
Mathematical Programming manuscript No.
(will be inserted by the editor)

Alexandre Belloni · Claudia Sagastizábal

Dynamic Bundle Methods

Application to Combinatorial Optimization

Dedicated to Clovis G. Gonzaga on the ocassion of his 60th birthday

Abstract. Lagrangian relaxation is a popular technique to solve difficult optimization prob-
lems. However, the applicability of this technique depends on having a relatively low number of
hard constraints to dualize. When there are exponentially many hard constraints, it is prefer-
able to relax them dynamically, according to some rule depending on which multipliers are
active. For instance, only the most violated constraints at a given iteration could be dualized.
From the dual point of view, this approach yields multipliers with varying dimensions and
a dual objective function that changes along iterations. We discuss how to apply a bundle
methodology to solve this kind of dual problems. We analyze the convergence properties of
the resulting dynamic bundle method, including finite convergence for polyhedral problems,
and report numerical experience on Linear Ordering and Traveling Salesman Problems.

1. Introduction

Consider the following optimization problem:

max
p

C(p)

p ∈ Q ⊂ IRmp

gj(p) ≤ 0 , j ∈ L := {1, . . . , n},
(1)

where C : IRmp → IR, for each j ∈ L, gj : IRmp → IR denotes a “hard” constraint,
difficult to deal with. Easy constraints are included in the set Q, which can be
discrete. Suppose in addition that n is a huge integer, say bigger than 1010.

Solutions to (1) can be found by using Lagrangian Relaxation techniques. Let
xj denote the nonnegative multipliers associated to hard constraints and denote
the non negative orthant by IRn

≥0 := {x ∈ IRn : xj ≥ 0 for all 1 ≤ j ≤ n}. The
dual problem of (1) is given by

min
x∈IRn

≥0

f(x) , where f(x) := max
p∈Q

C(p)−

∑

j∈L

xjgj(p)

 (2)

is the dual function, possibly nondifferentiable.

Alexandre Belloni: Operations Research Center MIT, E40-149, 77 Massachusetts Av., Cam-
bridge, Massachusetts 02139-4307, US. e-mail: belloni@mit.edu

Claudia Sagastizábal: IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro
RJ 22460-320, Brazil. On leave from INRIA Rocquencourt, France. Research supported by
CNPq Grant No. 303540-03/6, e-mail: sagastiz@impa.br

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4382726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Belloni and Sagastizábal

For the Lagrangian relaxation approach to make sense, two points are fun-
damental. First, the dual function should be much simpler to evaluate (at any
given x) than solving the primal problem directly; we assume this is the case
for (1). Second, the dual problem should not be large-scale: in nonsmooth op-
timization (NSO) this means less than 106 variables. So the approach is simply
not applicable in our setting, because in (1) n is too big. Instead of dualizing all
the n hard constraints at once, an alternative approach is to choose at each iter-
ation subsets of constraints to be dualized. In this dynamical relaxation, subsets
J have cardinality |J | much smaller than n. As a result, the corresponding dual
function, defined on IR|J|, is manageable from the NSO point of view.

The idea of replacing a problem with difficult feasible set by a sequence
of problems with simpler constraints can be traced back to the cutting-planes
methods [CG59,Kel60]. An important matter for preventing subproblems from
becoming too difficult is how and when to drop constraints. In Semi-infinite
Programming, for example, the identification of sufficiently violated inequalities
is crucial for producing implementable outer approximation algorithms, [GP79,
GPT80]. In Combinatorial Optimization, a method to dynamically insert and
remove inequalities in order to strengthen relaxations was already used to solve
Steiner Problems in Graphs in [Luc92]. This is a special class of cutting-planes
method, that was named Relax-and-Cut algorithm in [EGM94]. Related works
are [Bea90,CB83,LB96,HFK01,MLM00,CLdS01,BL02b]. All these works use a
subgradient type method, [Erm66,Sho85,HWC74] to update the dual multipli-
ers. Although numerical experience shows the efficiency of the Relax-and-Cut
technique, no convergence proof for the algorithm was given so far.

In this paper we consider Relax-and-Cut methods from a broader point of
view, more focused on a dual perspective. Our procedure applies to general
problems, not only combinatorial problems. Primal information produced by a
Separation Oracle (which identifies constraints in (1) that are not satisfied, i.e.,
“violated inequalities”) is used at each iteration to choose the subset J . Dual
variables, or multipliers, are updated using a particular form of bundle methods,
[HUL93,BGLS03], that we call Dynamic Bundle Method and is specially adapted
to the setting. Thanks to the well known descent and stability properties of the
bundle methodology, we are in a position to prove convergence of our method.

We mention [Hel01], a closely related work, where a similar algorithm is ap-
plied to solve semidefinite relaxations of combinatorial problems. The dual step
therein uses the so-called spectral bundle method, while primal information is
given by a maximum violation oracle which seeks for the most violated inequal-
ity. Our Separation Oracle, depending on an index set J , is slightly more general;
see Remark 1 below.

This paper is organized as follows. In Section 2, the general Relax-and-Cut
formulation is discussed. Sections 3 and 4 describe the bundle methodology in
this new context. In Sections 5 and 6 we state the formal proofs of convergence,
including finite convergence for polyhedral problems. Numerical results for Lin-
ear Ordering and Traveling Salesman problems are shown in Section 7. Finally,
in Section 8 we give some concluding remarks.

Dynamic bundle methods 3

Our notation and terminology is standard in bundle methods; see [BGLS03],
[HUL93]. We use the euclidean inner product in IRn: 〈x, y〉 =

∑n
j=1 xjyj , with

induced norm denoted by | · |. For an index set J , |J | stands for its cardinality.
The indicator function of the non negative orthant IRn

≥0, denoted by I≥0, is
defined to be 0 for all x ∈ IRn

≥0 and +∞ otherwise. Finally, given x̃ nonnegative,
NIRn

≥0
(x̃) is the usual normal cone of Convex Analysis:

NIRn
≥0

(x̃) =
{
ν ∈ IRn : 〈ν, x− x̃〉 ≤ 0 for all x ∈ IRn

≥0

}
.

