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Abstract

I present a system for robust leaderless organization of an amor-
phous network into hierarchical clusters. This system, which assumes
that nodes are spatially embedded and can only talk to neighbors
within a given radius, scales to networks of arbitrary size and con-
verges rapidly. The amount of data stored at each node is logarithmic
in the diameter of the network, and the hierarchical structure produces
an addressing scheme such that there is an invertible relation between
distance and address for any pair of nodes. The system adapts auto-
matically to stopping failures, network partition, and reorganization.

1 Introduction

While trying to get a bunch of simulated amorphous fireflies to flash in uni-
son, I discovered that my life would be made much easier if I could cluster
them together into a hierarchy, where fireflies would listen to each other
in proportion to how closely related their addresses in the hierarchy were.
Solving the problem of hierarchical clustering in an amorphous computing
context ended up producing an algorithm valuable in its own right, which I
present in this paper.

Hierarchical clustering is an old and well-studied problem, but amorphous
computing poses some new challenges which change the problem significantly.
Nevertheless, the results in amorphous computing depend on little in that do-
main,! and may be relevant in general to clustering problems — particularly
as it applies to ad hoc networking and biological computing. In this paper,
I will describe the amorphous hierarchical clustering problem and present as
a solution the LEADERLESSHIERARCHY algorithm, along with analysis and
experimental results.

The algorithm I have developed, LEADERLESSHIERARCHY, specifies a
distributed system which builds and maintains hierarchical clustering in an
amorphous computer. Its expected convergence time is O(d), where d is the
diameter of the network, and it has a storage and communication density
logarithmic in the diameter. Despite these low costs, the LEADERLESSHIER-
ARCHY algorithm is extremely robust, scales to networks of arbitrary size
and is able to transparently adapt to disruptions caused by stopping failures

!Rather, you could view them as the result of not being able to depend on anything!



and reorganization of the network. Finally, the clusters produced LEADER-
LESSHIERARCHY have the property that for any two nodes in the network,
we can predict their distance from their cluster membership and vice versa.

2 Problem Description

First, we need a precise definition of hierarchical clustering. Informally, every
node in the network needs a unique address, starting with the most specific
field being its unique identifier and rising through progressively less specific
identifiers until the most general identifier, which is shared with every node
in the network.

More formally, we will say that a network is hierarchically clustered if
every node n has an address A, which is composed of a set of identifiers A,,
such that the equivalence classes of nodes with equal ith identifiers form a
tree topology. Additional desiderata, though not strictly required, are that
the size of the equivalence classes transition smoothly between single nodes
and the entire network, and that all the addresses be the same length.?

Throughout the rest of the paper, I’ll name the identifiers in the addresses
interchangeably as either clusters or groups.

The amorphous computing context for this problem is described as fol-
lows: consider a piece of paper with tiny processors distributed randomly
across its surface. Each processor can broadcast to those other processors
less than distance r away. Thus, the network graph has processors for nodes,
and an edge between any two processors less than distance r from each other.
Congestion in this network is local in scope (from overlapping broadcasts),
and thus we care about the density of communication in the network, rather
than the actual number of messages sent: a small number of messages all
in one area may be worse congestion than a very large number of message
spread evenly across the network.

Processors may run at slightly different speeds, lose messages, or suffer
stopping failures.®> Furthermore, processors have small memory, relatively
little computational power available, and no global information. Finally, de-
pending on the size of our sheet of paper and the density at which processors
are applied, the number of processors we are clustering may vary wildly,
anywhere from dozens or hundreds to millions or (in the case of a bucket of

2This last mostly just makes addresses more intelligible at a glance for humans.
3In other words, they can die at random.



biological computing) trillions — in other words, our algorithm must scale
well.

Now the hard part: I want this system to automatically adapt to changes
in its environment. If I spill coffee on the paper, killing processors in a
region, it should adapt its groups appropriately. Similarly, if [ cut the paper
in half, each half should adapt its groups, then adapt again if I paste it back
together differently: T don’t want to end up with half a cluster on each of
two distance edges. More generally, I want to be able to do clustering on any
two dimensional surface, whether it be a piece of paper or a skin of “smart
paint” covering a suspension bridge, and I want that clustering to adapt
appropriately when something happens to disrupt or reconfigure the surface.

