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Abstract

The paper presents a simple model for recovering a�ne shape and corre-

spondence from two orthographic views of a three{dimensional object. The

paper has two parts. In the �rst part it is shown that four corresponding

points along two orthographic views, taken under similar illumination con-

ditions, determine a�ne shape and correspondence for all other points. In

the second part it is shown that the scheme is useful for purposes of visual

recognition by generating novel views of an object given two model views in

full correspondence and four corresponding points between the model views

and the novel view. It is also shown that the scheme can handle objects

with smooth boundaries, to a good approximation, without introducing any

modi�cations or additional model views.
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1 Introduction

Structure from motion (SFM) and visual recognition are intimately related. Re-

covering the structure of a moving three-dimensional (3D) object from its changing

2D image is dual to the problem of identifying images of an object viewed from a

variety of vantage points, as instances of the same 3D object. Both require an un-

derstanding of the relationship between the 3D world and its 2D projections, both

start with the same input and both work with essentially the same ingredients: 3D

structure of the object, motion or viewing transformation applied to the object,

and the pointwise correspondence between two or more views of the object.

In SFM one generally wants to recover information that was lost in the course of

projection from 3D to 2D. This includes the 3D Euclidean structure of the object

and the 3D motion transformation from one time instance to the next. Visual

recognition confronts the same issues but in a more implicit manner. Rather than

recovering 3D information, one is more concerned in factoring it's e�ects out, i.e.

the e�ect of shape and viewing transformation, thereby reducing all views of an

object to a canonical view (or set of views) that represents the object.

Previous approaches to 3D interpretation traditionally assume that correspondence

between 2D views is known, or can be measured independently [4, 55, 23, 3, 21,

31]. Under perspective projection it has been shown that two views undergoing

in�nitesimal motion are, in principal, su�cient to recover shape and motion [41,

30, 55, 54, 36], however the process in inherently susceptible to noise [17, 2, 46,

11]. Under orthographic projection, it has been shown that at least three views,

undergoing general motion, are required to recover the same information [48, 49,

25, 8, 47]. In object recognition, the approach that seems most relevant to known

results from structure from motion is the alignment approach [16, 19, 20, 50, 26].

Under this framework it has been shown [50, 26] that a 3D model together with

a small number of corresponding points are su�cient for predicting novel views of

the rigid object, and recently that shape information can be represented [51], or

approximated [18], by having instead a set of 2D views of the object.

The approach to SFM in this study is di�erent from most past approaches in that

it is guided by a speci�c goal | performing visual recognition. This implies that

information to be recovered from the changing 2D image should be no more than

what is necessary to perform visual recognition. Instead of recovering Euclidean

shape1 and 3D motion parameters, the emphasis here is to recover a�ne shape2

and full correspondence between two orthographic views, given limited informa-

13D coordinates relative to a Cartesian frame aligned with the viewer's coordinate system
and with the line of sight.

23D coordinates relative to a frame de�ned by an arbitrary set of four non-coplanar points on
the object.
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tion regarding motion parameters | information that is captured by having four

corresponding points between the two frames.

The reason for the emphasis on recovering a�ne shape is twofold. It will be shown

that a�ne shape recovered from the correspondence between two model views is

su�cient for purposes of recognition | one can generate novel views (excluding

occlusion) of the object undergoing arbitrary 3D a�ne transformations, given four

corresponding points with the novel view. Furthermore, a�ne shape seems to play

an important role in the perception of kinetic depth displays, even in cases where

Euclidean shape can theoretically be recovered, as suggested in [45].

The emphasis on solving the correspondence problem is inspired from recent devel-

opments in visual recognition using alignment [51, 43] and Radial Basis Functions

[18] indicating that establishing correspondence between two or more views is a

major step towards ameliorating the e�ects of changing view position and illu-

mination conditions. The main new results presented in this study include the

following:

� Four corresponding points along two orthographic views, taken under similar

illumination conditions, together with the instantaneous brightness measure-

ments are su�cient to completely determine, without regularizing assump-

tions, correspondence and a�ne shape along all other points in the image.

� The information carried by the four corresponding points can be succinctly

represented by a 2D a�ne transformation that serves as a constraint line in

correspondence space. The scale factor associated with the a�ne displace-

ment vector is a shape parameter representing the relative deviation, along

the line of sight, of an object point from a reference plane de�ned by three

of the corresponding points. This result is new in its algebraic aspect; the

concept of representing a�ne shape as a deviation from a reference plane

was recently introduced by Koenderink and Van-Doorn [28].

� The computational study suggests that the measurement of motion starts

by setting up a frame of reference determined by a small number of salient,

unambiguously matched, features. The frame provides a nominal motion,

which is exact for planar surfaces, and which `pulls' or `captures' all other

points in that frame. The remaining residual motion is later re�ned by use

of local spatio-temporal detectors that are tuned along a known direction

which is determined by the frame of reference.

� The result that correspondence can be recovered from two views under similar

illumination conditions suggests that small changes of view position, can

be factored out in the course of recognition, using only a single picture of

the object as a model. Another result is that a�ne shape recovered from
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the correspondence between two model views can be used to generate novel

views of the object undergoing arbitrary 3D a�ne transformations, given four

corresponding points with the novel view. It is also shown that this result

applies to objects with smooth boundaries, to a good approximation, without

introducing additional model views. (Objects with smooth boundaries, such

as ellipsoids or spheres, are more complex because the object's boundary

contour is not projected from �xed contours on the object [7, 27]).

The remainder of this section presents the results concerning establishing corre-

spondence and a�ne shape from two orthographic views (the �rst three items

above). Section 2 puts these results in the context of visual recognition (fourth

item above).

1.1 Shape and Correspondence from 2 Views

We assume orthographic views at time instances, t1 and t2, are taken of a surface

in 3D space. We assume the convention that the 3D Cartesian frame is aligned

with the x�y axis in image space, and that the z axis is along the viewer's optical

axis. Furthermore, without loss of generality, we assume that the origin of the 3D

frame is aligned with the point (0; 0) in the image plane. The following notation

is used. Let P be a point in 3D space at time t1, and p = �[P ] be its orthographic

projection onto the image plane. Let P 0 be the location of the point P at time

t2, and p0 = �[P 0] be the image space coordinates of P 0. We therefore refer to the

pair p and p0 as corresponding points. Let op = p � o denote the vector from the

point o to p, i.e. op represents the coordinates of p with respect to a new origin

located at point o. Similarly OP;O0P 0; o0p0 denote the vectors from O to P , from

O0 to P 0 and from o0 to p0, respectively. A point p will be referred to as privileged

if its corresponding point p0 is given as input.