2. Combining primal and dual information

Relax-and-cut methods use primal information to choose which constraints in
(1) will be dualized at each iteration.

The dual function f from (2) is the maximum of a collection of affine functions
of x, so it is convex. Moreover, assume that (1) has one strictly feasible point (a
reasonable assumption, at least when Q is infinite), i.e. that there exists p′ ∈ Q
such that gj(p′) < 0 for all j ∈ L. Then the dual problem (2) has a solution (see
for instance [HUL93, Prop. XII.3.2.3]). In addition, the well-known weak duality
property

f(x) ≥ C(p) for all x ≥ 0 and p primal feasible (3)

implies in this case that f is bounded from below. Finally, note that the evalua-
tion of f for a given value of x gives straightforwardly a subgradient. More pre-
cisely, letting px ∈ Q be a maximizer for which f(x) = C(px)−∑

j∈L xjgj(px),
it holds that

−g(px) = − (gj(px)j∈L) = −(gj(px),{j=1,...,n}) ∈ ∂f(x) . (4)

Based on this somewhat minimal information, black-box methods generate a se-
quence {xk} converging to a solution x̄ of the dual problem (2); see [BGLS03,
Chs. 7-9]. If there is no duality gap (for example if the data in (1) is “convex
enough”), the corresponding px̄ solves (1). Otherwise, it is necessary to recover
a primal solution with some heuristic technique. Such techniques usually make
use of px̄ or even of the primal iterates pxk ; see for example [BA00], [BMS02].

An important consequence of considering a subset J instead of the full L is
that complete knowledge of dual function is no longer available. Namely, for any
given x only

max
p∈Q

C(p)−

∑

j∈J

xjgj(p)

 and not max

p∈Q

C(p)−

∑

j∈L

xjgj(p)

is known. In order to obtain convergent algorithms in the absence of complete
data, primal and dual information should be combined adequately. We first ex-
plain how to select hard constraints using primal points.

4 Belloni and Sagastizábal

2.1. Selecting inequalities

To choose which constraints are to be dualized at each iteration, we assume that
a Separation Oracle is available.

A Separation Oracle is a procedure SepOr that, given p ∈ IRmp and J ⊆ L,
identifies inequalities in L\J violated by p (in other words, hard constraints in
(1) that are not satisfied by p). The output of the procedure is an index set I,
i.e., I = SepOr(p, J), which can be empty.

We assume that, as long as there remain inequalities in L\J violated by p,
the Separation Procedure is able to identify one of such constraints. With this
assumption,

SepOr(p, J)=∅ ⇔ {j ∈ L : gj(p) > 0}⊆J ⇔ {j ∈ L : gj(p) ≤ 0}⊇L\J. (5)

In particular, SepOr(p, L) is always the empty set. In Combinatorial Optimiza-
tion this assumption corresponds to having an exact separation algorithm for
cutting the hard constraints. An efficient algorithm for such separation may not
be known for many families of valid inequalities for some NP-hard problems
(for example, the path inequalities for the Traveling Salesman Problem; see
Section 7.2 below).

Remark 1. The Separation Oracle in [Hel01] does not make use of an index set
J , and corresponds to J = ∅ in our setting:

SepOr
[Hel01]

(p) = SepOr(p, ∅).
In [Hel01, Def. 4.1], to guarantee that the separation procedure does not stall, but
explores all the inequalities, the following “maximum violation oracle” condition

SepOr[Hel01](p) ⊆
{

j ∈ L : gj(p) = max
l∈L

{gl(p)} > 0}
}

is assumed. In particular, SepOr[Hel01](p) only answers the empty set if p is
feasible in (1).

Even though stated for sets J , our assumption can be related to the one in
[Hel01], because each set J is a subset of L. More precisely, a Separation Oracle
that finds all violated inequalities by exploring the whole set L can as well explore
any given subset J to decide if there remain violated inequalities. Reciprocally,
a Separation Oracle for which (5) holds for all J , satisfies in particular the
maximum violation condition for J = L. Note, however, that it is possible to
build an artificial example 1 such that the only one active constraint at the
solution will never be the most violated inequality, for any iteration. Thus, the
Separation Oracle proposed in [Hel01] may fail to generate the right inequalities.

1 Given a positive parameter K, consider the problem

max
p∈[0,2]2

�
p1 + p2 : g1(p) = p1 − 1 ≤ 0, g2(p) = p2 − 1 ≤ 0, g3(p) =

2

K
(p1 + p2)− 1

K
≤ 0

�
and suppose the three constraints are relaxed. At the optimal set {(p1, 1

2
− p1) : p1 ∈ [0, 1

2
]},

g3 is the only active constraint. Since the relaxed problem is linear, for any multiplier x the
evaluation of the dual function will return as px a extreme point in [0, 2]2. So gi(p) ∈ {−1, 1}

Dynamic bundle methods 5

We now consider in detail which is the dual data available at each iteration.

2.2. Dual information

Given an index set J ⊂ L = {1, . . . , n}, write IRn = IR|J| × IRn−|J|. We denote
by P

J
the linear operator in IRn defined as the orthogonal projection on the

corresponding subspace:

P
J

: IRn −→ IR|J| × IRn−|J|

x 7−→ (
xJ , 0L\J

)
:=

(
xj∈J , 0j∈L\J

)
.

With this definition, it holds that

x = P
J
(x) =⇒ x = P

J ′
(x) for all J ′ ⊇ J . (6)

As we mentioned, at each iteration only a partial knowledge of the dual function
f is available. Namely, the composed function f ◦P

J
, where the index set J varies

along iterations. From [HUL93, Thm. VI.4.2.1], the corresponding subdifferential
is given by the formula

∂(f ◦ P
J
)(x) = P∗

J

(
∂f(P

J
(x)

)
= P

J

(
∂f(P

J
(x)

)
, (7)

because P∗
J

= P
J
.