What does it mean to “adapt appropriately”? What I mean is that the
clustering our piece of paper converges to shouldn’t show evidence of the
cutting and pasting we’ve done to it: the structure should be seamless, just
like it would be if the final geometry was the one it started with. It’s OK if
things are incoherent and transient for a brief period following a change, as
long as the system converges again in a short period of time.

To summarize: we need a distributed algorithm that builds hierarchical
groups quickly and robustly on the basis of local communication, adapts
automatically to changes and reorganizations of the network, and scales to
networks of enormous size.

3 Algorithm

The LEADERLESSHIERARCHY algorithm takes a bottom-up clustering ap-
proach to building the group hierarchy. Starting with the bottom level, where
the groups are just individual nodes, group building proceeds according to
three stages: first, each group finds its neighbors, then an election algo-
rithm clusters together each group into a clique with other nearby groups,
and finally the cliques become supergroups which form the next level of the
hierarchy.

The devil, of course, is in the details that allow this to happen in a
leaderless distributed manner with only local communication and the ability
to adapt to changes and disruptions in the network.

In the subsequent sections, I will first sketch the high-level behavior of the
algorithm. Next I will give the backbone of the algorithm, then fill in details
for each of the subfunctions. Appendix A contains a complete tabulation of
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Figure 1: Information about neighbors propagates from nodes on the border
with neighboring groups. Since each piece of information is labelled with how
far removed it is from its source, and nodes only accept information updates
from neighbors with better information, eventually all the nodes in a group
agree about the set of neighbors.

the constants and state information used by the algorithm.

3.1 Behavior Sketch

There are three phases to construction for each level of the hierarchy: find
neighbors, elect “leaders”, and promote to the next level. In practice, we
run all three phases simultaneously and continuously, but behavior reaches
convergence in the order listed, and it’s easiest to describe as though they
are happening in sequence.

Finding a neighbor is easy for a node at the border of a group, since it is
directly connected to the neighboring group. Each such bordering node sends



out a gradient telling the rest of the nodes in its group about the neighbor
it has discovered. If the distance is short enough, the gradient will pass
across group boundaries into other groups — this lets the neighbor relation
be connected with physical distance even high in the hierarchy.

Once groups know about their neighbors, then cliques can be created to
serve as the basis for the next level of the hierarchy. Cliques are formed by
a leader election algorithm: if a group’s ID is greater than that of all its
non-follower neighbors, then it declares itself a leader, and if it has one or
more neighbors with a greater ID that have declared themselves leaders, then
it declares itself a follower of the one with the greatest ID. “Leaders” and
“Followers” do not have any different behavior, however — the only effect is
that the ID of the clique leader will be the ID of the group at the next level.

Once a clique has formed, its members all join a group at the next level
of the hierarchy (The ID of the new group is that of the group which was
clique leader). The new group then starts looking for its neighbors, and so
on, until there is a single group which covers the entire network.

Even after a level has completed this process, it is kept running, to avoid
synchronization issues and ensure robustness against failure. Since the sys-
tem converges rapidly, given a stable network (see Section 4.2 for proof of
convergence) there is no need to ever stop running the algorithm — it simply
reaches the point where it makes no changes while the network is stable.

3.2 Skeletal Algorithm

The algorithm run at each node has three responsibilities. First, compiling
information about its neighbors at each level of the hierarchy. Second, using
that information to construct the portion of hierarchy in which it is contained.
Finally, keeping its physical neighbors informed.

At startup of the LEADERLESSHIERARCHY algorithm, the node con-
structs the zeroth level of the hierarchy — the leaf which contains only itself.
We assume that each node can pick a random numerical ID with enough bits
to make ID collision unlikely. After that, it broadcasts a copy of its inter-
nal state to its physical neighbors once at regular intervals, and continually
runs a set of subroutines that maintain its internal state. ELECTLEADER
and MAINTAINLEVELS are responsible for constructing the hierarchy. Com-
piling information about the neighbors is managed by FINDNEIGHBORS,
which is called when incoming state messages from neighbors invoke the RE-
CEIVEMESSAGE function, and MAINTAINNEIGHBORS, which is responsible



LEADERLESSHIERARCHY()
1 S.L[0].t < S.clock < S.lastSend <— 0 > Initialize zeroth level

