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Abstract

A method is proposed for deriving dynamical equations for systems with both rigid and flexible com-
ponents. During the derivation, each flexible component of the system is represented by a “surrogate
element” which captures the response characteristics of that component and is easy to mathematically
manipulate. The derivation proceeds essentially as if each surrogate element were a rigid body. Applica-
tion of an extended form of Lagrange’s equation yields a set of simultaneous differential equations which
can then be transformed to be the exact, partial differential equations for the original flexible system. This
method’s use facilitates equation generation either by an analyst or through application of software-based
symbolic manipulation.
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Figure 1: Forces and moments generated at the bound-
aries of a Bernoulli-Euler beam.

1 Introduction

Derivation of the exact partial differential equations de-
scribing motion of systems with flexible elements is at
best tedious and at worst so difficult as to drive the
analyst toward other pursuits. A method is presented
here which simplifies the process of equation develop-
ment for a wide variety of system configurations. The
key to the method involves modeling each flexible com-
ponent in the system as a single dynamic element which
captures the essential characteristics of the flexible mem-
ber. This “surrogate element”, which can be treated
substantially as if it were a rigid body, stands in for the
flexible member through most of the derivation. Any of
the standard continuum models may be used in the form
of a surrogate element (i.e. Bernoulli-Euler beam, Tim-
oshenko beam, etc.) The method also works for systems
with rigid body rotations. [Singer 92] demonstrates the
use of the surrogate element using Kane’s Method.

First, the dynamic system is modeled with surro-
gate elements substituted for flexible members. State
variables are then assigned. Next, any of the conven-
tional methods for deriving system equations can be ap-
plied. When Lagrange’s method is employed, use of sur-
rogate elements simplifies mathematical manipulations
and eliminates the need to apply integration by parts.
(Integration by parts is, generally, the most time con-
suming step in the solution process for continuous sys-
tems.) The equation generation process becomes very
similar to that for systems made up of only rigid ele-
ments. This representation and derivation strategy was
developed to facilitate computer generation of equations
of motion for flexible systems. Its use also provides ad-
vantages when the equations are generated by the ana-
lyst.

2 The Surrogate Element

A flexible component in a dynamical system will typ-
ically exhibit the characteristics of both a mass and a
spring. It will contain kinetic and potential energy and
will exert forces and moments on adjacent components
at its boundaries. If a flexible component is beamlike, it
is frequently represented as a series of lumped elements,
each with specified degrees of freedom. Bernoulli-Euler
Beam elements and Timoshenko Beam elements are two
common element representations. Each element of the
series exerts a force and a moment only on its immediate
neighbors. These forces and moments result from local
deformations within the bodies. More specifically, the

Figure 2: This is an example of a surrogate element.

load applied by an element depends only on the shape of
the element at the point of application. (Of course, from
a slightly different perspective, the shape is dependent
only on the load.) An arbitrary number of similar ele-
ments can be chosen to represent a flexible component.

Just as the load applied by an element onto its neigh-
boring element depends only on its shape at the bound-
ary, the forces and moments applied by the entire flexible
component onto adjacent lumped or flexible components
are functions only of the flexible component’s shape (spa-
tial derivatives) at its boundaries. For a Bernoulli-Euler
Beam of length l, pictured in Figure 1, these forces and
moments are [Crandall 82]
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The sign convention chosen for these equations is as set
by the directions of the vectors in Figure 1.

The surrogate element is a model or representation of
a flexible component which can be used instead of a tra-
ditional continuous representation during equation gen-
eration. The surrogate element exhibits the essential dy-
namic characteristics of the component. It consists of a
single elemental particle of the continuum (called a “rep-
resentative particle”) and a spine defining the element’s
shape. The element can exert forces and moments at
the boundaries that connect it to the rest of the system.
The surrogate element contributes a kinetic energy term
because of motion of its elemental mass, and a potential
energy term due to energy storage at the location of the
representative particle. Because every internal particle
of the continuum is topologically identical, the response
of one particle can be used to represent that of the con-
tinuum. The forces and moments at the boundaries en-
force the connection of the surrogate element to the rest
of the system. (Appendix A justifies this description of
the surrogate element.)