NSO methods use dual data to define affine minorants of the dual function.
When all the constraints are dualized at once, given

(
xi, f(xi), si ∈ ∂f(xi)

)
, by

the subgradient inequality, the relation f(xi)+
〈
si, x− xi

〉 ≤ f(x) always holds.
In our dynamic setting, there is also an index set Ji. If we used (7) to compute
subgradients, we would only get minorizations of the form

f
(PJi(x

i)
)

+
〈
s
(PJi(x

i)
)
, x− PJi(x

i)
〉 ≤ f(x) ,

which only hold on the subspace {x ∈ IRn : x = PJi(x)}. For a similar relation
to hold at any x, one should rather define subgradients omitting the projection
operation, as shown by the next result.

Lemma 2. With the notation and definitions above, given xi ∈ IRn
≥0 and Ji ⊂

L, let pi be a maximizer defining fi := f(PJi(x
i)):

pi ∈ Arg max
p∈Q

C(p)−

∑

j∈Ji

xi
jgj(p)

 (8)

and define si := −g(pi) = − (
gj(pi)j∈L

)
. Then

fi +
〈
si, x−PJi(x

i)
〉

= C(pi)−
∑

j∈L

xjgj(pi) ≤ f(x) for all x ∈ IRn . (9)

for i = 1, 2 and |g3(p)| ≤ 7
K

. Finally, if g1(p) ≤ 0, g2(p) ≤ 0, this implies that g3(p) ≤ 0. Thus,
in order for the third constraint to be violated, at least one of the previous two constraints
must also be violated. As a result, for any K > 7, the third constraint will never be the most
violated constraint.

6 Belloni and Sagastizábal

Proof. Use the definition of the dual function f in (2) and the definition of
the projection PJi to write:

fi = C(pi)−∑
j∈Ji

xi
jgj(pi)

= C(pi)−∑
j∈L PJi(x

i)jgj(pi) .

From the definition of si, the first equality in (9) follows. As for the inequality in
(9), it follows too from the definition of f , since it implies that f(x) ≥ C(pi)−∑

j∈L xjgj(pi).

By Lemma 2, the affine function fi+
〈
si, · − PJi(x

i)
〉

is a minorant of the dual
function f from (2). Bundle methods are based on the iterative construction of
a model of f , defined as the maximum of planes tangent to graph f . Each plane
is given by an affine function of the form fi +

〈
si, · − xi

〉
. Since our dynamic

algorithm defines iterates xi satisfying xi = PJi
(xi), by (9), the model never

cuts off a section of graph f . Hence, replacing f by its model does not result
in loss of information, and the method eventually finds a minimum in (2) if the
sets Ji are properly defined.

For convenience, in Algorithm 4 below (fi, s
i, pi) := DualEval(xi, Ji) denotes

the dual computations described by Lemma 2.

3. Bundle methods

To help getting a better understanding of how the dynamic bundle method
works, we emphasize the main modifications that are introduced by the dynamic
dualization scheme when compared to a standard bundle algorithm.

Unless required for clarity, we drop iteration indices in our presentation: x̂
and x̂+ below stand for certain current and next iteration stability centers,
respectively.

Since (2) is a constrained NSO problem, there is an additional complication in
the algebra commonly used in bundle methods. We assume that the primal prob-
lem (1) is such that the dual function f is finite everywhere. In this case, bundle
methods are essentially the same than for unconstrained NSO, because the dual
problem in (2) is equivalent to the unconstrained minimization of (f + I≥0).

3.1. An overview of bundle methods

Let ` denote the current iteration of a bundle algorithm. Classical bundle meth-
ods keep memory of the past in a bundle of information consisting of

{
fi := f(xi) , si ∈ ∂f(xi)

}
i∈B

and (x̂, f(x̂)) the last “serious” iterate .

Serious iterates, also called stability centers, form a subsequence {x̂k} ⊂ {xi}
such that {f(x̂k)} is strictly decreasing. Although not explicitly denoted, the
superscript k in x̂k depends on the current iteration, i.e., k = k(`).

Dynamic bundle methods 7

When not all the hard constraints are dualized, there is no longer a fixed
dual function f , but dual objectives f ◦ P

J
, with J varying along iterations.

For example, Ĵ below denotes the index set used when generating the stability
center x̂ and, similarly, Ji corresponds to xi. With the notation from Lemma 2,
the bundle data is

{
fi := f(pi) , si := −(

gj(pi)j∈L

)}

i∈B
and

(
x̂, f(x̂), Ĵ

)
with x̂ = PĴ (x̂).

We will see that, by construction, it always holds that xi = PJi(x
i). Using the

(nonnegative) linearization errors

ei := f(x̂)− fi −
〈
si,PĴ(x̂)− PJi

(xi)
〉

= f(x̂)− fi −
〈
si, x̂− xi

〉
,

yields the bundle of information:
{

ei , si = −(
gj(pi)j∈L

)}

i∈B
and (x̂, f(x̂), Ĵ) with x̂ = PĴ (x̂) . (10)

Past information is used to define at each iteration a model of the dual
function f , namely the cutting-planes function

f̌B(x̂ + d) = f(x̂) + max
i∈B

{−ei +
〈
si, d

〉}
,

where the bundle B varies along iterations.
A well known property of bundle methods is that it is possible to keep in

the bundle B any number of elements without impairing convergence; see for
instance [BGLS03, Ch. 9]. More precisely, it is enough for the new bundle B+ to
contain the last generated information and the so-called aggregate couple (ê, ŝ);
see Lemma 3 below.

An iterate x` is considered good enough to become the new stability center
when f(x`) provides a significant decrease, measured in terms of the nominal
decrease δ`

δ` := f(x̂)− f̌B(x`).

When an iterate is declared a serious iterate, it becomes the next stability center
and x̂+ = x` (otherwise, x̂+ = x̂). Linearization errors are then updated, using
a recursive formula.

3.2. Defining iterates in a dynamic setting

We now consider more in detail the effect of working with a dynamic dualization
scheme.

Let J be an index set such that Ĵ ⊆ J (so that we have x̂ = P
J
(x̂), by (6)).

To define an iterate satisfying x` = PJ(x`), we solve a quadratic programming

8 Belloni and Sagastizábal

problem (QP) depending on a varying set J and on a positive parameter µ. More
specifically, d` = (d`

J , 0L\J) solves:

min f̌B(x̂ + d) +
1
2
µ|d|2

d = PJ(d) ∈ IRn

x̂j + dj ≥ 0 for j ∈ J .