Let O;P1; P2; P3 be four non-coplanar reference points3 on an object of interest

in 3D. Taking O to be the origin, we obtain a 3D a�ne coordinate frame, and

therefore, any point P on the object can be represented in the a�ne coordinate

frame with its associated set of coordinates b1; b2; b3 in the following way:

OP =
3X

j=1

bj(OPj)

The crucial point is that the b's are invariant with respect to linear transformations

applied to the equation above (which correspond to a�ne transformations in space

that include rotation, translation, scaling and shearing of the object).

3The term reference point is adopted from projective geometry (see [42]).
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Let the object undergo an arbitrary a�ne transformation in space, and letO0; P 0
1
; P 0

2
; P 0

3

and P 0 be the new space locations of the a�ne coordinate frame and the point of

interest P . We therefore have:

O
0
P
0 =

3X

j=1

bj(O
0
P
0

j):

Under orthographic projection, we have the following relation between the image

coordinates of the a�ne frame in both views, and the image coordinates of the

point of interest in both views:

op =
3X

j=1

bj(opj ) (1)

o0p0 =
3X

j=1

bj(o
0p0j): (2)

The four equations in formulas 1,2 combine together shape, i.e. a�ne coordinates,

projected motion, i.e. motion of four points, and correspondence. Therefore,

given the projected motion, captured by four corresponding points, and the a�ne

coordinates we can immediately obtain correspondence as well. Also, given the

correspondence p  ! p0 we have 4 equations for 3 a�ne coordinates which also

shows that a `view and a half' is su�cient for recovering a�ne shape (see also [35,

51]). Note also that formula 1 provides two equations for solving for the a�ne

coordinates | the third equation has been lost because of the projection from 3D

to 2D.

We can compensate for the loss of the third equation by producing an equation

directly from the changing brightness4. We assume that both views are taken

under identical illumination conditions, namely, that brightness change is induced

purely by motion and not by photometric e�ects of changing viewing angle or angle

between light sources and surface orientation. In other words, we assume that the

brightness of an image point p is equal to the brightness of its corresponding point

p0 in the second view (Horn and Schunk [23]). By further assuming that the motion

is in�nitesimal (an assumption that will be relaxed later on), we obtain from the

expansion of the total derivative of brightness at p a linear approximation to the

change of brightness due to motion, known as the constant brightness equation [23]:

rI � v + It = 0

4The term `brightness' has di�erent meanings in vision literature. Here it is referred to the
raw image intensities (term adopted from Horn [22]).
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where v = p0�p is the unknown displacement vector,rI is the gradient at point p

in the image of the �rst view, and It is the temporal derivative at p. The constant

brightness equation provides only one component of the displacement vector v, the

component along the gradient direction, or normal to the isobrightness contour at

p. This `normal ow' information, provided by the changing brightness, is su�cient

to uniquely determine the a�ne coordinates bj at p, as shown next. By subtracting

equation 1 from equation 2 we get the following relation:

v =
3X

j=1

bjvj + (1�
X

j

bj)vo (3)

where vj j = 0; ::; 3 are the known displacement vectors of the privileged points. By

substituting equation 3 in the constant brightness equation we get a new equation

in which the a�ne coordinates are the only unknowns:

X

j

bj[rI(vj � vo)] + It +rIvo = 0: (4)

Equations 1, and 4, provide a complete set of linear equations (ignoring singular

cases) to solve for the a�ne coordinates from which, in return, we obtain corre-

spondence. We have therefore proven the following `4pt + brightness' proposition:

Proposition 1 (4pt + brightness) Two orthographic images of a shaded 3D

surface with four clearly marked reference points, admit a complete set of linear

equations representing the a�ne coordinates of all surface points (excluding sin-

gular cases), provided that the surface is undergoing an in�nitesimal a�ne trans-

formation and the two orthographic images are taken under identical illumination

conditions.

Comments

Rigidity: note that rigidity is not required for solving for a�ne coordinates and

correspondence. If correspondence is the main concern, say for model building

[51, 43, 18, 6], then by assuming the transformation between the two views to be

any linear transformation, allows one to tolerate certain non-rigid transformations,

as long as the �eld of view is su�ciently small. This may also be relevant for a

surface undergoing a rigid transformation but viewed under situations that do not

fully meet the requirements of the orthographic projection model. This notion,

however, is not pursued further here.

Identical Illumination Conditions: the assumption of identical illumination con-

ditions is a useful approximation for a Lambertian surface under multiple light
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sources or hemispherical illumination. In those cases the change of brightness due

to motion in space is much larger than the change in brightness induced by photo-

metric e�ect, such as changing viewing direction or illumination. The assumption

holds exactly for an object rotating around the vertical axis under hemispherical

illumination, a situation which is quite common in natural environments. (See also

[24, 53, 34] for quantitative and experimental analysis). Local photometric e�ects

can also be ameliorated to some degree by applying a linear operator, such as the

Laplace operator, to the brightness values, prior to using the constant brightness

equation (Bergen and Adelson [9]).

1.2 Constraint Lines in Correspondence Space

The system of equations leading to Proposition 1 can be decomposed into two

constraint lines intersecting at p0 for any given point p. One constraint line comes

directly from the constant brightness equation: a line passing through the point

p� It
jrI j
rI in direction perpendicular to the direction of the gradient rI at point

p. The second constraint line can be derived from equations 1 and 2 as shown

below.

We rewrite equations 1 and 2 in matrix form: Let M be a 2 � 3 matrix whose

column vectors are op1; op2; op3, and similarly M 0 has o0p0
1
; o0p0

2
; o0p0

2
as column

vectors. We therefore have: op = Mb and o0p0 = M 0b. Since the system op = Mb

is underdetermined, then the solution b is determined only up to an element of the

null space of M , namely, for every solution ~r the vector ~r + �~s is also a solution,

where � is a scale factor andM~s = 0. We can substitute b in the system o0p0 = M 0b

by ~r + �~s and obtain the following constraint line equation:

p0 = o0 +M 0~r + �M 0~s = r + �s: (5)

Note that r depends on p whereas s is �xed for all points, therefore the constraint

lines passing through all points in the image of the moving surface are parallel to

each other. The unknown parameter � can be found by using the �rst constraint

line whenever the gradient is non{vanishing and is not perpendicular to s, i.e. s

is not in the direction of the isobrightness contour at p (see Fig. 1). We have

therefore proven the following proposition:

Proposition 2 A constraint line in correspondence space can be recovered from

four corresponding points along two orthographic views of an object undergoing an

arbitrary a�ne transformation in space.