2 S.L[0].1.uid < S.uid <~ RANDOM()

3 S.L[0].I.status < “none”

4 while true > main loop

5 do if S.clock — S.lastSend > T,,

6 then SEND(S) > Send state to neighbors

7 S.lastSend <— S.clock > Schedule next transmission
8 for i< 0to |S.L|—1 > For each level...

9 do ELECTLEADER(S,i) > Run leader election

10 MAINTAINNEIGHBORS(S,7) > Prune dead neighbors

11 MAINTAINLEVELS(S,7) > Create and destroy levels

RECEIVEMESSAGE(S, N)

1 > S is internal state, N is neighbor’s state message.
2 for i + 0 to MIN(|S.L|,|N.L|) — 1
3 do FINDNEIGHBORS(S, N,i) > Pass along info for each level

Figure 2: Pseudocode for top-level algorithm



for pruning out neighbors which no longer exist.

We assume that the node’s period T}, between sending messages is set
such that some underlying network protocol can ensure delivery of most mes-
sages, and the processor generally has enough time to run RECEIVEMESSAGE
on a message from each of its neighbors once per send cycle.

In addition, the clock of a given node is allowed to run slightly fast or slow,
but if the clock runs more than some fixed difference in frequency e, from
accurate time, then the node is considered to be malfunctioning. The time
indicated by a clock, however, is immaterial so long as it advances regularly.

3.3 Getting Neighbor Information

Neighbor state information originates at a group’s borders and flows across
the group in a gradient of increasing “hearsay” values, then across its borders
into subsequent groups if those groups are close enough to the source. These
gradients flow a minimum distance of NyN!, hops at level 7, so even at high
levels, neighborhood is based in distance rather than adjacency (a fact that
will become important in bounding the depth and extent of the hierarchy).

Discovering and passing information about live neighbors is simple: the
border nodes receive updated information every time their cross-border phys-
ical neighbors transmit, and from there it lows down the gradient throughout
the group. Multiple sources of information are, of course, no problem so long
as the neighbor group has converged its own information.

It is much harder to determine that a neighbor no longer exists and should
be deleted from records. There are basically two ways that this can happen:
network disruption and transient construction effects. Network disruption
could be either a permanent effect like a tear in material, or something tem-
porary like a network failure. Transient effects in the hierarchy construction
come from a group making a decision, then receiving information from far-
ther away which changes it — for example, a group might hear from a farther
neighbor and decide to follow it instead of a closer neighbor.

At a gradient source, it’s easy to decide when the connection with a
neighbor has been disrupted: if it hasn’t heard from a physical neighbor
across the border for more than some constant time 7}, then it can assume
that the connection has been severed and declare the neighbor dead.

The difficulty in deleting neighbors comes in propagating the information
through the rest of the group. In essence, how do we ensure that when we
delete a neighbor, it won’t just get re-added by another part of the group
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FINDNEIGHBORS(S, N, i)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

for each x € N.L[{].N > Go through nbr’s nbr records
do if x.finalDead or x.I.uid = S.L[i].].uid
then continue > Ignore self and nbrs about to be deleted
if S.L[i].].uid # N.L[i].I.uid and z.hearsay > NyN!,
then continue > Gradient passes nearby borders only
if dy € S.L[i|.N s.t. y.l.uid = x.1.uid
then if x.hearsay < y.hearsay and —x.dead
then y <~z > Copy info if it’s better
y.hearsay < x.hearsay + 1
y.lastHeard < S.clock
else if x.hearsay > y.hearsay and x.dead and y.dead
then y.lastHeard <— S.clock > Postpone deletion
else if —x.dead
then y <+
y.hearsay < x.hearsay + 1
y.lastHeard < S.clock
S.L[i].N < S.L[i]. N Vy > add new info
if S.L[i].].uid # N.L[i].].uid > If nbr is in a different group...
then z.I < N.L[i]].I > Copy info from neighbor
x.lastHeard < S.clock
x.hearsay <1
x.dead < x.finalDead < false
if Jy € S.L[i|.N s.t. y.I.uid = N.L[i].I.uid
then y <— 2 > Update existing info...
else S.L[i|.N <~ S.L[i]NVz 1> ... or add it if it’s new