Generalized coordinates must be assigned to the sur-
rogate element at each of the two boundary points and
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at the representative particle (Table 1 shows coordinate
selection for a variety of surrogate elements.) Frequently
the generalized coordinates which locate the ends of the
surrogate element will also locate the bodies to which
the corresponding beam is rigidly attached.

To satisfy constraints set by Lagrange’s method, the
generalized coordinates locating the representative par-
ticle must be referenced to a coordinate system which
is geometrically compatible with that of the bodies to
which the surrogate element is connected. For example,
in Figure 2:

q1 = q5(0, t)

q3 = q5(l, t)

q2 =
∂q5(0, t)

∂x

q4 =
∂q5(l, t)

∂x
. (5)

The condition of geometric compatibility is discussed in
Appendix B. Note that the surrogate element in Figure 2
represents a Bernoulli-Euler beam and so the position of
the representative point can be set with a single gen-
eralized coordinate [Crandall 82]. If this were a surro-
gate element for a Timoshenko beam, two generalized
coordinates would be required to set both position and
orientation at that point.

While the Bernoulli-Euler beam has only one coor-
dinate for describing the motion of each beam element,
two coordinates are required at each boundary to specify
position and orientation of the end of the beam. This
fact is consistent with the continuous derivation of the
Bernoulli-Euler beam model [Crandall 82] and is not a
product of the surrogate element definition. (The surro-
gate element concept simply highlights this anomaly.)

For the case of the Bernoulli-Euler Beam, the surro-
gate element has kinetic coenergy, potential energy, and
Lagrangian given by

T ∗ =
1

2
ρ∆x (vabs)

2 (6)

V =
1

2
EI

(
∂2q

∂x2

)2

∆x (7)

Ls = T ∗ − V (8)

with terms as defined at the bottom of Table 1.
Note that the kinetic energy term contains the ab-

solute velocity of the surrogate element’s representative
particle, vabs. If the neutral axis of the beam is sta-
tionery, then vabs = ∂q

∂t . However, if the beam is rotating
or translating, the absolute velocity of the representa-
tive particle must be determined (see Example 1). This
is consistent with the specification of the kinetic energy
of a lumped mass. Table 1 includes expressions for ki-
netic and potential energy for several types of surrogate
elements.

In the derivation strategy developed below, surrogate
elements are assumed to communicate with adjacent
lumped components by applying loads to them. Table 1
includes expressions for these loads as they should ap-
pear in the equations. The lumped components will, in

turn, communicate with the surrogate elements through
the enforcement of boundary position and orientation
compatibility. The loads applied by adjacent compo-
nents on the surrogate element are captured implicitly
by these geometric constraints. Consequently, they are
not included explicitly in the derivation (see Appendix
A).

3 An Extended Form of Lagrange’s
Equations

The common expression of Lagrange’s equations:

d

dt

(
∂L

∂ξ̇j

)
− ∂L

∂ξj
= Ξj j = 1, 2, . . . , n (9)

is valid for Lagrangians of the form,
L(ξ1, . . . , ξn;

dξ1

dt , . . . ,
dξn
dt ; t). Here Ξj (for j = 1, 2, . . . , n)

are the generalized forces [Crandall 82]. When a system
model includes surrogate elements, the potential energy
terms become functions of the spatial derivatives of the

ξi;
∂ξi
∂x and ∂2ξi

∂x2 . Appendix A demonstrates that a special
form of Lagrange’s equations,

∂

∂t

(
∂Ls

∂ξ̇j

)
− ∂Ls

∂ξj
+

∂

∂x

(
∂Ls

∂(
∂ξj
∂x )

)

− ∂2

∂x2

(
∂Ls

∂(
∂2ξj
∂x2 )

)
= sΞj j = 1, 2, . . . , n (10)

can be derived for systems whose models include rigid
and surrogate elements. For this equation, Ls is the La-
grangian formulated to include surrogate element terms
and the sΞj (for j = 1, 2, . . . , n) are the generalized
forces which include the loads applied by the surro-
gate elements onto adjacent components. The first two
terms of Equation 10 are those of Equation 9. The
last two terms are those required when spatial deriva-
tives appear in the Lagrangian. This result is shown
by [Lanczos 70] and [Meirovitch 90] and is also derived
for use in Lagrangian density functions by Low and
Vidyasagar [Low 88].