Di�erent versions of this result have been proposed in the past. Huang and Lee [25]

and Basri [6] derive the same constraint line (which is di�erent from the one pre-

sented here) by di�erent approaches. Huang and Lee assume a rigid transformation
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Figure 1: Two constraint lines that intersect at the corresponding point p0. The

vector n is the normal component of the displacement vector, n = rI and n̂ = rI

jrIj
.

The vectors n; r and the scalars �; It are a function of the location p. The vector

s is �xed for all points and can be determined only up to a scale factor.

and use that as an algebraic constraint to derive a constraint line. Basri's deriva-

tion is based on the result, originally developed in [51], that all views of an object

undergoing an a�ne transformation in space are spanned by a linear combination

of two views. This also shows that rigidity is not required for obtaining the con-

straint line. Koenderink and Van-Doorn [28] and Lamdan and Wolfson [29] derive

a particular case of equation 5, the case where ~r3 = 0.

The displacement vector p0 � p varies with the 3D coordinates of P and with the

a�ne transformation applied to the object in space. Huang and Lee [25] have

shown that the contribution of depth and motion cannot be decoupled from two

orthographic views. The following result shows that a particular case of equation 5

can be realized by a 2D a�ne transformation de�ned by the four privileged points,

to which � is a �xed function of the 3D a�ne coordinates of P , namely, is motion

invariant.

Proposition 3 Four corresponding points, orthographically projected from four

reference points in space, determine a 2D a�ne transformation A,w that represent

a constraint line in correspondence space, o0p0 = A(op)+w+�w, where � is a �xed

function of the a�ne coordinates of P and is independent of the object's motion.

Proof: The four corresponding points de�ne three, non-collinear, corresponding

vectors opj  ! o0p0j j = 1; 2; 3. Because of non-collinearity of the vectors, there
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exists a unique 2D a�ne transformation, A,w that aligns the corresponding vectors:

o
0
p
0

j = A(opj) + w; j = 1; 2; 3 (6)

where A is a 2�2 matrix and w is a 2�1 vector. Applying the a�ne transformation

to an arbitrary point p, yields the following result:

A(op) + w = A(
X

j

bj(opj)) + w =
X

j

bj(o
0
p
0

j �w) + w = o
0
p
0 + (1�

X

j

bj)w: (7)

Equation 1 was used in the second term, equation 6 in the third term and equation

2 in the last term. After rearrangement we get:

p
0 = [A(op) + o

0 + w] + (
X

bj � 1)w: (8)

The proposition contains two statements: the �rst is that under an a�ne coordi-

nate frame one can derive a constraint line from four corresponding points such

that the remaining degree of freedom � depends only on shape, i.e. is motion

invariant. The second statement is that all of the above is captured by a 2D a�ne

transformation derived directly from the four corresponding points.

The �rst statement is not new and has been introduced recently by Koenderink and

Van-Doorn [28] by geometrically constructing a constraint line for which � = b3.

An algebraic version of their result, which also shows that it is a particular case of

equation 5 with ~r3 = 0 is given in appendix 1. Koenderink and Van-Doorn have

also derived the geometrical equivalent of � showing that it represents the relative

deviation, along the line of sight, of P from the plane passing through the three

reference points | thereby showing that shape is recovered up to depth scaling

and shear.

The geometrical equivalent of � follows directly from the 2D a�ne representation of

the constraint line by noticing that
P

j bj = 1 for every point P that is coplanar with

the three reference points. Therefore, the transformation A(op) + w accounts for

the projected motion of a plane | a result well known in projective geometry [42]

| and that � =
P

j bj � 1 represents the deviation of P from that plane. The

geometrical interpretation, much of which was described earlier in [28], can be

summarized in the next proposition.

The following notations are added. The plane passing through P1; P2; P3 is referred

to as the reference plane. The point ~P is the orthographic projection (along the

line of sight) of the point P onto the reference plane. The point ~P 0 is the new

location of ~P following an a�ne transformation T in space.

Proposition 4 The 2D a�ne transformation de�ned in Proposition 3 admits the

following interpretation: the a�ne vector w is the projection of the vector ~O0
�O0
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onto the image plane and is perpendicular to the xy projection of the rotation axis

of the transformation T . If T is a similarity transformation (rotation, translation

and scale), then � associated with the point p is equal to:

� =
z � ~z

~zo � zo

where z; ~z; zo and ~zo are the depth values of P; ~P ;O and ~O, respectively.

Proof: See appendix 2.

The a�ne shape parameter � provides, therefore, shape modulo translation in

depth, depth scaling and shear [28]. Translation in depth is unavoidable in or-

thographic projection, depth scaling comes from the distance, ~zo � zo, between

the reference point O and the reference plane, and shear comes from the distance,

z�~z, between object points and the reference plane, whose orientation is unknown.

Therefore, di�erent sets of four reference points are associated with di�erent ori-

entations of the reference plane and, therefore, give rise to di�erent a�ne shape.

The question that is dealt with next is whether shape modulo depth scale and

shear is the most one can obtain from two orthographic views. It has been shown

by Ullman [49] that when the two views are separated by an in�nitesimal angle

rotation, then shape can be recovered up to an overall depth scaling. The depth

scaling proposition holds also for planar objects but with an added ambiguity,

namely, the orthographic velocity �eld determines exactly two solutions, each up

to a depth scaling [49]. The depth scaling proposition no longer holds under �nite

angle transformations, as shown next, and the best one can achieve is shape up

to depth scale and shear, namely a�ne shape. In order to eliminate the shear

component from the a�ne shape one has to uniquely recover the equation of the

reference plane, up to an overall depth scaling, and therefore the more general

question is whether the depth scaling proposition holds for planar objects under

�nite angle transformations. The result shown below is that the parameters of

the appropriate constraint line and the equation of the depth scaled plane admit

a linear one parameter family of solutions. Therefore, one cannot possibly recover

the plane up to a depth scaling from only two orthographic views separated by a

�nite angle transformation.

Proposition 5 The constraint line parameters B; s and shape parameters a; b de-

scribing the motion of a planar object z = ax+ by+ 1, can be determined, up to a

linear one parameter family of solutions, from four corresponding points along two

orthographic views of the plane undergoing an a�ne transformation in space.

Comments. The equation ax + by + 1 determines the depth ~z of points on the

plane up to a translation and depth scaling, i.e. ~z�zo
~zo�zo

= ax+by+1 where zo is the
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depth of the moving origin, ~zo is the depth of the point where the plane intersects

the line of sight, and x; y are coordinates relative to xo; yo. Therefore, if a; b can be

determined uniquely, then by subtracting ax+ by + 1 from the a�ne shape � we

obtain shape of a non-planar object up to depth scaling. The proposition states

that one cannot determine a; b uniquely from just two views.