The next iterate is given by x` := x̂ + d`.
Here arises a major difference with a purely static bundle method. Instead

of just solving mind

(
f̌B + I≥0

)
(x̂ + d) + 1

2µ|d|2, we introduce the additional
constraint d = PJ(d) which depends on the index set J . We use the notation
IRn

J,≥0 := {x ∈ IRn
≥0 : x = PJ(x)} for such constraint set.

Before giving the algorithm we derive some technical relations that are im-
portant for the convergence analysis. For convenience, in the QP (12) below,
instead of f̌B we use a more general function ϕ.

Lemma 3. Let x̂ ∈ IRn
≥0 be such that x̂ = PĴ(x̂). For i ∈ I, let ei ≥ 0 and

si ∈ IRn define the function

ϕ(x) := f(x̂) + max
i∈I

{〈
si, x− x̂

〉− ei

}
, (11)

and consider the problem

min
dJ∈IR|J|

{
(ϕ + I≥0) (x̂ + (dJ , 0L\J)) +

1
2
µ|dJ |2

}
(12)

where Ĵ ⊂ J ⊂ L and µ > 0. The following hold:

(i) A dual problem for (12) is

min
α

1
2µ

∑

j∈J

(
min(0,

∑

i∈I

αis
i
j)

)2

+
∑

i∈I

αiei

α ∈ ∆I := {z ∈ IR|I| : zi ≥ 0 ,
∑

i∈I zi = 1}.
(13)

(ii) Let d∗J and α∗ denote, respectively, the solutions to (12) and (13), and define
ν∗J := −max(0,

∑
i∈I α∗i s

i
J). Then x∗ := x̂ + (d∗J , 0L\J) satisfies x∗ = P

J
(x∗)

and

x∗ = x̂− 1
µ

(ŝ + ν̂) with
{

ŝ :=
∑

i∈I α∗i s
i ∈ ∂ϕ(x∗)

ν̂ := (ν∗J ,−∑
i∈I α∗i s

i
L\J) ∈ NIRn

J,≥0
(x∗).

(14)
Furthermore, ϕ(x∗) = f(x̂)+

〈
si, x∗ − x̂

〉− ei for all i ∈ I such that α∗i > 0.
(iii) The normal element satisfies ν̂ ∈ NIRn

≥0
(x∗) ⇐⇒ ∑

i∈I α∗i s
i
L\J ≥ 0, P

J
(ν̂) ∈

NIRn
≥0

(x∗), and 〈ν̂, x̂− x∗〉 = 0. The nonnegative quantity ê :=
∑

i∈I α∗i ei

satisfies ê = f(x̂)− ϕ(x∗)− µ|x∗ − x̂|2.

Dynamic bundle methods 9

Suppose, in addition, that f(x) ≥ ϕ(x) for all x ∈ IRn
≥0. Then

(iv) ŝ +P
J
(ν̂) ∈ ∂ê

(
f + IIRn

≥0

)
(x̂). The same inclusion holds for ŝ + ν̂ whenever

ν̂ ∈ NIRn
≥0

(x∗).
(v) The nominal decrease δ = f(x̂)−ϕ(x∗) satisfies the relations δ = ê+ 1

µ |ŝ+ν̂|2
and δ = ∆ + 1

2µ|x∗ − x̂|2, where ∆ is the optimal value in (13).

Proof. Rewrite (12) and associate multipliers to the constraints as follows

min
r∈IR,dJ∈IR|J|

r +
1
2
µ|dJ |2

r ≥ f(x̂) +
〈
si, (dJ , 0L\J)

〉− ei , i ∈ I (↔ αi)
dJ ≥ 0 (↔ −νJ) .

The corresponding KKT system is

µdJ +
∑

i∈I α∗i s
i
J + νJ = 0 (a)

α ∈ ∆I (b)
∀i ∈ I αi(f(x̂) +

〈
si, (dJ , 0L\J)

〉− ei − r) = 0 (c)
∀j ∈ J νj ≤ 0 and νjdj = 0. (d)

Let γ :=
∑

i∈I αis
i. Using the expression for dj from (a) in the complementarity

condition (d), we obtain for νj the system

νj ≤ 0 and νj(γj + νj) = 0,

solved by νJ = −max(0, γj). As a result,
∑

i∈I

α∗i s
i
J + ν∗J = min(0,

∑

i∈I

α∗i s
i
J),

so (a) rewrites as µdj + min(0,
∑

i∈I α∗i s
i
J) = 0. Use this relation to replace dJ

in the Lagrangian

L(r, dJ , α, νJ) =
1
2
µ|dJ |2 + f(x̂) +

(∑

i∈I

α∗i s
i
J + νJ

)>

dJ −
∑

i

αiei

and drop the constant term f(x̂) to obtain the objective function in (13).
To show item (ii), note first that x∗ = PJ(x∗) because d∗J ≥ 0 and, since Ĵ ⊆ J ,
PJ(x̂) = x̂ by (6). Subgradients in ∂ϕ(x∗) are convex combinations of si, for
those indices i ∈ I where the maximum in (11), written with x = x∗, is attained.
Thus, from (b) and (c) written for α∗, d∗J , and r = ϕ(x∗), we see that ŝ ∈ ∂ϕ(x∗).
The last assertion in item (ii) follows from (c). Finally, the expression for ν̂ is
obtained from (d), using the following characterization of normal elements ν in
the cone NIRn

J,≥0
(x∗):

νj = 0 for j ∈ J such that x∗j > 0
νj ≤ 0 for j ∈ J such that x∗j = 0
νj ∈ IR for j ∈ L\J ;

10 Belloni and Sagastizábal

see for instance [HUL93, Ex. III.5.2.6(b)]. In particular, when J = L, the two
first assertions in item (iii) follow. Together with the complementarity condition
(d), we obtain 〈ν̂, x̂− x∗〉 = ν∗J