4 Derivation Strategy

The steps in a strategy for using surrogate elements to
derive exact partial differential equations of motion for
systems with flexible components will be described here.
The description assumes the use of Lagrange’s equation
and is followed by a sample derivation chosen to illustrate
application of the method.

1. Model the system as a collection of rigid and flexi-
ble elements.

2. Temporarily substitute for each flexible component
a surrogate element.

3. Assign the required generalized coordinates to the
surrogate elements. If the system configuration
precludes motion in any direction, a generalized
coordinate in that direction need not be included.
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4. Assign any additional generalized coordinates re-
quired to specify the states of the system’s rigid
elements. 1

5. List the kinetic and potential energies of all surro-
gate elements as presented in Table 1.

6. List the kinetic and potential energies of the
lumped elements.

7. From these terms for kinetic and potential energy,
form a Lagrangian.

8. List the generalized forces. The portions of the gen-
eralized forces applied by the surrogate elements
to adjacent components are given in Table 1.

9. Apply the extended form of Lagrange’s equations
to the Lagrangian for each state variable.

10. For those resulting equations for which the variable
specifying the width of the representative particle
is a common factor, divide through by it. In the
example below, this variable is ∆x. Note that these
equations will be those for generalized coordinates
representing displacements of representative parti-
cles from their neutral positions.

11. Integrate along the spine of each surrogate element
those terms of the equations which still contain ∆x,
the variable specifying the width of the representa-
tive particle of the surrogate element. Performing
this step removes the surrogate elements from the
analysis and yields the exact, partial differential
equations of motion and the boundary conditions
for the system as modeled in step 1.

5 Example One

A flexible beam is fixed to a moving mass, mb, as shown
in Figure 3a. A mass, ma, is connected to ground with a
spring. mb is constrained to move only vertically and is
connected with a spring and a damper to ma. The mass,
mc is connected to ground through a third spring. A
distributed force, f(x), is applied to the beam. System
parameters are as presented in the figure.

Figure 3b shows the system with a surrogate element
substituted for the flexible beam. Because the left end of
the surrogate element spine cannot rotate, a generalized
coordinate is assigned for translation (q2) but not rota-
tion. Coordinates q4 and q5 represent the displacement
and rotation of the right end of the beam respectively.
Coordinate q1 locates mass, ma. Note that q2, q3, and q4

are all referenced to the same coordinate system; they
all have been defined relative to mass, ma.

The independent coordinates are chosen as:

ξi = qi i = 1, 2, . . . , 5 (11)

1Be certain that the coordinates for the parts of the rigid
system that connect to each surrogate element are defined to
be compatible with the coordinates for the corresponding con-
tinuum. Appendix B elaborates on this requirement.

a) Model of system with both rigid body and continuous
elements.

b) Model of system with surrogate element and assigned
coordinates.

Figure 3: System configuration for Example 1.
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The kinetic coenergy, potential energy, and La-
grangian are expressed as:

T ∗ =
1

2
ρ∆x

(
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Note that V is now a function of ∂2q3

∂x2 (or ∂2ξ3

∂x2 ).
The new generalized forces, sΞi, as defined in Sec-

tion 3 are determined for each degree-of-freedom:

sΞ1 = f(x)∆x (15)

sΞ2 = F1 − b
dq2

dt
(16)

sΞ3 = f(x)∆x (17)
sΞ4 = F2 (18)
sΞ5 = M2 (19)

For this example the terms to be substituted into La-
grange’s equations (10) for ξ1 = q1 are