Figure 3: Pseudocode for FINDNEIGHBORS function



MAINTAINNEIGHBORS(S, i)
1 for each nbr in S.L[i].N
2 do if S.clock — nbr.lastHeard > T;, and —nbr.dead
3 then nbr.dead <— true > Mark neighbor as inactive
nbr.lastHeard < S.clock
if S.clock — nbr.lastHeard > 2T}, and nbr.dead
then nbr.finalDead < true > Mark for deletion
nbr.lastHeard < S.clock
if S.clock — nbr.lastHeard > Ty and nbr. final Dead
then S.L[i].N < S.L[i]].N —nbr > Delete neighbor record

© 00 ~1 O Ot =

Figure 4: Pseudocode for MAINTAINNEIGHBORS function

Figure 5: When deciding to delete a neighbor, we must distinguish between
losing just one of two distant connections and losing a single connection. We
must guard against both deleting a neighbor that still connects and keeping
a spurious connection to a neighbor that no longer exists.



that hasn’t deleted it yet? Figure 5 shows two situations which exemplify
this difficulty. In the first case, a connection to a neighbor has been lost, and
the gradient must be re-adjusted to reflect the new distances. In the second
case, the gradient must be deleted entirely. However, if we aren’t careful, the
the second ring can end up with a maximum distance end of the gradient
growing into areas which have already been deleted, as though it were the
first case, and may even create a standing wave of deletion and re-growth
around the loop.

We solve this by having actual deletion occur in a backgradient. The
decision that a neighbor is dead propagates forward from the source with a
time constant of Tj: if the time is greater than T} since a node last heard
a neighbor was alive from a node closer to the source than itself, then it
flags the neighbor as dead, but does not yet delete it. Once a portion of a
neighbor-gradient is dead, it can no longer propagate itself, though it can be
revivified by good news from closer to the gradient source.

The decision to delete a neighbor propagates backward from the extrema
of the gradient with a time constant of 27}, deleting everything that has
no more distance dead neighbor. This deletion back-gradient is run twice
as slowly to ensure that the death-gradient out-paces it in killing live nodes.
Thus it is impossible for a standing wave of life-death-deletion-life to develop,
since the death wave travels twice as fast as the deletion wave, and must
eventually catch up with all live nodes before they can propagate into the
void left by the deletion wave.

Thus, by a system of forward gradients propagating information about
neighbors and back gradients deleting neighbors which no longer connect, the
FINDNEIGHBORS and MAINTAINNEIGHBORS routines are able to maintain
a consistent set of neighbor information across groups in the hierarchy.

3.4 Leader Election

At each level, a node may be either a leader, a follower, or undecided. The
difference between leaders and followers has no computational or organiza-
tional consequence: rather, it just determines where a node gets its group
ID for the next level up in the hierarchy, and ensures that groups get bigger
and farther apart at higher levels.

A group becomes a leader at a given level if all of its neighbors are either
followers of a different leader, or have IDs less than its own. Conversely, a
group becomes a follower if it has a non-follower neighbor with an ID greater
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ELECTLEADER(S, i)
1 live < {z|z € S.L[i].N A —x.dead}
2 if live # NIL and {yl|y € live A y.I.status # “follower” A
3 y.I.wid > S.L[i].uid} = NIL
4 then S.L[i].I.status < “leader”
5 S.L[i].I.leaderID < S.L[i].uid > Declare ourself leader
6 else leads < {y.l.uid|y € live A\ y.I.status = “leader”}
7 if leads # NIL
8 then > Follow the best neighbor

9 S.L[i].I.status < “follower”
10 S.L[i].I.leaderID <+ MaX(leads)
11 else > Don’t follow anybody
12 S.L[i].1.status < “none”
13 S.L[i].I.leaderID < NIL

Figure 6: Pseudocode for ELECTLEADER function

than its own. If a group has no neighbors, on the other hand, it becomes
neither a leader, nor a follower. Thus, when the top level group is formed,
covering the entire network, hierarchy building stops because that node is
neither a leader nor a follower.

Since every node in a group eventually has identical knowledge of neigh-
boring groups, and since the decision is made deterministically, each node
can run the ELECTLEADER function independently, and the entire group will
arrive at the same results.

3.5 Creating and Destroying Levels

The MAINTAINLEVELS routine is responsible for coordinating the actions of
different levels of the hierarchy. The three tasks it is responsible for are: cre-
ating new and higher levels of hierarchy, destroying excess levels of hierarchy,
and propagating information up from lower levels to higher levels.