>d∗J −(
∑

i∈I α∗i s
i
L\J)>0L\J = 0. Positivity of ê

follows from the fact that α∗i and ei are nonnegative for all i ∈ I. The expression
for ê in (iii) results from equating the primal optimal value

ϕ(x∗) +
1
2
µ|x∗ − x̂|2

with f(x̂)−∆, the dual optimal value, i.e., with

f(x̂)− 1
2µ
|
∑

i∈I

α∗i s
i
J + ν∗J |2 − ê,

and using the identity µ2|x∗− x̂|2 = |ŝ + ν̂|2 = |∑i∈I α∗i s
i
J + ν∗J |2 from (14). To

obtain the subgradient inclusion, we first show that

〈ŝ + ϑ, ŝ + ν̂〉 = |ŝ + ν̂|2 where ϑ denotes either P
J
(ν̂) or ν̂. (15)

The relation is straighforward in the latter case. When ϑ = P
J
(ν̂), separate the

J and L\J components of ν̂ and use its definition from (14) to write

ν̂ = P
J
(ν̂) + P

L\J (ν̂) = ϑ +
(
0J ,−

∑

i∈I

α∗i s
i
L\J

)
.

Hence, ŝ + ν̂ = ŝ + ϑ +
(
0J ,−∑

i∈I α∗i s
i
L\J

)
and, therefore,

|ŝ + ν̂|2 = 〈ŝ + ϑ, ŝ + ν̂〉+

〈(
0J ,−

∑

i∈I

α∗i s
i
L\J

)
, ŝ + ν̂

〉
= 〈ŝ + ϑ, ŝ + ν̂〉 ,

because (ŝ + ν̂)L\J = 0 by (14).
Since we suppose that in both cases ϑ ∈ NIRn

≥0
(x∗) = ∂I≥0(x∗), for item (iv) to

hold, the ê-subgradient inequality

(f + I≥0) (x) ≥ f(x̂) + 〈ŝ + ϑ, x− x̂〉 − ê

must be satisfied by each x ∈ IRn. By definition of indicator function, the relation
holds trivially for all x 6∈ IRn

≥0. Let x ∈ IRn
≥0; the facts that ŝ ∈ ∂ϕ(x∗) and ϑ is

a normal element give the inequalities

ϕ(x) ≥ ϕ(x∗)+ 〈ŝ, x− x∗〉
0 ≥ 〈ϑ, x− x∗〉 .

By adding these inequalities and using that f(x) ≥ ϕ(x), we see that

f(x) ≥ ϕ(x∗) + 〈ŝ + ϑ, x− x∗〉
= f(x̂) + 〈ŝ + ϑ, x− x̂〉 − (f(x̂)− ϕ(x∗)− 〈ŝ + ϑ, x̂− x∗〉).

Dynamic bundle methods 11

The desired result follows from the expression for ê and (15).
Finally, item (v) follows the identity µ2|x∗ − x̂|2 = |ŝ + ν̂|2 and the expression
for ê in item (iii).

The aggregate couple (ê, ŝ) from Lemma 3 represents in a condensed form the
information related to active bundle elements, i.e., to Iact := {i ∈ I : α∗i > 0}.
Along the iterative bundle process, this couple may be inserted in the index set
I defining ϕ for the next iteration. Namely, when |Iact| becomes too big and
some active elements must be discarded. When the aggregate couple enters the
index set I, the corresponding aggregate primal point may be useful to separate
inequalities, cf. π̂` in Corollary 6(i) below.

In the algorithm stated in section 4 below, ϕ is the cutting-plane model f̌B,
I = B and si = −g(pi). Stability centers are indexed by k. Both the bundle B
and the index set J may vary with the iteration index `, and the same holds for
the QP information, where we use the notation

(
x`, ŝ`, ν̂`, ê`, δ`, α

∗`

, {pi : i ∈ Bact}
)

= QPIt(x̂k, f̌B, J`, µ`) .

4. The algorithm

All the elements are now in place for the precise algorithm to be defined.

Algorithm 4 (Dynamic Bundle Method).

Initialization. Choose parameters m ∈ (0, 1], µ0 > 0, |B|max ≥ 2, and a
tolerance tol ≥ 0. Choose 0 6= x0 ∈ IRn

≥0 and define J0 := {j ≤ n : x0
j > 0}.

Make the dual computations to obtain (f0, s
0, p0) := DualEval(x0, J0).

Set k = 0, x̂0 := x0, f̂0 := f0, and Ĵ0 := J0. Set ` = 1 and let J1 := J0; define
the aggregate bundle B̂ := ∅ and the oracle bundle B :=

{
(e0 := 0, s0)

}
.

Step 1. (Iterate Generation) Solve the QP problem:
(
x`, ŝ`, ν̂`, ê`, δ`, α

∗`

, {pi : i ∈ Bact}
)

= QPIt(x̂k, f̌B, J`, µ`) .

Step 2. (Dual Evaluation) Make the dual computations

(f`, s
`, p`) := DualEval(x`, J`) .

Step 3. (Descent test and Separation)
If f` ≤ f̂k −mδ` then declare a serious step:

Move the stabilization center:
(
x̂k+1, f̂k+1

)
:=

(
x`, f`

)
.

Update the linearization and aggregate errors:
ei = ei + f̂k+1 − f̂k −

〈
si, x̂k+1 − x̂k

〉
for i ∈ B

ê` = ê` + f̂k+1 − f̂k −
〈
ŝ`, x̂k+1 − x̂k

〉

Compute Ok+1 := {j ∈ J` : x̂k+1
j = 0} and define Ĵk+1 := J`\Ok+1.

Call the separation procedure to compute

12 Belloni and Sagastizábal

I` :=∪{
SepOr(pi, Ĵk+1) : i ∈ Bact

}
.

Let J`+1 := Ĵk+1 ∪ I`. Set k = k + 1.
Otherwise, declare a null step: compute e` := f̂k − f` −

〈
s`, x̂k − x`

〉
.

Call the separation procedure to compute
I` :=∪{

SepOr(pi, J`) : i ∈ Bact
}
.

Set J`+1 := J` ∪ I`.
Step 4. (Stopping test) If δ` ≤ tol and I` = ∅ stop.