Proof: We subtract the corresponding point o  ! o0 from both views and the

remaining three corresponding points are used to determine the parameters of the

following constraint line:

p0j = Bpj + (axj + byj + 1)s j = 1; 2; 3

where B is a 2� 2 matrix and s is a 2� 1 vector. Given the a�ne transformation

de�ned by p0j = Apj+w we have from Proposition 3 that s = �w for some constant

� and that B � A is a projection matrix �[wwt], for some constant �. We have

therefore,

p0j = (A+ �[wwt])pj + (�axj + �byj + �)w j = 1; 2; 3;

which is reduced to,

0 = �(wt
pj)w + (�axj + �byj + �� 1)w

from which we get the following linear system of three equations for the four

unknowns �; �a; �b; �:

1 = �(wtpj) + �axj + �byj + �:

These equations are linearly independent as long as the three points are not

collinear. The system is underdetermined with any number of corresponding

points, because any additional point must be coplanar with the three reference

points and therefore is a convex combination of these points.

Propositions 3,4 and 5 put together show that the 2D a�ne transformation, recov-

ered directly from four corresponding points, represent all the information possible

from two orthographic views. A(op) + o0+w accounts for the projected motion of

all points P that are coplanar with P1; P2; P3, and the residual for non-coplanar

points is simply a vector along w whose length relative to w represents the shape

of the object up to depth scaling and shear. The next proposition shows that the

magnitude of the residual motion for non-coplanar points is bounded from above

by the depth variation between the surface and the reference plane.

Proposition 6 Let V1; V2 be two orthographic views produced by a rigid trans-

formation, and let ~V 0
1
be the view V1 followed by the 2D a�ne transformation of

Proposition 3. The remaining distance between points ~p0 in ~V 0
1
and their corre-

sponding points p0 in V2 is bounded by j z � ~z j the relative depth between P and

its projection ~P onto the reference plane.
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Proof: we have that p0 � ~p0 = �w where � = z�~z

~zo�zo
. Since w = �[T ( ~O�O)] and

T is a rigid transformation, therefore j w j�j ~zo � zo j.

Overall scale di�erences due to translation in depth can be corrected before apply-

ing Proposition 6 (see for example [28]), therefore the result applies to similarity

transformations as well. The importance of this result is that it suggests that

surface shape and motion range can be decoupled, provided that four correspond-

ing points can be identi�ed. The smaller the depth variation between the surface

and the reference plane, the larger the range of motion that can be detected from

two orthographic views. This can be realized by a two stage computation which

starts with a nominal motion transformation (�rst term of equation 8), followed

by a residual motion computation (the term �w) with the aid of the brightness

information. The nominal motion transformation provides a �rst approximation

(determined only by four corresponding points), which is the exact motion for a

planar object, leaving a residual whose magnitude is bounded by the depth varia-

tion between the surface and the reference plane. The �nal re�nement, determining

the residual motion, is provided by the second stage in which the brightness infor-

mation is used in the form of a second constraint line, as described earlier. This

point is developed further below, suggesting a general scheme for measurement of

motion.

1.3 Frame of Reference and the Measurement of Motion

The results of section 1.2 suggest that the measurement of motion is conducted rel-

ative to a frame of reference, in the form of a reference plane, which determines the

direction of motion and the limits on its range (Proposition 6). The range of spa-

tial displacements is bounded by the depth variation between the moving surface

and the reference plane. This suggests, therefore, that the frame of reference pro-

vides a nominal motion everywhere, which is exact for planar surfaces, by `pulling'

or `capturing' the motion of all points that are under its inuence. The residual

motion is later re�ned by use of local spatio-temporal detectors that implement

the constant brightness equation, or any other correlation scheme [32, 52, 1], along

the �xed direction determined by the frame of reference.

The notion of a frame of reference that precedes the computation of motion may

have some support in human vision literature, although not directly. The phe-

nomenon of `motion capture' introduced by Ramachandran [38, 39, 40] is sugges-

tive to the kind of motion measurement presented here. Ramachandran and his

collaborators observed that the motion of certain salient image features (such as

gratings or illusory squares) tend to dominate the perceived motion in the enclosed

area by masking incoherent motion signals derived from uncorrelated random dot

patterns, in a winner-take-all fashion. Ramachandran therefore suggested that mo-
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tion is computed by using salient features that are matched unambiguously and

that the visual system assumes that the incoherent signals have moved together

with those salient features [38]. The scheme suggested in this paper may be viewed

as a re�nement of this idea. Motion is `captured' in Ramachandran's sense for the

case of a planar surface in motion, not by assuming the motion of the the salient

features but by computing the nominal motion transformation. For a non-planar

surface the nominal motion is only a �rst approximation which is further re�ned

by use of spatio-temporal detectors, provided that the remaining residual displace-

ment is in their range, namely, the surface captured by the frame of reference

is su�ciently at. In this view the e�ect of capture attenuates with increasing

depth of points from the reference plane, and is not a�ected, in principle, by the

proximity of points to the salient features in the image plane.

The motion capture phenomenon also suggests that the salient features that are

selected for providing a frame of reference must be spatially arranged to provide

su�cient cues that the enclosed pattern is indeed part of the same surface. In

other words, not any arrangement of four non-coplanar points, although theoret-

ically su�cient, is an appropriate candidate for a frame of reference. This point

has also been raised by Subirana-Vilanova and Richards [44] in addressing per-

ceptual organization issues. They claim that convex image chunks are used as a

frame of reference that is imposed in the image prior to constructing an object de-

scription for recognition. The frame then determines inside/outside, top/bottom,

extraction/contraction and near/far relations that are used for matching image

constructs to a model.

Other suggestive data include stereoscopic interpolation experiments by Mitchi-

son and McKee [33]. They describe a stereogram which has a central periodic

region bounded by unambiguously matched edges. In certain conditions the edges

impose one of the expected discrete matchings (similar to stereoscopic capture,

see also [37]). In other conditions a linear interpolation in depth occurred be-

tween the edges violating any possible point-to-point match between the periodic

regions. The linear interpolation in depth corresponds to a plane passing through

the unambiguously matched points, which supports the idea that correspondence

starts with the computation of nominal motion, determined by a small number

of salient unambiguously matched points, and is later re�ned using short-range

motion mechanisms. Finally, experiments by Todd and Bressan [45] demonstrate

that human subjects can determine whether a moving surface is planar from only

two orthographic views. This may also suggest that the computation of a frame

of reference in the form of planar nominal motion precedes the �nal computation

of motion.

