base.

In fact DPLs separate the syntax of deductions from the syntax of computations. Proofs
and computations are written in different languages, and have different semantics, even
though the two can be seamlessly intertwined. Proofs are semantically constrained to re-
turn propositions. The proposition produced by evaluating a proof is naturally viewed as
its conclusion. Computations, on the other hand, can return any type of value, including
propositions, but no soundness guarantee is made about them. A soundness guarantee is
only made for deductions, and always takes the following form: if a deduction D produces
a proposition P in the context of an assumption base β, then P is a logical consequence of
β. That is the fundamental theorem of the λδ calculus. Observe that we would not even be
able to state this theorem if it were not for these three facts:

1. computations and deductions are syntactically distinct;

2. deductions always return propositions; and

3. evaluation always takes place with respect to an assumption base.

None of these hold in the LCF world. Lacking assumption bases, HOL uses sequents for
assumption management. Sequents have several drawbacks for writing proofs [1]. Moreover,
because in HOL everything is a computation (a program), a static type system is needed
to distinguish those values that represent theorems. That is not necessary in DPLs, owing
to the syntactic separation of computations and proofs. (However, a DPL with a strong
static type system is certainly possible.) There are other technical differences. In a DPL
such as Athena the user can introduce primitive methods with arbitrarily complex behavior,
which is not possible in HOL. DPLs offer powerful pattern matching facilities on terms and
propositions. That is not an option in HOL, because HOL terms and propositions are abstract

28

data types; their concrete representation is hidden. (In principle, that could be changed
with a technique similar to Haskell’s “views” [13], although implementing such a feature in
HOL would require a major effort.) Further, as we explained earlier, DPL implementations
can produce certificates, which enhance the credibility of the result and reduce the trusted
computing base. Although in principle it is possible to instrument an HOL-like system so
that it produces certificates, we are not aware of any actual implementations.

In conclusion, we believe that the explicit distinction between proofs and computations
and the use of assumption bases result in a cleaner and more usable framework. They
also facilitate the rigorous analysis of proofs, paving the way for formal theories of proof
equivalence and optimization. Consider questions such as

• When are two proofs equivalent?

• Does this proof—or proof method—use more assumptions than that one?

• Is the scope of this hypothesis properly contained within the scope of that hypothesis?

• When can one proof be plugged inside another one without causing the latter to fail?

A DPL framework is conducive to formulating and tackling such questions with clarity and
precision [1].

Conclusions

We have shown how to use a DPL such as Athena for certified computation. We have
demonstrated that certified computation can greatly increase the credibility of our results
by isolating and minimizing our trusted computing base. And we have argued that DPLs
provide several conceptual and practical advantages to other formalisms that could be used
for similar forms of deductive programming.

We stress that certified computation does not guarantee that a program will always
produce the correct result. It only ensures that if and when a result is obtained, that result
will be correct—modulo the logic that specifies what counts as correct. In a sense, a certified
computation reasons about itself: it justifies its own results.

We should also stress that deductive programming in general, and our notion of certified
computation in particular, is no panacea for software quality. Dividends are paid only if we
manage to formulate a theory that has just the right mixture of simplicity and expressiveness,
a task that can be more of an art than a science due to the difficult tension between logic and
control. The more we strengthen the logic, the less we have to work on the control. Indeed,
in the extreme case we might strengthen the logic so much that everything is provable and
we end up with an inconsistent theory. In that case the control part is outstandingly simple:
we can just go ahead and output whatever goal is given, with randomly chosen bindings for
the existentially quantified variables; it will be a theorem, albeit a useless one. Conversely,
the more we weaken the logic the greater the effort that has to go into the control. If we

29

become too conservative and only postulate a very small number of simple axioms and rules
that are obviously consistent with the intended interpretation, then proof construction will
be difficult. Indeed, in the extreme case we may become so conservative as to postulate no
axioms and no rules whatsoever, and then deduction will be more than just difficult—it will
be impossible.