Otherwise go to Step 5.
Step 5. (Bundle Management and Update)

If the bundle has not reached the maximum bundle size, set Bred := B.
Otherwise, if |B| = |B|max, then delete at least one element from B to obtain
Bred. If Bact ⊂ Bred, then B̂ = ∅. If Bact 6⊂ Bred, then delete at least one
more element from Bred and replace B̂ by B̂ := {(ê`, ŝ

`)}.
In all cases define B+ := Bred ∪ B̂ ∪ {(e`, s

`)}.
Loop Choose µ`+1 > 0. Set B = B+, ` = ` + 1 and go to Step 1. ut

Before passing to the convergence analysis, we comment on some features of
the algorithm.
– Note that J0 is defined in order to satisfy x0 = PJ0(x

0). Since by construction,
it always holds that J` ⊃ Ĵk(l), Lemma 3(i) ensures that x` = PJ`

(x`) for all
subsequent ` > 0.

– Index sets defined at serious steps could also be defined by Ĵk = {j ∈ L : x̂k
j >

0} ∪ I`, where I` ⊂ {j ∈ L : x̂k
j = 0 and gj(pk) > 0}.

– Step 5 selects bundle elements trying to keep all active bundle elements. If
this is not possible, the aggregate couple is inserted in the bundle.

5. Convergence Analysis. Dual Results

We will show in Section 6 that a variant of Algorithm 4 (which keeps all active
elements so that B̂` is empty for all `) has finite termination whenever Q is finite
and the Assumption 11 given below holds. We proceed in two steps, similarly
to [Kiw85, Ch. 2.6]. Namely, we first show that if the algorithm loops forever, it
converges to a solution of a certain dual problem. Then we use this asymptotic
result to obtain a contradiction and prove finite termination in Section 6.

In this section we focus on dual convergence results. For our presentation we
mostly follow [HUL93, Ch. XV.3]. Notwithstanding the formal similarities with
the refered material, the dynamic scheme introduces modifications in the QP
that need to be addressed carefully.

5.1. The effect of compressing the bundle

Associated to the aggregate couple that may be inserted in the bundle at Step 5
to replace deleted active elements, there is an affine function, sometimes called
aggregate linearization.

Dynamic bundle methods 13

Lemma 5. With the notation and definitions of Algorithm 4, consider the fol-
lowing affine function, defined at the `th-iteration for all x ∈ IRn:

f̃`(x) := f̌B(x`) +
〈
ŝ`, x− x`

〉
. (16)

The following holds:

(i) f̃` ≤ f̌B and f̃`(x) = f̂k +
〈
ŝ`, x− x̂k

〉− ê`.
(ii) At each iteration of Algorithm 4, it holds that

f̌B(x) ≤ f(x) for all x ∈ IRn. (17)

(iii) Let B+ denote the updated bundle defined at the end of Step 5 in Algorithm 4.
Then f̌B+(x`) = f(x`) = f` and f̌B+(x`+1) ≥ f̃`(x`+1).

In particular, all the statements in Lemma 3 hold, written for x̂ = x̂k, x∗ = x`,
Ĵ = Ĵk, J = J`, I = B`, ϕ = f̌B, µ = µ`, ŝ = ŝ`, ν̂ = ν̂`, ê = ê`, and δ = δ`.

Proof. Items (i)−(iii) in Lemma 3 hold without any assumption, the remain-
ing statements, i.e., items (iv) and (v), require that ϕ ≤ f on IRn

≥0, an inequality
that will follow from (17).
The first relation in item (i) is straightforward from (16), because ŝ` ∈ ∂f̌B(x`)
by (14). To show the second relation, add and substract

〈
ŝ`, x̂k

〉
to the right

hand side of (16). Then use the expression for ê` in Lemma 3 (iii) and the re-
lation µ`

〈
ŝ`, x̂k − x`

〉
= |ŝ` + ν̂`|2, which follows from the expression for x` in

(14) and the last assertion in Lemma 3(ii).
To see item (ii), first note that, by definition of f̃`, ∇f̃`(x) = ŝ` for all x, in
particular for x = x`. Thus, the optimality condition (14) is also the optimality
condition for a QP as in (12), with ϕ replaced by f̃`. Now let Φ be any function
satisfying

f̃`(x) ≤ Φ(x) for each x ∈ IRn and Φ(x`) = f̃`(x`). (18)

Since Φ ≥ f̃` with equality at x`, we see the iterate x` is also the solution to the
QP (12), with ϕ replaced by Φ.
Consider now B+, the updated bundle defined at the end of Step 5 in Al-
gorithm 4. By construction, it has the form B+ = Bred ∪ B̂ ∪ {(e`, s

`)}, so
f̌B+(x) = max{Φ(x), f` +

〈
s`, x− x`

〉} where the expression for Φ := f̌Bred∪B̂
has three possibilites. We claim that in all cases Φ satisfies the conditions
in (18). When B̂ = ∅, either Bred = B or Bred ⊃ Bact. In the first case,
Φ := f̌B, and the claim holds by item (i). In the second case, Φ := f̌Bred

.
Clearly, f̌Bact ≥ f̃` and, since Bred ⊃ Bact, f̌Bred

≥ f̌Bact . In addition, be-
cause B ⊃ Bred, f̌B(x`) ≥ f̌Bred

(x`) ≤ f̌Bact(x`). But from the last asser-
tion in Lemma 3(ii), f̌B(x`) = f̂k +

〈
si, x̂k − x`

〉 − ei for all i ∈ Bact. So
Φ(x`) = f̌Bred

(x`) = f̃`(x`). Finally, when B̂ 6= ∅, Φ := max{f̌Bred
, f̃`}, so

Φ ≥ f̃`. In particular, Φ(x`) ≥ f̃`(x`) = f̌B(x`), by (16). In addition, by item (i),
f̃` ≤ f̌B and, since Bred ⊂ B, f̌Bred

≤ f̌B. It follows tat Φ ≤ f̌B. In particular,
Φ(x`) ≤ f̌B(x`), which shows that Φ satisfies the relations in (18) and our claim
is proved for all three cases.