∂
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The terms for ξ2 = q2 are
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The terms for ξ3 = q3 are
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The terms for ξ4 = q4 are
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The terms for ξ5 = q5 are
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Applying Equation 10 yields
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+
∂2
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mc

(
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Dividing Equation 27 by ∆x (Step 10) yields

ρ

(
∂2q3

∂t2
+

d2q1

dt2

)

+
∂2

∂x2

[
EI

∂2q3

∂x2

]
= f(x) , 0 < x < l (30)

(31)

Terms in Equation 25 can then be integrated over the
length of the beam (Step 11). For example,

ρ∆x

(
∂2q3

∂t2
+

d2q1

dt2

)
=⇒
∫ l

0

ρ

(
∂2q3

∂t2
+

d2q1

dt2

)
dx

or ∫ l

0

ρ
∂2q3

∂t2
dx + mbeam

d2q1

dt2

where mbeam is the total mass of the beam.
The final set of partial differential equations (after

Step 11) is:

ma
d2q1

dt2

+mb

(
d2q1

dt2
+

d2q2

dt2

)
+∫ l

0

ρ
∂2q3

∂t2
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d2q1

dt2

+mc

(
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dt2
+

d2q4

dt2

)

+K1q1 + K3 (q1 + q4) =

∫ l

0

f(x)dx (32)
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dt2
+

d2q2

dt2

)
+ K2q2 = −b

dq2

dt

− ∂
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= f(x) (34)

mc

(
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d2q4
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)

+K3 (q1 + q4) =
∂
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[
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(36)

6 Conclusions

A method has been proposed for deriving the partial
differential equations of motion for systems of lumped
and flexible components. When used in conjunction with
Lagrange’s method, the process of equation generation
is significantly simplified. Particularly, integration by
parts is no longer required. Both system equations and
expressions of boundary conditions result directly from
application of this method. The method contains the
same simple steps used to derive the equations of motion
for lumped parameter systems.

7 Appendix A

In this section it will be shown that the application of
the surrogate element method yields correct equations
of motion and boundary conditions when applied to a
dynamic system of rigid and flexible elements. First,
equations will be derived for a general system using the
variational formulation. Then the surrogate element for-
mulation will be employed, yielding identical equations.

A Lagrangian for a system of rigid and flexible com-
ponents can be expressed as,

L =
n∑

j=1

Lflexiblej + Lrigid (37)

where Lflexiblej contains all of the kinetic and potential
energy terms for the jth of n continuous elements, and
Lrigid contains the rest of the terms, those not dependent
on spatial orientation within an element. Lflexiblej is the
sum of the energy terms for the elemental particles in
the jth continuum, so the Lagrangian can be written

L =

n∑
j=1

∑
zj

Lf j∆zj + Lrigid (38)

where the Lf j is a Lagrangian density function
(see [Low 88] and [Meirovitch 90]) and zj is a variable
expressing the position of each element along the jth
continuum.

The components of the Lagrangian for the system are
expressed in functional form as

Lf j = Lf j (ri, ṙi, ej(zj), ėj(zj),

e′j(zj), e
′′
j (zj), t

)
(39)

Lrigid = Lrigid

(
ri, ṙi, ej(zja), ej(zjb),

ėj(zja), ėj(zjb), e
′
j(zja), e

′
j(zjb),

ė′j(zja), ė
′
j(zjb), t

)
. (40)

where the ri are state variables defining the positions of
the m rigid elements (for i = 1, 2, . . . ,m); the ej(zj) are
coordinates which define deflections within the flexible
elements; zja and zjb are the locations of the endpoints
of the jth continuous element; and ej(zja) and ej(zjb)5



Table 1: This is a table of example surrogate elements
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are the coordinates at those endpoints. Differentiation
in time is denoted with a dot (ėj(zj) = ∂ej(zj)/∂t); spa-
tial differentiation is denoted with a prime (e′j(zj) =
∂ej(zj)/∂zj). The time derivative of e′j(zj) is denoted
as ė′j(zj).