To conclude, the computational results suggest that a long-range mechanism sets

up a frame of reference by tracking a selected set of features. The frame pro-
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vides a nominal transformation and a matching direction for all other points in

the enclosed region. The remaining residual motion following the nominal trans-

formation is handled by short-range motion detectors. This view di�ers from the

classical short-range vs. long-range motion detection in two respects. First it is

suggested that the two mechanisms interact in a speci�c way. Second, the range

of detected motion depends not only on the range of the spatio-temporal detectors

but also on the three-dimensional shape of the surface, namely, the magnitude of

the residual motion depends on how close the enclosed surface is to a plane.

1.4 Implementation

The use of the constant brightness equation for determining the residual motion

term �w assumes that j �w j is small. In practice, the residual motion is not suf-

�ciently small everywhere and, therefore, a hierarchical motion estimation frame-

work is adopted for the implementation. The assumption of small residual motion

is relative to the spatial neighborhood and to the temporal delay between frames;

it is the ratio of the spatial to the temporal sampling step that is required to be

small. Therefore, the smoother the surface the larger the residual motion that can

be accommodated. The Laplacian Pyramid [12] is used for hierarchical estimation

by re�ning � at multiple resolutions. The rationale being that large residuals at

the resolution of the original image are represented as small residuals at coarser

resolutions, therefore satisfying the requirement of small displacement. The �

estimates from previous resolutions are used to bring the image pair into closer

registration at the next �ner resolution.

The particular details of implementation follow the `warp' motion framework sug-

gested by Bergen and Adelson [9] and by Bergen and Hingorani [10]. Described in

a nutshell, a synthesized intermediate image is �rst created by applying the nom-

inal transformation to the �rst view. To avoid subpixel coordinates, we actually

compute ow from the second view towards the �rst view. In other words, the

intermediate frame at location p contains a bilinear interpolation of the brightness

values of the four nearest pixels to the location ~p0 = A(op) + o0 + w in the �rst

view, where the 2D a�ne parameters A;w were computed from view 2 to view

1. The � �eld is estimated incrementally by projecting previous estimates at a

coarse resolution to a �ner resolution level. Gaps in the estimation of �, because

of vanishing image gradients or other low con�dence criteria, are �lled-in at each

level of resolution by means of membrane interpolation. Once the � �eld is pro-

jected to the �ner level, the displacement �eld is computed (the vector �w) and

the two images, the intermediate and the second image, are brought into closer

registration. This procedure proceeds incrementally until the �nest resolution has

been reached.
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1.5 Experimental Results

Experiments were done on real imagery of `Ken', a doll, undergoing rigid rotation,

mainly around the vertical axis. Four snapshots were taken covering altogether

about 23 degrees of rotation. The light setting consisted of two point light sources

located in front of the object, 60 degrees apart from each other.

Three experiments were conducted: (i) long range motion by incrementally adding

ow produced by each pair of consecutive images, (ii) long range motion directly,

and (iii) establishing approximate correspondence using a single corresponding

point and normal ow information.

Privileged points were obtained from ow �elds generated by the warp motion

algorithm [9, 10] along points having good contrast at high spatial frequencies,

e.g. the tip of the eyes, mouth and eye-brows (the location of those points were

determined manually).

The combination of the particular light setting and the complexity of the object

make it a challenging experiment for the following two reasons: (i) the object is suf-

�ciently complex to have cast shadows and specular points, both of which undergo

a di�erent motion than the object itself, and (ii) surface material is dominantly

Lambertian and therefore, coupled with the light setting, brightness change will

be induced because of change in viewing angle in addition to the change due to

motion.

The results of correspondence in all these experiments are displayed in several

forms. The ow �eld is displayed to illustrate the stability of the algorithm, in-

dicated by the smoothness of the ow �eld. The �rst image is `warped' using the

ow �eld to create a synthetic image that should match the second image. The

warped image is displayed in order to check for deformations (or lack there of).

Finally, the warped image is compared with the second image by superimposing,

or taking the di�erence of, their edge images that were produced using a Canny

[15] edge detector with the same parameter settings.

Incremental Long Range Motion

In this experiment, ow was computed independently between each consecutive

pair of images, using a �xed set of four privileged points, and then added up to

form a ow from the �rst image, Ken1, to the fourth image, Ken4. The rationale

behind this experiment is that because shape is an integral part of computing

correspondence/ow, then ow from one consecutive pair to the next should add

up in a consistent manner.

Fig. 2 shows the results on the �rst pair of images, Ken1 and Ken2, separated by

6o rotation. The warped image shows no signs of deformation. As expected, the
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Figure 2: Results of shape and correspondence for the pair Ken1 and Ken2. First

row: Ken1,Ken2 and the warped image Ken1-2. Second row: edges of Ken1 and

Ken2 superimposed, edges of Ken2 and Ken1-2 superimposed, di�erence between

edges of Ken2 and Ken1-2. Third row: ow �eld in the case where �, the shape

constant, is estimated in a least squares manner in a 5 � 5 sliding window, and

ow �eld when � is computed at a single point (no smoothing).
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Figure 3: Three-dimensional plot of the shape constant �.

location of strong cast shadows (one near the dividing hair line) and specular points

in the warped image do not match those in Ken2. The superimposed edge images

illustrate that correspondence is accurate, at least up to a pixel accuracy level. The

ow �eld is smooth even in the case where no explicit smoothing was done. Finally,

in Fig. 3 the shape constants � are displayed in a three-dimensional plot. One can

clearly see the structure of the head and the bumps and dents corresponding to

the location of nose, chin and eyes. One cannot recognize, however, the particular

face from this plot or claim that it is a good rendering of a three-dimensional

face. The change in brightness due to change in viewing angle is an important

cue that is not modeled in this framework, and that may explain the inaccuracies

in recovering shape for the images used here. It is also interesting to note the

discrepancy between the perceived correspondence, which appears to be accurate,

and the true correspondence that would have led to accurate shape constants. This

suggests that good correspondence, in the sense of registration, is more attainable

than reliable shape descriptors when dealing with real images. More on that, and

the relation to visual recognition, in section 2.

Fig. 4 shows the results of adding ow between consecutive pairs computed inde-

pendently (using the same four privileged points) to produce ow from Ken1 to

Ken4. Except the point specularities and the strong shadow at the hair line, the

di�erence between the warped image and Ken4 is only at the level of di�erence

in brightness (because of change in viewing angle). No apparent deformation is

observed in the warped image. The ow �eld is as smooth as the ow from Ken1

to Ken2, implying that the ow was added in a consistent manner.