The information which needs to propagate upwards in the hierarchy are
changes in leadership. Since a group’s identity at level ¢ is taken from its
chosen leader at level 7 — 1, then for obvious reasons, when the leader at 1 — 1
changes in response to new information, the ID at level ¢ must change as
well.
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MAINTAINLEVELS(SS, 7)

1 ifi>0and S.L[i — 1].I.leader1D # S.L[i].I.uid

2 then S.L[i].I.uid < S.L[i — 1].I.leaderl D

3 S.L[i].I.status = “none” > Percolate leader-changes upward
4 if i >0 and S.L[i — 1].leaderI D = NIL

5 then S.L < {S.L[j]|j <i} > Delete all upper levels

6 if S.L[i].I.leaderID # NIL and |S.L| =i+ 1 and

7 S.clock — S.L[i|.t > T,,W,W¢

8 then S.L[i + 1].t < S.clock

9 S.L[i + 1].1.uid < S.L[i].I.leaderID

10 S.L[i + 1].1.status <— “none” 1> Start the next level
11 ifi>0and [SL|=i+1

12 then live < {z|r € S.L[i — 1].N A —z.dead}

13 if live = NIL

14 then S.L < {S.L[j]|j <i} > Delete top level

Figure 7: Pseudocode for MAINTAINLEVELS function

If there isn’t yet an ith level when a leader is selected at level 7 — 1, on
the other hand, then the node may create one. In practice, this is prohibited
from happening any sooner than T,, WoW=! after the creation of level 7 — 1,
to allow time for level ¢ — 1 to converge and cut down on the creation of
transient groups.

Finally, there are two ways in which levels may be deleted (always from
the top downwards). First, if the level at the very top has no neighbors, then
it will be deleted — this most commonly happens when a transient group
existed alongside the whole-network group, causing it to briefly think it had
a neighbor and thereby create another level to be the top. Second, if a group
entirely loses its neighbors at a lower level (which most often happens in
cases of severe damage), then the entirety of the hierarchy above it is deleted
and must be reconstructed (since it is presumed to be invalid anyway).

3.6 Variations

The amount of network traffic consumed by LEADERLESSHIERARCHY can
be reduced by a few simple measures. In the simple implementation, the
full state of a processor is transmitted to its neighbors in every cycle. The
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number of bits sent can be reduced by having the message contain only
differences and liveness information, rather than all the rest of the baggage
as well. Additionally, the frequency of the messages can be traded off against
the responsiveness of the network in adapting to changes; when a processor
believes its configuration has converged, it can exponentially back off the
frequency of liveness information it sends and requires.

Another tradeoff can be made with identifiers to reduce the compression
of addresses by monotonicity of leadership decisions. If the leader group at a
given level supplies not its own ID, but a new ID (chosen distributedly from
its membership) then the range of the IDs will not shrink at higher levels in
the hierarchy, although the amount of information stored at each node must
increase accordingly.

Finally, leader election need not take place only between immediate neigh-
bors. Groups with a multi-hop radius can be formed at each level instead,
with only slightly more complicated code. See Appendix B for pseudocode.

4 Analysis

4.1 Addressing/Distance Relation

Theorem: Consider any two nodes n, and n, in the network. Let d be
the minimum number of hops between n, and n, in the communications
graph, and [ be the lowest level of hierarchy in which n, and n;, belong to
neighboring groups. Then 2!71 < d < 3'4-2!*2 and [logy d] —2 < [ < [log, d].
Corollary: There are O(logdiam) levels in the hierarchy of a network which
has converged.

Proof: The neighbor-detection gradients used by LEADERLESSHIERARCHY
flow a minimum of NOan hops at level 7. Using values Ny = 1 and N, =
2, this becomes a radius of 2°. For two nodes distance d apart, they are
guaranteed to become neighbors when d < 2¢. Thus, if we know the minimum
level is [, we know that 2!~ < d, because if the distance were less, then [
would not be the minimum. Similarly, if we know the distance is d, then we
know that they must be neighbors no later than [ = log, d, and since [ must
be an integer, we take the ceiling and produce the relation I < [log, d].