The Lf j functions contain the terms in L which are to
be spatially integrated, while the Lrigid function includes
the remaining terms. The Lrigid function contains con-
tinuous coordinates specified at the boundaries of the
continuum (the ej(zja) and ej(zjb)). For a system of
only rigid elements, a single variable would be selected
to specify the motion of each rigid component. However,
for mixed systems, coordinates assigned to continuous el-
ements specify the motion of some rigid components of
the system so additional variables are not needed. For
example, in Figure 3, q3(0) = q2. For the variational
approach, q3(0) appears in Lrigid. With the surrogate
element approach, q2 would be used instead.

7.1 The Variational Approach

The summation of the energy terms in Equation 38 be-
comes an integral when the continuous case is consid-
ered,

L =
∑
j

∫
zj

Lf jdzj + Lrigid . (41)

The Variational Indicator may be formed from the
Lagrangian, L and the work, W , done by generalized
forces:

δ

∫ t2

t1

(L + W ) dt =∫ t2

t1

∑
j

∫
zj

δLf j (ri, ṙi, ej(zj), ėj(zj),

e′j(zj), e
′′
j (zj), t

)
dzj dt

+

∫ t2

t1

δLrigid

(
ri, ṙi, ej(zja), ej(zjb), ėj(zja), ėj(zjb),

e′j(zja), e
′
j(zjb), ė

′
j(zja), ė

′
j(zjb), t

)
dt

+

∫ t2

t1



∑

i

Ξrigidiδri +

∑
j

∫
zj

Ξf jdzj δej(zj)

+

∑
j

Ξbc1jδej(zjb) +

∑
j

Ξbc2jδej(zja)

+

∑
j

Ξbc3jδe
′
j(zjb) +

∑
j

Ξbc4jδe
′
j(zja)


 dt .(42)

The Ξrigidi are the generalized forces in the δri directions
(associated with the rigid body coordinates). The Ξf j

are the generalized forces in the δej(zj) directions (asso-
ciated with the flexible coordinates). The Ξbc1j , Ξbc2j ,
Ξbc3j , and Ξbc4j are the generalized forces in the δej(zjb),
δej(zja), δe′j(zjb), and δe′j(zja) directions respectively.

These generalized forces are derived using the Principle
of Virtual Work, and therefore do not contain internal
force terms. The subscript Ξbc1 . . .Ξbc4 refer to the Ξ’s
associated with the four boundary coordinates of each
flexible element.

The variation operator is applied to each term,

δ

∫ t2

t1

(L + W ) dt =

∑
i

∫ t2

t1



∑

j

∫
zj

∂Lf j

∂ri
dzj δri +

∂Lrigid

∂ri
δri

+Ξrigidiδri +
∂Lrigid

∂ṙi
δṙi

+

∑
j



∫

zj

∂Lf j

∂ṙi
dzj δṙi +

∫
zj

∂Lf j

∂ėj(zj)
dzj δėj(zj)

+

∫
zj

∂Lf j

∂ej(zj)
dzj δej(zj) +

∫
zj

Ξf jdzj δej(zj)

+

∫
zj

∂Lf j

∂e′j(zj)
dzj δe

′
j(zj) +

∫
zj

∂Lf j

∂e′′j (zj)
dzj δe

′′
j (zj)

+
∂Lrigid

∂ej(zja)
δej(zja) +

∂Lrigid

∂ej(zjb)
δej(zjb)

+Ξbc1jδej(zjb) + Ξbc2jδej(zja)

+
∂Lrigid

∂ėj(zja)
δėj(zja) +

∂Lrigid

∂ėj(zjb)
δėj(zjb)

+
∂Lrigid

∂e′j(zja)
δe′j(zja) +

∂Lrigid

∂e′j(zjb)
δe′j(zjb)

+Ξbc3jδe
′
j(zjb) + Ξbc4jδe

′
j(zja)

+
∂Lrigid

∂ė′j(zja)
δė′j(zja) +

∂Lrigid

∂ė′j(zjb)
δė′j(zjb)




 dt .(43)

Next, the variation is integrated by parts. The terms
in the variation of time derivatives are integrated first in
time. The terms in the variation of spatial derivatives
are integrated first in zj ,