14 Belloni and Sagastizábal

To show item (ii), we proceed by induction on `, the iteration counter of Algo-
rithm 4. In our notation, B = B` and B+ = B`+1. By (9) written for x0, (17)
holds for the starting bundle, because f̌B1(x) = f(x0) +

〈
s0, x− x0

〉
and f is

convex. Suppose (17) is satisfied for B. We have that f̌B+(x) = max{Φ(x), f` +〈
s`, x− x`

〉}, Φ ≤ f̌B. Since by the inductive assumption Φ(x) ≤ f(x) for all
x ∈ IRn and by (9) the affine piece defined from (e`, s

`) is a minorant for f , (17)
holds for B+.
Finally, to see item (iii), first note that f̌B+(x`) = max{Φ(x`), f`}, with Φ(x`) ≤
f̌B(x`). Since f̌B(x`) ≤ f̃`, the first assertion in item (iii) follows. The sec-
ond assertion follows from a similar reasoning and using (18), which yields that
f̌B+(x`+1) ≥ Φ(x`+1) ≥ f̃`(x`+1).

Lemma 5 above ensures that the compression mechanism in Step 5 of Al-
gorithm 4 does not introduce any change into dual iterations, at least from the
global convergence point of view. In practice, however, it is observed that small
bundle sizes, say |B|max = 2, do affect speed of convergence. Even though each
QP resolution at Step 2 is faster, the total number of iterations increases and
quite often the total CPU time is higher than when using “reasonable” values
of |B|max (preferably, keeping all active elements).

However, depending on the original problem (1), compression of primal in-
formation may not be possible. Algorithm 4 makes use of active primal points
in order to compute a new index set I`. Thus, a primal bundle of past primal
points pi (computed in Step 2 at the ith-iteration) should also be kept along iter-
ations. Such primal bundle may be compressed without any loss of information,
following rules similar to those in Step 5. We now express some of the relations
in Lemma 3 in a primal form. In particular, the equivalence result stated in item
(iii) therein reveals which are the primal points that should be separated by the
Separation Oracle.

Corollary 6. Recall that Bact = {i ∈ B : α∗
`

i > 0} denotes the active simplicial
indices in Step 1 of Algorithm4. Suppose that in (1) g is affine and Q is convex.
The following relations hold:

(i) The subgradient in (14) has the form ŝ` = −g(π̂`), where

π̂` :=
∑

i∈Bact

α∗
`

i pi for certain pi ∈ Q.

(ii) If SepOr(π̂`, J`) = ∅ =⇒ ν̂ ∈ NIRn
≥0

(x`).
(iii) If C is also affine, and ei in (11) satisfies ei = f(x̂k)− f(xi)− 〈

si, x̂k − xi
〉

for all i ∈ Bact, then

f̌B(x`) = C(π̂`)− 〈
g(π̂`), x`

〉
(19)

and x`, f̌B(x`) and α∗
`

solve the KKT system

∀j ∈ J` µ(x`
j − x̂k

j) + min(0,
∑

i∈I α∗i s
i
j) = 0 (a)

α∗
` ∈ ∆B (b)

∀i ∈ Bact α∗
`

i (C(pi)− 〈
g(pi), x∗

〉− f̌B(x`)) = 0 (c)
(20)

Dynamic bundle methods 15

corresponding to (12) with ϕ = f̌Bact .

Proof. By (14), ŝ =
∑

i∈Bact α∗
`

i si. By construction, each si is either an
aggregate ŝ, or si satisfies si = −g(pi) ∈ ∂f(xi) with xi and pi given by Lemma 2.
When si = ŝ, again by (14), it is the convex sum of past subgradients, so
eventually si = −∑

j≤i βjg(pj) for some pj ∈ Q. Item (i) follows, because g is
affine. To show (ii), suppose that the set SepOr(π̂`, J`) is empty. Then by (5)
gj(π̂`) ≤ 0 for all j ∈ L\J`, and the first assertion in Lemma 3(iii) gives the
desired inclusion, because

∑
i∈Bact α∗

`

i si
L\J`

= gL\J`
(π̂`).

To show (19), use, sucessively, the expression for ê in Lemma 3(iii), (14), the
fact that 〈ν̂, x∗ − x̂〉 = 0 by Lemma 3(iii), and the definitions of ŝ and ê to
obtain

ϕ(x∗) = f(x̂) + 〈µ(x̂− x∗), x∗ − x̂〉 − ê
= f(x̂) + 〈ŝ + ν̂, x∗ − x̂〉 − ê
= f(x̂) + 〈ŝ, x∗ − x̂〉 − ê
= f(x̂) +

∑
i∈Iact α∗i

(〈
si, x∗ − x̂

〉− ei

)
.

By definition of ei, f(x̂)−〈
si, x̂

〉−ei = f(xi)−〈
si, xi

〉
, so (19) follows from (9),

and similarly for (20), recalling the expression for the KKT system associated
to (12).

We see from these results that when g is affine and Q convex, to define
I` in Step 3 of Algorithm 4 it is enough to separate the convex primal point
π̂`. Otherwise, we may be compelled to stock all active primal points. Finally,
note that if I` is empty for all `, then the condition on linearization errors in
Corollary 6(iii) holds and, thus, both (19) and (20) apply.

5.2. Asymptotic results

When the algorithm loops forever, there are two mutually exclusive situations.
Either there is a last serious step followed by an infinite number of null steps, or
there are infinitely many different serious steps.

We give first with a technical result, for a particular instance of iterates,
namely, two consecutive null steps with same index set J`.

Corollary 7. With the notation and definitions of Algorithm 4, let ` be an
iteration index giving a null step. Suppose the next iteration ` + 1 also gives
a null step. If µ` ≤ µ`+1 and J`+1 = J`, then ∆`, the optimal value of (13),
satisfies the relation

∆`+1 +
1
2
µ`|x`+1 − x`|2 ≤ ∆` .

Proof. First expand squares to obtain the identity

1
2
µ`|x` − x̂k|2 +

1
2
µ`|x`+1− x`|2 = µ`

〈
x̂k − x`, x`+1− x`

〉
+

1
2
µ`|x`+1− x̂k|2.