The complementary bounds can be derived by considering the maximum
diameter of a group at level i, since the two nodes cannot become neighbors

13



until a level at which the boundaries of the groups they belong to come
within 2 of each other. Using single-hop groups (or equivalently, Rg = 1),
this maximal configuration contains a leader and two diametrically opposite
followers, each at maximum neighborhood distance from the leader. This
gives the recurrence: D; = 3D;_; + 2 x (2°1). At level zero, the diameter of
a node is 1 hop (we consider the partition to occur halfway between nodes)
and only immediate neighbors are considered, giving a base case of D; =
3. Solving the recurrence, we obtain D; = 3° + 2°. Thus, if we know the
minimum level is [, then we know that the distance d can be no greater
than the diameter of two nodes, plus the distance between them: d < 2 x
(38 + 2! + 2041 = 30 4 2!+2. Tt is worth noting that the 3! term dominates
this equation for [ > 4. Similarly, the inverse relation will generally be
dominated by the 3' term, so we may usefully overestimate the relation as
d < 31+ 4(21) < 23" < 32 which gives us the slightly loose bound
[ > |logsd]| — 2.

As a corollary to the minimum distance relation, we can bound the max-
imum depth of hierarchy necessary to cover the entire network (once the
system has converged). For a network with diameter diam, we have that
for I < [logdiam], every pair of nodes belong to either the same group or
neighboring groups. Thus, the network is fully connected and there can be
only one leader, and as a consequence, the next level in the hierarchy will
consist of a single group covering the entire network. Therefor, there are
O(log diam) layers in the hierarchy.

4.2 Convergence Time

In this section, I will show that, in the absence of error, the system always
converges to a unique hierarchy in O(d) time.

First, we need to show that there is a unique hierarchy to which the
network converges at all. Assume that the ith level of the hierarchy converges
to a unique set of groups and neighbors. Leader election is deterministic
given perfect information about group IDs and neighbors, which every node
is eventually provided with. Therefor, the groups at the level ¢ + 1 are
completely determined by the groups at level 7. Neighbors at level ¢ 4+ 1
are determined by the spatial embedding of the nodes in groups at level
© + 1, which is also fixed. Therefor, each level is uniquely determined by the
previous level, and given the base case of level 0 which is fixed to a unique
set of groups (individual nodes with fixed IDs) and neighbors (edges in the

14



Group Formation Experimont

(a) Level 0 (b) Level 1

Figure 8: Groups produced by a run of 1000 processors with communica-
tion radius 0.05. Pink nodes are leaders, red are followers. Links between
nodes are blue for nodes in different groups and green for nodes in the same
group. Predictions, based on an expected diameter of 35 hops, are 5 levels
of hierarchy and convergence time 707;,. In the experiment, the network
has converged to 5 levels of hierarchy after a duration of 777, (though the
final level was not added until 1307;,, due to the exponential delay built into
construction of new levels). This figure shows the bottom two levels; Figure
9 shows the upper four.
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Group Formation Experimont z Group Formation Experiment

(c) Level 4 (d) Level 5

Figure 9: Groups produced by a run of 1000 processors, as in Figure 8§,
showing the upper four levels of the hierarchy produced.
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network), we see by induction that there is a unique hierarchy induced by
the placement of nodes and the IDs assigned to them.
Theorem: Time of convergence is order O(diam).

Proof: The worst case time is actually much worse. In the worst case, nodes
are arranged in a double spiral, with one spiral containing very low IDs, and
the other spiral containing monotonically descending IDs greater than the
low ID spiral. The low ID spiral can immediately declare as followers, but
the members of the high ID spiral cannot determine whether they are a leader
or follower until every node with a greater ID has done so, in sequence. Thus
the worst case is O(n) for a n node network, but the expected behavior is
much better.

The expected convergence time for any given node is based on how many
hops A information must flow for it to decide if it is a leader or a follower. In
the simplest case, the processor has a higher ID than any of its £ neighbors,
and therefor can decide with a single hop of information. However this is
has a probability of only k+r1 The rest of the time, the processors fate
will be determined by the highest ID neighbor that is not a follower. If we
assume that the highest neighbor will determine the fate of a node, then we
may overestimate h as the expected length of a monotonic chain of length [
starting at the highest neighbor.