δ

∫ t2

t1

Ldt =

∫ t2

t1



∑

i


∑

j

∫
zj

∂Lf j

∂ri
dzj

+
∂Lrigid

∂ri
−
∑

j

∫
zj

d

dt

(
∂Lf j

∂ṙi

)
dzj

− d

dt

(
∂Lrigid

∂ṙi

)
+ Ξrigidi


 δri

+

∑
j



∫

zj

∂Lf j

∂ej(zj)
dzj
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−
∫

zj

d

dt

(
∂Lf j

∂ėj(zj)

)
dzj

−
∫

zj

∂

∂zj

(
∂Lf j

∂e′j(zj)

)
dzj

+

∫
zj

∂2

∂zj2

(
∂Lf j

∂e′′j (zj)

)
dzj

+

∫
zj

Ξf jdzj


 δej(zj)

+

∑
j

[
− d

dt

(
∂Lrigid

∂ėj(zjb)

)
+

∂Lrigid

∂ej(zjb)

+
∂Lf j

∂e′j(zjb)
− ∂

∂zj

(
∂Lf j

∂e′′j (zjb)

)

+Ξbc1j

]
δej(zjb)

+

∑
j

[
− d

dt

(
∂Lrigid

∂ėj(zja)

)
+

∂Lrigid

∂ej(zja)

− ∂Lf j

∂e′j(zja)
+

∂

∂zj

(
∂Lf j

∂e′′j (zja)

)

+Ξbc2j

]
δej(zja)

+

∑
j

[
− d

dt

(
∂Lrigid

∂ė′j(zjb)

)
+

∂Lrigid

∂e′j(zjb)

+
∂Lf j

∂e′′j (zjb)
+ Ξbc3j

]
δe′j(zjb)

+

∑
j

[
− d

dt

(
∂Lrigid

∂ė′j(zja)

)
+

∂Lrigid

∂e′j(zja)

− ∂Lf j

∂e′′j (zja)
+ Ξbc4j

]
δe′j(zja)

}
dt . (44)

Note that the summation in i is for each of the rigid
body equation terms; the summation over j is for the
terms due to the flexible components. Now the equations
of motion can be extracted from Equation 44. The first
set of equations arises from setting the coefficient of each
δri to zero,

−
∑

j

∫
zj

∂Lf j

∂ri
dzj −

∂Lrigid

∂ri

+

∑
j

∫
zj

d

dt

(
∂Lf j

∂ṙi

)
dzj

+
d

dt

(
∂Lrigid

∂ṙi

)
= Ξrigidi i = 1, 2, . . . ,m .(45)

The next set of equations is derived from setting the
coefficient of each δej(zj) to zero. The summation over j
disappears because each term of the summation contains
a different δej(zj) for any given j, and therefore, becomes
a separate equation. For the integral in zj to be zero for
arbitrary variations, the integrand must be zero yielding

− ∂Lf j

∂ej(zj)
+

d

dt

(
∂Lf j

∂ėj(zj)

)
+

∂

∂zj

(
∂Lf j

∂e′j(zj)

)

− ∂2

∂zj2

(
∂Lf j

∂e′′j (zj)

)
= Ξf j ,

ej(zja) < ej(zj) < ej(zjb) j = 1, 2, . . . , n . (46)
The last four sets of equations are boundary condi-

tions at the edges of the continuum corresponding to
ej(zja) and ej(zjb). Note that the summation over j is
dropped for the same reason as in the previous equation.

d

dt

(
∂Lrigid

∂ėj(zjb)

)
− ∂Lrigid

∂ej(zjb)
− ∂Lf j

∂e′j(zjb)

+
∂

∂zj

(
∂Lf j

∂e′′j (zjb)

)
= Ξbc1j j = 1, 2, . . . , n (47)

d

dt

(
∂Lrigid

∂ėj(zja)

)
− ∂Lrigid

∂ej(zja)
+

∂Lf j

∂e′j(zja)

− ∂

∂zj

(
∂Lf j

∂e′′j (zja)