Long Range Motion
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Figure 4: Results of adding ow from Ken1 to Ken4. First row: Ken1,Ken4 and

the warped image Ken1-4. Second row: edges of Ken1, Ken4 and edges of both

superimposed. Third row: edges of Ken1-4, edges of Ken4 and edges of Ken1-4

superimposed, ow �eld from Ken1 to Ken4 (scaled for display).
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The two-stage scheme for measuring motion | nominal motion followed by a

short-range residual motion detection | suggests that long-range motion can be

handled in an area enclosed by the privileged points. The restriction of short-range

motion is replaced by the restriction of limited depth variation from the reference

plane. As long as the depth variation is limited, then correspondence should be

obtained regardless of the range of motion. Note that this is true as long as we are

su�ciently far away from the object's bounding contour. The larger the rotational

component of motion | the larger the number of points that go in and out of

view. Therefore, we should not expect good correspondence at the boundary. The

claim that is tested in the following experiment, is that under long range motion,

correspondence is accurate in the region enclosed by the frame of reference, e.g.

points that are su�ciently far away from the boundary.

Fig. 5 shows the results of computing ow directly from Ken1 to Ken4. Note the

e�ect of the nominal motion transformation. The nominal motion brings points

closer together inside the frame of reference; points near the boundary are taken

farther apart from their corresponding points because of the large depth di�erence

between the corresponding object points and the reference plane. The warped

image looks very similar to Ken4 except near the boundary of the object. The

deformation there may be due to both the relatively large residual displacement,

remaining after nominal motion was applied, and to the repetitive intensity struc-

ture of the hair; the farther we go from the reference plane the larger the residual

displacement �w. Therefore it may be that the frequency of the hair structure

caused a misalignment at some level of the pyramid which was propagated.

Approximate Correspondence With a Single Privileged Point

The 2D a�ne transformation A;w derived from four corresponding points (Propo-

sition 3) describes a constraint line, which together with the constant brightness

equation, determines correspondence everywhere else. Also, as shown in appendix

1, any 2D a�ne transformation that aligns three image points with their cor-

responding points can be used to de�ne the constraint line, together with one

additional corresponding point. It may therefore be possible to look for an a�ne

transformation A;w that approximately aligns 3 points, without actually using 3

corresponding points. Bachelder and Ullman [4] show that measurements of nor-

mal ow5 along at least 6 points determines a 2D a�ne transformation. Burt et.

al. [13, 14] show a similar result by deriving a 2D a�ne transformation directly

from the instantaneous brightness measurements using the constant brightness

equation.

Following Burt et. al. we look for a 2D a�ne transformation A;w that minimizes

5the component of p0�p along the image gradient or along the normal to the contour passing
through p.
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Figure 5: Results of computing long-range ow from Ken1 to Ken4. First row:

Ken1,Ken4 and the warped image Ken1-4. Second row: edges of Ken1 and Ken4

superimposed, edges of Ken4 and edges of Ken1-4. Third row: edges of Ken4

superimposed on edges of the nominal transformed Ken1, edges of Ken4 and Ken1-

4 superimposed, and di�erence between edges of ken4 edges of Ken1-4.
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the total squared error of the constant brightness equation for which A(op) + o0 +

w � p is substituted for the unknown velocity. Algebraically, this takes the form:

min
A;w

X

i

(rI � (A(opi) + o0 + w � pi) + It)
2:

where o  ! o0 is a given privileged point. Note that if the area of summation

corresponds to a planar patch, then A;w will represent the motion of some plane

moving with the object, and therefore accurately aligns at least 3 points with their

corresponding points. For a non{planar patch this is not guaranteed, and A;w

will only approximately align at least 3 points.

A single region, covering the entire face, was chosen in order to test the accuracy

of this scheme on non{planar patches. The a�ne parameters estimation was per-

formed in an hierarchical framework, and a single privileged point was then chosen

(the tip of the left eye). The results of aligning Ken1 and Ken2 are perceptually

identical to the four privileged point scheme. The results of aligning Ken1 and

Ken3, separated by 14o of rotation, are shown in Fig. 6. Note that although re-

sults di�er between the four point scheme and the single point scheme, the quality

is very similar.

2 Object Recognition and Structure from Mo-

tion

The geometrical aspect of visual recognition can be viewed as a problem of com-

pensating for changes in the image induced by changing view positions [50, 26].

Under this view, the visual system must confront similar issues to those dealt with

in SFM, albeit in a more implicit manner | one is more concerned in factoring

out the e�ects of shape and viewing transformation on the changing image, rather

than recovering them.

Three concepts, that have been recently introduced, seem to play an important

role in this view. The �rst concept is the equivalence between the process of com-

pensating for the change in the image and the process of generating the image

from a 2D model [51, 18]. For instance, Ullman and Basri [51] have shown that

all possible views that can undergo a similarity transformation in space (rotation,

translation and scale), are spanned by the linear combination of three views of the

object (two in the case of a�ne transformation in space, see also result by Pog-

gio [35]). Therefore, any process that can generate a novel view from a 2D model

is relevant for purposes of recognition. The second concept, introduced also by

Ullman and Basri, is that shape information is equivalent to full correspondence
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Figure 6: Comparing the four points scheme to the single privileged point scheme.

First row: Ken1,Ken3 and their superimposed edge images. Second row: edges of

Ken3 and Ken1-3 (the warped image) superimposed using four privileged points,

edges of Ken3 and Ken1-3 superimposed using a single privileged point, the di�er-

ence between edges of Ken1-3 produced by the four point scheme and the single

point scheme.
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among a small set of model views. One therefore does not need to explicitly re-

cover shape and view transformation (motion) in order to generate a novel view

| four corresponding points between the novel view and the model views is suf-

�cient for generating the entire view. Finally, the third concept is the distinction

between objects with sharp bounding contours and objects with smooth bounding

contours [7, 51]. An object with a smooth bounding contour, such as an ellipsoid,

does not induce a one-to-one mapping between the object's bounding contours and

the projected silhouette. Furtheremore, the bounding contours that generate the

silhouette move constantly on the object as the viewing position changes. This

case may, therefore, require special attention in generating novel views. Ullman

and Basri have shown that for this case the number of views required to approxi-

mately span all views undergoing a similarity transformation is �ve (three in the

case of a�ne transformation in space).

The results derived in section 1 are shown to be relevant to visual recognition in

the context of the three concepts described above. In particular, (i) the result that

two model views in full correspondence together with four corresponding points

with a novel view are su�cient to generate the entire view [51, 35] is rederived

using tools from section 1, (ii) a single view can generate novel views taken under

similar illumination conditions undergoing limited changes of view position, and

(iii) novel views of objects with smooth boundaries can be generated, to a good

approximation, from two views in full correspondence.