1 1 1 1 — l 1
P(l) = / / . / ]_dUl . 'dUldUO — ﬂ 11]0:0 = —'
vo=0 Jv1=v9 V=1 l l
9] ® 1
Bl)=Y P)=Y 5=c¢
=0 =0 ""

If the chain is of an even length (which we can overestimate as occurring
half the time) then the highest neighbor will be a follower rather than a
leader, and we must determine our value via the next highest neighbor in-
stead. Thus, the probability that / is determined by the nth highest neighbor
is overestimated at P(n) = 0.5". Much of its chain will likely have passed
information already, but even if we overestimate by assuming they are cal-
culated sequentially, the sequence of nth neighbors still converges rapidly:

E(h) < S Pm)nEl) =€ 23 = 2%
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Since the expected number of hops for convergence is constant, and the
length of a hop grows exponentially with each level, convergence time will
be dominated by the final level, where the leader group needs only one hop
of length O(diam) to cover the entire network.

4.3 Communication Density and Data Storage

As shown above, the hierarchy contains O(logd) levels. Each level of the
hierarchy needs to store a constant amount of information about each neigh-
boring group at that level. Since neighbors information is broadcast in a
radius based on an exponentially increasing distance, the number of neigh-
bors expected at a given level is a constant determined by spatial packing
of non-overlapping neighbor broadcasts in the previous level. Thus, each
node keeps a state of expected constant size per level and the total storage
is O(logd).

Communication between processors consists of regular state broadcasts
from each processor, with a period of 7},. The broadcasts contain the entire
state, which is of size O(logd), and there is one per processor. Thus, for a
processor density of p, we produce a communication density of O(#-logd).

4.4 Adaptation Rate

The radius affected by the death of a single processor depends on how im-
portant that processor’s ID was in configuring the network. While no single
processor plays a key computational role in the system, the hierarchy induced
from the network depends critically on the IDs of the leader groups at each
level. Thus, in the worst case, if the processor with the highest ID in the
network dies, this effect will trickle up the entire hierarchy until the top-level
group has been renamed with the ID of the second highest ID in the network,
costing O(d) time of convergence.

The expected time, however, is much better, because at any level of the
network, most nodes are not leaders. Given the tightest packing of neigh-
borhoods, the probability of node p’s individual ID being used for a group at
level [ can be bounded as follows: at level [ — 1, every node within distance
2/=2 hops must be a member of a neighboring group at level [ — 1. Thus,
if node p’s ID is used in its group at level [, all of the neighboring groups
at level [ — 1 must be followers at that level, and therefor no node within
2!=2 hops can have an ID used at level [. Assuming a node density p, we
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Group Formation Experimont

(a) Level 0 (b) Level 1

Figure 10: Adaptation to damage in a run of 1000 processors with commu-
nication radius 0.05. Pink nodes are leaders, red are followers, and grey are
dead. Links between nodes are blue for nodes in different groups and green
for nodes in the same group. The system reconverges after 1227;, following
the disruption. This figure shows the bottom two levels; Figure 11 shows the
upper four.
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(c) Level 4 (d) Level 5

Figure 11: Adaption to damage in a run of 1000 processors, as in Figure 10,
showing the upper four levels of the hierarchy produced.
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can count the nodes in the area and find that the probability of a node’s ID
being used at level [ is bounded at Pj(l) < m(ﬂ%“

Now we need to find the expected area of disruption for an ID used at level
[ (which will dominate all lower levels). We can take the expected number of
hops to be the expect length of descending chains from that ID, symmetric
to the length of ascending chains used in determining the convergence time,
which is O(1). The distance per hop, scales exponentially as O(3!) (See
Section 4.1).

Putting this all together, we have an expected distance of disruption of
Fp = 552 0(3) » O(1) « 1obars = 5%, 0031/2°) = £, 0((3/4)) = 0(1)

So the expected radius r around a dead processor which must reconverge
is O(1), and since time of convergence is on the order of the diameter which
must converge, the expected time of reconvergence is also O(1).

5 Contributions

I have posed the problem of hierarchical group formation in the context of
amorphous computation and found that it can be solved via the LEADER-
LESSHIERARCHY algorithm. This algorithm converges rapidly with low com-
munication and storage costs, scales to networks of arbitrary size, and adapts
automatically to stopping failures and reorganization of the network. In ad-
dition, the clustering produces has the useful property that cluster address
and distance are related for any pair of nodes.
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A Constants and State

This appendix contains a summary of all the state information and constants
used by the LEADERLESSHIERARCHY algorithm.