)
= Ξbc2j j = 1, 2, . . . , n (48)

d

dt

(
∂Lrigid

∂ė′j(zjb)

)
− ∂Lrigid

∂e′j(zjb)

− ∂Lf j

∂e′′j (zjb)
= Ξbc3j j = 1, 2, . . . , n (49)

d

dt

(
∂Lrigid

∂ė′j(zja)

)
− ∂Lrigid

∂e′j(zja)

+
∂Lf j

∂e′′j (zja)
= Ξbc4j j = 1, 2, . . . , n (50)

In total there are m rigid body equations, n flexible com-
ponent equations, and 4n boundary equations.

7.2 The Surrogate Element Method

The equation derivation presented above is now per-
formed with the same notation but using the surrogate
element method outlined in this paper. The Lagrangian
for this case is

Ls =

n∑
j=1

∑
zj

Lf j∆zj + Lrigid (51)

with terms as defined in Equations 39 and 40. The La-
grangian is formed from the equivalent rigid-particle sur-
rogate element model. Equation 10 is applied to the
Lagrangian,

∂

∂t

(
∂Ls

∂ξ̇k

)
− ∂Ls

∂ξk
+

∂

∂zj

(
∂Ls

∂( ∂ξk
∂zj

)

)

− ∂2

∂zj2

(
∂Ls

∂( ∂2ξk
∂zj 2 )

)
= sΞk k = 1, 2, . . . , p . (52)
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The first m of the ξk correspond to coordinates ri above;
the next n of the ξk correspond to coordinates ej(zj);
the last 4n of the ξk correspond to coordinates ej(zja),
ej(zjb), e

′
j(zja), and e′j(zjb) respectively. Therefore, p =

m+5n, and j = k−m so that the zj refer to the spatial
variables along the continuum corresponding to ξk. The
sΞk are the generalized forces defined in terms of the
generalized forces from the variational approach given
by

sΞk =




Ξrigidk for k =
1, 2, . . . ,m

Ξf(k−m) for k =
m + 1,
m + 2, . . . ,m + n

Ξbc1(k−m−n)

+Ξtablek

for k =
m + n + 1,
m + n + 2,
. . . ,m + 2n

Ξbc2(k−m−2n)

+Ξtablek

for k =
m + 2n + 1,
m + 2n + 2,
. . . ,m + 3n

Ξbc3(k−m−3n)

+Ξtablek

for k =
m + 3n + 1,
m + 3n + 2,
. . . ,m + 4n

Ξbc4(k−m−4n)

+Ξtablek

for k =
m + 4n + 1,
m + 4n + 2,
. . . ,m + 5n

(53)

where the Ξtablek are obtained from Table 1 and can only
be non-zero for coordinates at the boundaries of the con-
tinua.

The ξk correspond to three different variable types;
the rigid body coordinates, the continuous coordinates,
and the continuous coordinates at the boundaries. The
evaluation of Equation 52 is treated separately for each
case. For k = 1, 2, . . . ,m, Equation 52 becomes,

−
∑

j

∑
∆zj

∂Lf j

∂ri
∆zj −

∂Lrigid

∂ri

+

∑
j

∑
∆zj

d

dt

(
∂Lf j

∂ṙi

)
∆zj

+
d

dt

(
∂Lrigid

∂ṙi

)
= Ξrigidi i = 1, 2, . . . ,m .(54)

The third and fourth terms in Equation 52 are zero be-
cause the ξk are rigid coordinates.