2.1 Recognition from a Single View

The main result, derived in section 1, is that correspondence can be recovered from

two pictures, taken under similar illumination conditions, of an object undergoing

an a�ne transformation in space. The range of allowed viewing transformation

was shown to be limited by the structure of the object | the smaller the depth

variation, in the region of four corresponding points, the larger the range of viewing

transformations. In the context of the �rst concept, this result is equivalent of

saying that a novel view can be generated from a single model view (picture) and

four corresponding points, provided the model image and the input image are

taken under similar illumination conditions and with a restricted range of viewing

transformations.

One straightforward extension is to treat regions of the object as locally at, and

by that to increase the range of viewing transformations for the entire object. This

can be implemented by imposing a triangulation on a set of more then four corre-

sponding points [26]. The triangulation divides the image into regions, each with

three corresponding points, within which the correspondence method discussed in

section 1 can be applied (the fourth corresponding point can be shared among all
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triangles).

2.2 Recognition from Two views: Objects with Sharp

Boundaries

The basic result, derived by Ullman and Basri [51] and by Poggio [35], is that two

model views with full correspondence are su�cient to generate, using the linear

combination scheme, a novel view given four corresponding points between the

novel view and the model views. Ullman and Basri also pointed out, that with only

two model views one cannot distinguish between a non-rigid linear transformation

and a rigid transformation of the object.

There are two ways, both straightforward, to re-derive this result in the framework

of recovering a�ne shape. The �rst derivation follows directly from equations 1

and 2, that for convenience are reproduced below:

op =
3X

j=1

bj(opj )

o0p0 =
3X

j=1

bj(o
0p0j):

The a�ne coordinates can be recovered for every corresponding point, and there-

fore can be recovered for all points in model view V1 given full correspondence

with model view V2. Since the a�ne coordinates are invariant under any a�ne

transformation in space, then given a novel view V and four corresponding points

with V1 and V2 one can recover the a�ne coordinates from the known correspon-

dence V1  ! V2 and use them to generate V from V1 (or from V2). Incidently,

this also shows that 1:5 views are su�cient [51, 35] because 2 views provide an

over-determined system for solving for the a�ne coordinates.

One can use a more practical method for generating a novel view by using the

constraint line derived in Proposition 3. This can be done in the following way.

Let p; p0 and p00 be the image coordinates of the point P in the two model views

V1; V2 and the third novel view V , respectively. Given four corresponding points

along the three views one can construct the constraint line, equation 8, between

V1; V2 and between V1; V . We take advantage of the separation of shape and motion

in equation 8 by noticing that the scale factor � is the same along the constraint

line from p to p0 and from p to p00. We therefore can �nd � from the known

correspondence p; p0 and use that to �nd the corresponding point in the third view

p00. Since � is invariant under a�ne transformations in space one cannot distinguish

between a non-rigid linear transformation and a rigid transformation of the object.
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Also, from Propositions 3 and 4, the transformation between the two model views

should be other than a pure rotation around the line of sight (w = 0 in that case).

2.3 Recognition from Two views: Objects with Smooth

Boundaries

In the case of objects with smooth boundaries, the correspondence between the

two model views at and near the silhouette no longer relates to the true a�ne

shape parameters at these points. This is because any two corresponding points

along the silhouette are projected from di�erent object points.

The fact that the shape parameter � that is recovered from a silhouette point in

view V1 and its corresponding silhouette point in V2 is not equal to the shape pa-

rameter associated with any of the object points projecting to the two correspond-

ing points may work to our advantage. The reason is that the shape parameter �0

that is required to correctly generate the same silhouette point in a novel view V

also does not relate to a true shape parameter, and therefore it may be expected

that � � �0. It is important to note that as long as the four privileged points are

true corresponding points (i.e. not on the silhouette), then the nominal motion

transformation and the direction of the constraint line w are correct for all points,

including those at and near the bounding contour | it is only the shape parameter

� that may be inaccurate at these points.

If indeed � is a good approximation to �0, then one can use the same method for

generating novel views as that used for objects with sharp boundaries | with the

same number of model views.

The following section analyzes the accuracy of this method under the assumption

of pure rotation around y axis (rotation around z axis can be neglected), reference

plane ortho-parallel, and that rim points are on locally spherical patches. Under

these assumptions, the error relative to the radius of curvature at the rim is shown

to be typically less than 3% for relatively large rotations (30 degrees) and less than

1% for a 15 degree rotation. Experimental results follow.

2.4 Analysis of the Prediction Method

For the purpose of analysis, one can ignore rotation around the z axis, translation,

and scaling. I further make the following simpli�cations: (i) reference plane is

ortho-parallel to the image plane, (ii) rotation is only around the y axis, and (iii)

the boundary points projecting to the silhouettes are on locally spherical patches,

with radius r.
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Figure 7: Cross section of a sphere perpendicular to the vertical axis. See text for

reference.

Fig. 7 shows a cross section of a sphere, that is perpendicular to the y axis,

and a point P on its rim. The point P 0
s is the new rim point followed by a �

degree rotation around the y axis. Let the reference plane be at a distance r sin �

from the center of the sphere, and let the privileged point O be located on the

sphere such that the distance zo � ~zo = r�, for some constant �. We therefore

have that jwj = r� sin �. The nominal transformation associated with P is the

projection of ~P 0 which is equal to jA(op) + wj = r(cos �� sin� sin�). The shape

parameter � scales w to satisfy the equation (only the x-component is displayed):

A(op) + w + �w = r, and therefore

� =
1 � cos�+ sin� sin �

� sin �
:

We use � to predict the new location of the corresponding point p0 resulting from

some other angle of rotation �̂ around the Y axis. The motion component and the

length of w corresponding to the new angle �̂ are r(cos �̂�sin�̂ sin �) and r� sin �̂,

respectively. Noting that an exact correspondence will set p0 = r for any angle �̂,

the error, relative to the radius r, is therefore:

� = cos �̂+
(1� cos �) sin �̂

sin�
:
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Figure 8: Percentage of relative error as a function of the angle between the model

views, assuming worst case interpolation error.
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Fig. 8 shows the percentage of error as a function of �, taking �̂ to be the worst

case interpolation error. We see that the more distant the two model views | the

larger the relative error. Also, the absolute error increases with the radius r, for

example, the lower the curvature along the line of sight the larger the absolute

error. The expected worst case absolute error for generating views of `Ken', given

Ken1 and Ken4 as the model views, are 1:5 pixels for Ken2 and 2 pixels for Ken3.

This is because the projected radius is about 100 pixels, � = 23 and �̂ = 6; 9 for

Ken2 and Ken3, respectively.