A.1 Constants

T, the fundamental time constant of the algorithm, is left for specification
based on the characteristics of the physical network. T} is used for determin-
ing when a connection is considered lost. Ny and N,, determine the hopcount
search radius for neighbors, and default to only immediate neighbors at the
physical level, followed by a doubling of hopcount at subsequent levels. Rg
is used by the multi-hop variant of the algorithm to determine the maximum
radius of a new clique. W, and W,, are estimates derives from Ny, N,,, and
R for how long a wait is expected before a reasonable set of neighbors could
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Name Description
S node state
clock node’s internal clock
lastSend time of last message send
uid node ID
L list of level records
t start time for level
I node info record
ued group ID
status election state
leaderID  next level group ID
N set, of neighbor records
1 node info record, as above
hearsay hopcount to information source
lastHeard last refresh on information
dead flag to indicate lost neighbor
finalDead flag to dispose lost neighbor

Table 2: Node state for LEADERLESSHIERARCHY algorithm.

be found. They also act as a damper on transitory information and excessive
level creation.

A.2 State Information

The state S of a node is composed of its unique ID number (S.uid), a con-
tinuously running clock (S.clock), a record of when it last sent a message
(S.lastSend) and state information for each level of the hierarchy (S.L).

The state information S.L is a list of records, one for each level in as-
cending order (so S.L[0] is the bottom level), and each record contains level
state information (L.I), level neighbor information (L.N), and the time at
which the level’s record was created (L.t).

A level state information record L.I consists of three pieces of data: the
ID of the group the node belongs to at this level (I.uid), the status of the
group in the clique election process (I.status), and the clique member ID
which it will take for its next level group (I.leaderID).

The level neighbor information L.N is a set of neighbor information
records, each of which holds five pieces of data: a state information record for
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the neighbor (IV.I, which is formatted the same as a local state information
record), how many hops away information about the neighbor originated
(N.hearsay), a time at which the neighbor information was last refreshed
(N.lastHeard), and two status flags (N.dead and N.finalDead).

B Multihop Groups Pseudocode

The following pseudocode can be substituted for the ELECTLEADER function
to allow groups of radius R neighborhoods to be built instead of groups of
radius 1.

ELECTLEADER(S, i)
1 if LEADER?(S, 1)
2 then S.L[i].I.status < “leader”

3 S.L[i].I.leaderID < S.L[i].uid

4 S.L[i].I.leader Distance < 0

5 else (id,dist) < FOLLOWER?(S, 1)

6 if od # NIL

7 then S.L[i].I.status < “follower”

8 S.L[i].I.leaderID <« id

9 S.L[i].I.leader Distance <— dist
10 else S.L[i].I.status < “none”
11 S.L[i].I.leaderID < NIL
12 S.L[i].1.leader Distance <— NIL

Pseudocode for ELECTLEADER variation with multihop groups

LEADER?(S, 1)
1 live < false
2 for each nbr in S.L[i|.N
3 do if nbr.dead
then return false
live < true
if nbr.1.status = “follower”
then if nbr.l.leaderID > S.L[i].I.uid and nbr.I.leader Distance < R
then return false
else if nbr.l.uid > S.L[i].I.uid
then return false

S O 00~ O Ut =
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11 return [ive
Pseudocode for multihop LEADER? subroutine

FOLLOWER?(S, 1)
1 best < NIL
2 for each nbr in S.L[i|.N
3 do if nbr.dead

4 then continue

5 if nbr.I.status = “leader”

6 then if (best = NIL or best.leader Distance > 0 or

7 nbr.I.leaderI D > best.leaderID)

8 then best < nbr.1

9 if nbr.I.status = “follower”
10 then if (nbr.l.leader Distance < R and
11 (best = NIL or nbr.I.leader Distance < best.leader Distance or
12 (nbr.1.leader Distance = best.leader Distance and
13 nbr.I.leaderI D > best.leaderID)))
14 then best < nbr.1

15 if best = NIL

16 then return (NIL, NIL)

17 else return (best.leaderlD,best.leader Distance + 1)
Pseudocode for multihop FOLLOWER? subroutine
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