So we have to be judicious in crafting our theory. The theory must literally be simple
enough, but no simpler. The axioms and rules we postulate must be sufficiently rich to enable
us to derive interesting results. Ideally we would like them to be complete, entailing all
statements that are true in the intended interpretation. In practice we may have to contend
ourselves with systems that are complete enough, entailing most true statements, or at any
rate most true statements such as are likely to be encountered in realistic situations. But
above all we must ensure soundness: our axioms and rules must never lead us to statements
that are false in the intended interpretation. In fact, our axioms and rules must be evidently
sound, or, more plainly put, they must be simple: anyone who is familiar with the problem
domain should be able to ascertain their validity without too much reflection. A big selling
point of our notion of certified computation is a sharp separation between logic and control.
The control engine can be arbitrarily complicated (and in fact the chief advantage of a DPL
such as Athena is the great versatility with which proofs can be put together); and yet the
DPL semantics guarantee that the theorem that comes out at the end is provable solely by
virtue of the postulated axioms and rules. It is this guarantee that allows us to put the focus
entirely on the logic: if the logic holds up, we can trust the results. Thus the simpler the
logic is, the easier it is to trust the results.

We have also discussed the computational cost of certified computation. In general, as
the examples illustrated, certified computations will always take longer than regular com-
putations. The certification process can greatly increase the robustness of our code, but it
does not come for free. The question is how much longer certified computations will take,
and whether the extra confidence we achieve in our results is worth the extra overhead. This
depends on the greater context of the application. When correctness is essential, or when
proof of correctness is demanded by an untrusting agent, the advantages of deduction will
outweigh its overhead.

But even in situations where efficiency is a serious concern, certified computation could
perhaps serve as a useful development paradigm: methods can be used essentially as debug-
ging tools during the development cycle, and removed later when the code is getting ready to
ship. In other words, a developer can start out by implementing an algorithm as a method.
Because of their stringent logical requirements, testing a method is a much more demanding
process than testing a function, and likely to reveal more errors. Further, by going through
the exercise of structuring a problem as a formal theory we usually gain a different perspec-
tive and a deeper understanding of the various requirements. Once a working method has
been derived, it can then be transformed into a conventional algorithm by removing the cer-
tifying parts. This eliminates the extra computational overhead of certification but retains
the advantage of catching logical errors that would otherwise remain undetected. It is a
compromise between full-blown certified computation, which achieves reliability but penal-

30

izes performance, and conventional computation, which is efficient but offers no correctness
guarantees.

31

Bibliography

[1] K. Arkoudas. Denotational Proof Languages. PhD thesis, MIT, 2000.

[2] A. Felty. Implementing tactics and tacticals in a higher-order logic programming lan-
guage. Journal Of Automated Reasoning, 11:43–81, 1993.

[3] M. J. Gordon, A. J. Miller, and C. P. Wadsworth. Edinburgh LCF: A Mechanized Logic
of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag,
1979.

[4] M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving environment
for higher-order logic. Cambridge University Press, Cambridge, England, 1993.

[5] J. Herbrand. Sur la Théorie de la Démonstration. In W. Goldfarb, editor, Logical
Writings of Herbrand. Cambridge University Press, 1971.

[6] P. Hill and J. Lloyd. The Gödel programming language. MIT Press, 1994.

[7] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, 1982.

[8] B. Meyer. Eiffel. In P. H. Salus, editor, Object-Oriented Programming Languages, vol-
ume 1 of Handbook of Programming Languages. Macmillan Technical Publishing, 1998.

[9] D. Miller. A Logic Programming Language with Lambda Abstraction, function Vari-
ables, and Simple Unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[10] G. Nadathur and D. Miller. Higher-order Horn Clauses. Journal of the ACM, 37(4):777–
814, 1990.

[11] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of the
1999 Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

[12] B. Stroustrup. The C++ Programming Language. AT&T, Florham Park, New Jersey,
USA, 2000.

32

[13] P. Wadler. Views: a way for pattern matching to cohabit with data abstraction. In
14th ACM Symposium on Principles of Programming Languages, Munich, Germany,
1987.

33