Experimental results shown below con�rm these estimates. Full correspondence

were obtained using the incremental ow estimation described earlier (results that

were shown in Fig. 4). Four corresponding points were manually chosen among

the two model views and between Ken2 and Ken3. Fig. 9 shows the results of

generating Ken2 and Ken3. As expected, the errors in the silhouette of Ken2 are

smaller than those in Ken3. This is because Ken3 is further apart from the model

views than Ken2, as illustrated in the �gure. The errors along the silhouette of

Ken2 are less than 1 pixel for most of the points, and along other silhouette points

the error is between 1 to 2 pixels. The errors along the silhouette of Ken3 are

between 1 and 2 pixels.

In conclusion, a method for generating novel views from two model views was

suggested. The method is based on the principle of shape and motion separation
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Figure 9: Generating novel views from two model views, Ken1 and Ken4. The top

row shows results of generating Ken2 from Ken1, and the bottom row shows the

results of generating Ken3 from Ken4. The �rst two images illustrate the distance

between the novel view and the two model views, the third image is an overlay

of the edges of the original view and the predicted view, the fourth image is the

generated view.
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derived in Proposition 3. The method is accurate for objects with sharp bounding

contours, and can handle, to a good approximation, objects with smooth bounding

contours. An analytic analysis followed by experimental results on images of `Ken'

illustrate the accuracy of the method.

In comparing the a�ne-shape recognition scheme to the linear combination scheme

of Ullman and Basri, one sees the following tradeo�: the linear combination scheme

is theoretically more accurate in the case of objects with smooth boundaries (see

Basri [5], for analysis) than the method suggested here. This is at the expense of

having more views in the model, and having to include points along the bounding

contour in the sample of privileged points (otherwise the linear coe�cients are not

unique). The method suggested here does not require privileged points along the

boundary, which makes it easier to �nd a small number of reliable points to use

for recognition.

3 Summary

The paper presented a model for recovering a�ne shape and correspondence from

two orthographic views for the purposes of structure from motion and object

recognition. It was shown that it is possible to recover shape and full corre-

spondence/ow simultaneously, by using the instantaneous change in brightness,

together with four corresponding points, as an integral part of the computational

model. It was shown that a 2D a�ne transformation, derived directly from the

four corresponding points, represents a constraint line that captures both the a�ne

shape and the motion of a plane, that serves as a frame of reference, imposed on

the object (Proposition 3). Based on that result, it was suggested that the mea-

surement of motion starts by imposing a frame of reference that is de�ned by a

small number of salient, unambiguously matched, features in the image. The mo-

tion of the frame `captures' the motion of the remaining image points and takes

them part of the way towards their corresponding points. Motion is then re�ned

using local spatio-temporal detectors that are tuned along a known direction in

the image. The magnitude of the re�nement is bounded by the depth variation

between the surface and the frame (Proposition 6).

Those results were shown to apply to visual recognition by generating novel views

of sharp and smooth boundary objects from two model views, or from a single

view but with a restricted viewing transformation range.
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Appendix 1: Alternative Algebraic Form of the Constraint Line

Koenderink and Van-Doorn [28] show that the constraint line can be derived in

two stages, �rst p is represented in the 2D a�ne frame de�ned by 3 of the corre-

sponding points, and then the fourth point is used to �nd the third a�ne vector

by subtracting its corresponding point from its projection in the 2D a�ne frame.

This result is derived below in a single step algebraic proof which also shows that

the resulting constraint line is a particular case of equation 5 in which ~r3 = 0. Also

shown is the result that a 2D a�ne transformation aligning at least 3 points with

their corresponding points can be used, together with an additional corresponding

point, to derive a constraint line of the type introduced by Koenderink and Van-

Doorn.

LetA and w (not the sameA;w as in Proposition 3) be the 2D a�ne transformation

that align 3 of the corresponding points o; p1; p2, i.e. o0 = Ao + w and p0j =

Apj + w; j = 1; 2 . By subtracting the �rst equation from the other two we get:

o0p0
1
= A(op1)

o0p0
2
= A(op2)

and therefore A is the matrix [o0p0
1
; o0p0

2
][op1; op2]

�1. Let p3 be the fourth privileged

point, and let p be an arbitrary point. We therefore have:

o0p0 =
3X

j=1

bj(o
0p0j) = b1A(op1) + b2A(op2) + o0p0

3
+ b3A(op3)� b3A(op3)

= A(op) + b3(o
0p0

3
�A(op3))

and considering that w = o0 �Bo we get:

p0 = Ap+ w + b3(p
0

3
�Ap3 �w)

In this case the third frame vector is not in direction of w, but as Koenderink and

Van-Doorn noted is the result of subtracting the projected motion of P3 onto the

reference plane passing through O;P1; P2 from p0
3
.
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Appendix 2: Proof of Proposition 4

Proposition 4 The 2D a�ne transformation de�ned in Proposition 3 admits the

following interpretation: the a�ne vector w is the projection of the vector ~O0
�O0

onto the image plane and is perpendicular to the xy projection of the rotation axis

of the transformation T . If T is a similarity transformation (rotation, translation

and scale), then � associated with the point p is equal to:

� =
z � ~z

~zo � zo

where z; ~z; zo and ~zo are the depth values of P; ~P ;O and ~O, respectively.

Proof: Geometrically, any point P that is coplanar with P1; P2; P3 can be repre-

sented as a convex combination of the three vectors OPj , therefore � of the point

p is equal to 0. This in particular shows, in a very simple manner, that a 2D a�ne

transformation accounts for the projected motion of a plane [42]. This also proves

that � represents the deviation of P , along the line of sight, from the reference

plane.

The vector OP can be represented as sum of the following two vectors:

OP = P �O = (P � ~P ) + ( ~P �O):

Applying an a�ne transformation T followed by an orthographic projection yields:

o0p0 = �[T (P � ~P )] + �[T (O ~P )]:

Since ~P is on the reference plane, we have that �[T (O ~P )] = A(op) + w. We

therefore have the following:

�[T (P � ~P )] = �w

where � =
P
bj � 1. Using the same reasoning, we get that

w = �[T ( ~O�O)]:

We therefore see that w is the projection of ~O �O at the second time cinstance.

Because ~O�O is parallel to P � ~P , we may represent the deviation of P from the

reference plane as a scale factor of ~O �O. Furthermore, since ~O �O is along the

line of sight, then the projection �[T ( ~O�O)] is perpendicular to the xy projection

of the rotation axis.

If T is a rigid transformation, possibly followed by uniform scaling, then the rela-

tionship between P � ~P and ~O �O remains �xed, before and after T is applied,

and therefore �, the scale factor becomes:

� =
z � ~z

~zo � zo

where z; ~z; zo and ~zo are the depth values of P; ~P ;O and ~O, respectively.
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