For k = m+1,m+2, . . . ,m+n, Equation 52 becomes,

− ∂Lf j

∂ej(zj)
∆zj +

d

dt

(
∂Lf j

∂ėj(zj)

)
∆zj

+
∂

∂zj

(
∂Lf j

∂e′j(zj)

)
∆zj −

∂2

∂zj2

(
∂Lf j

∂e′′j (zj)

)
∆zj

= Ξf j∆zj j = 1, 2, . . . , n . (55)

For k = m+n+1,m+n+2, . . . ,m+5n, Equation 52

becomes,

d

dt

(
∂Lrigid

∂ėj(zjb)

)
− ∂Lrigid

∂ej(zjb)
=

Ξbc1j + F1j j = 1, 2, . . . , n (56)

d

dt

(
∂Lrigid

∂ėj(zja)

)
− ∂Lrigid

∂ej(zja)
=

Ξbc2j + F2j j = 1, 2, . . . , n (57)

d

dt

(
∂Lrigid

∂ė′j(zjb)

)
− ∂Lrigid

∂e′j(zjb)
=

Ξbc3j + M1j j = 1, 2, . . . , n (58)

d

dt

(
∂Lrigid

∂ė′j(zja)

)
− ∂Lrigid

∂e′j(zja)
=

Ξbc4j + M2j j = 1, 2, . . . , n ,(59)

where the F1j , F2j , M1j , and M2j are obtained from
Table 1. The Table defines these values as the forces and
moments acting from the continuum onto the adjacent
components. The values used in creating the table are
given by

F1 =
∂Lf j

∂e′j(zjb)
− ∂

∂zj

(
∂Lf j

∂e′′j (zjb)

)
(60)

F2 = − ∂Lf j

∂e′j(zja)
+

∂

∂zj

(
∂Lf j

∂e′′j (zja)

)
(61)

M1 =
∂Lf j

∂e′′j (zjb)
(62)

M2 = − ∂Lf j

∂e′′j (zja)
. (63)

Following the procedure presented in Section 4, ∆zj is
canceled from every term of Equation 55 to yield Equa-
tion 46. Next, all terms in ∆zj that remain in any of the
equations are integrated along the zj . These terms are
all found in Equation 54. The integration yields Equa-
tion 45. Finally, Equations 56–59 can be rewritten with
substitutions from Table 1 for the F1, F2, M1, and M2

to obtain Equations 47–50.

8 Appendix B

The surrogate element derivation above assumed that
the coordinate describing the location of the representa-
tive particle in a continuum be geometrically compatible
with the coordinates for adjacent elements at the bound-
aries of that continuum. Geometric compatibility means
that the variation of the surrogate element coordinates
and the variation of the boundary coordinates be equal.
Consider the example shown in Figure 4. Coordinate r2

at x = 0 equals r1, and r2 at x = l equals r3. However,
q2 at x = 0 is equal to zero, and q3 equals the sum of q1

plus q2 at x = l. The method outlined above assumes
that the consistent coordinate set (r1, r2, r3) be chosen.
The requirement on the coordinate selection,

δr2|x=0 = δr1 (64)
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r1

r3

r2(x)

q1

q3

q2(x)

Figure 4: Example using coordinates with different refer-
ence frames. The r1, r2, r3 frame is referenced to ground.
The q1 and q3 are referenced to ground while q2 is refer-
enced to the left hand mass.

and

δr2|x=l = δr3 (65)

is satisfied. The force terms on the end of the contin-
uum are multiplied by the variations of the coordinates
at those boundaries (δr2|x=0 and δr2|x=l in this exam-
ple). The force terms acting on the rigid components
are multiplied by the variations of the rigid component
coordinates (δr1 and δr3 in this example). The method
outlined above implicitly equates these two sets of forces.
However, if the two sets of variations are not equal for
the chosen coordinate system, then the equating of these
force terms can not be justified.

The requirement discussed above can be relaxed by
realizing that the force terms can be corrected when us-
ing a selection of coordinates that is not geometrically
compatible. In the example above using the q1, q2, q3

system, δq2|x=0 = 0. The force term F1, which would
be applied to the mass on the left when using a geo-
metrically compatible coordinate system, is not added
to sΞ1. Also, δq2|x=l = δq3 − δq1. Therefore, for La-
grange’s method to provide correct equations of motion,
F2, the force at the right end of the beam must be added
to the generalized force term for the q3 equation (sΞ3),
and subtracted from the generalized force term for the
q1 equation (sΞ1). This modification is convenient when
applying the surrogate element method to more complex
systems such as those with rotating flexible components.
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