16 Belloni and Sagastizábal

The scalar product in the right hand side above is equal to
〈
ŝ` + ν̂`, x`+1 − x`

〉
,

by (14). Since J`+1 = J` by assumption and PJ`
(ν̂`) ∈ NIRn

≥0
(x`) by Lemma3(iii),

we have that
〈
ν̂`, x`+1− x`

〉
=

〈
ν̂`,PJ`

(x`+1− x`)
〉

=
〈PJ`

(ν̂`), x`+1− x`
〉 ≤ 0

and, thus,

1
2
µ`|x` − x̂k|2 +

1
2
µ`|x`+1 − x`|2 ≤ 〈

ŝ`, x`+1 − x`
〉

+
1
2
µ`|x`+1 − x̂k|2.

Combine the last inequality with the definition of ∆`, (16), and the second
assertion in Lemma 5 (iii) to see that

f̂k −∆` +
1
2
µ`|x`+1 − x`|2 ≤ f̌B(x`) +

〈
ŝ`, x`+1 − x`

〉
+

1
2
µ`|x`+1 − x̂k|2

= f̃`(x`+1) +
1
2
µ`|x`+1 − x̂k|2

≤ f̌B+(x`+1) +
1
2
µ`|x`+1 − x̂k|2 .

The result follows, because the assumption that µ` ≤ µ`+1 implies that f̂k −
∆` + 1

2µ`|x`+1 − x`|2 ≤ f̌B+(x`+1) + 1
2µ`+1|x`+1 − x̂k|2 = f̂k −∆`+1 .

We now consider the case of infinite iterations of Algorithm 4, starting with
the case of a finite number of serious steps.

Lemma 8. Consider Algorithm 4 applied to the minimization problem (2). Sup-
pose there is an iteration ˆ̀ where the stability center x̂ is generated, followed by
an infinite number of null steps. Suppose, in addition, that µ` ≤ µ`+1. Then
there is an iteration `ast ≥ ˆ̀ such that the following holds for all ` ≥ `ast:

(i) J` = J̄ ⊂ L.
(ii) If, in addition, m ∈ (0, 1) then δ` → 0, x` → x̂, and f̌B(x`) → f(x̂).

Proof. Since we only remove inequalities at serious steps via Ok+1, once x̂
has been generated, index sets J` can only increase. Since L is finite, there is
eventually an iteration, say `ast, such that J`ast = J̄ ⊂ L. Subsequently, there
are only null steps with J` = J̄ for all ` ≥ `ast, as stated in item (i).
To see (ii), first note that by (i) for ` ≥ `ast Corollary 7 applies. In particular,
the sequence {∆`} is decreasing. Using succesively the definition of ∆`, (14),
(16) and the fact that

〈
ν̂`, x̂− x`

〉
= 0 by Lemma 3(iii), we obtain the following

identities:

f(x̂)−∆` +
1
2
µ`|x̂− x`|2 = f̌B(x`) + µ`|x̂− x`|2

= f̌B(x`) +
〈
ŝ` + ν̂`, x̂− x`

〉

= f̃`(x̂) +
〈
ν̂`, x̂− x`

〉

= f̃`(x̂) .

Dynamic bundle methods 17

Together with f̃`(x̂) ≤ f̌B(x̂) ≤ f(x̂), by Lemma 5(i) and (17), we obtain that
−∆` + 1

2µ`|x̂− x`|2 ≤ 0. Therefore, since µ` ≤ µ`+1 and {∆`} is decreasing, we
conclude that

1
2
µ`ast|x̂− x`|2 ≤ 1

2
µ`|x̂− x`|2 ≤ ∆` ≤ ∆`ast . (21)

Thus, the sequence {x`} remains in a bounded set. We denote by C a Lipschitz
constant for both f and f̌B+ on such set. Using that −f` + f̌B+(x`) = 0 by
Lemma 5(iii),

f`+1 − f̌B+(x`+1) = f`+1 − f` + f̌B+(x`)− f̌B+(x`+1) ≤ 2C|x`+1 − x`| . (22)

Now, for m < 1, sum the following inequalities (resulting, respectively, from the
facts that ∆`+1 = δ`+1 + 1

2µ`+1|x`+1 − x̂k|2 and x`+1 is a null step:

∆`+1 ≤ f(x̂)− f̌B+(x`+1)
−m∆`+1 ≤ −mδ`+1 ≤ f`+1 − f(x̂)

to obtain, together with (22), that

(1−m)∆`+1 ≤ f`+1 − f̌B+(x`+1) ≤ 2C|x`+1 − x`| .

As a result, because µ` is non decreasing,

1
2
µ`|x`+1 − x`|2 ≥ (1−m)2

8C2
µ`∆

2
`+1 ≥

(1−m)2

8C2
µ`ast∆

2
`+1 ,

which, together with Corollary 7 yields, after summation, that ∆` → 0, because

(1−m)2

8C2
µ`ast

∑

`≥`ast

∆2
`+1 ≤

∑

`≥`ast

(∆` −∆`+1) ≤ ∆`ast .

In particular δ` → 0 and the third assertion in item (ii) follows. The second
assertion follows from (21) and the facts that µ`ast ≤ µ` and x` → x̂.

The next result is now straightforward.

Corollary 9. Suppose that in (1) g is affine and Q is convex. With the as-
sumptions and notation in Lemma 8, the last generated stability center x̂ is a
minimizer of

min f(x)
xj ≥ 0 for j ∈ J̄
xj = 0 for j ∈ L\J̄ .

If, in addition, Iˆ̀ = ∅, then x̂ solves (2).

18 Belloni and Sagastizábal

Proof. For contradiction purposes, suppose there exists x̄ ≥ 0 with x̄L\J̄ = 0
such that f(x̄) < f(x̂). Let ϕ be a convex function satisfying ϕ ≤ f and ϕ(x̂) =
f(x̂). For any s ∈ ∂ϕ(x̂),

0 > f(x̄)− f(x̂) ≥ ϕ(x̄)− f(x̂) ≥ 〈s, x̄− x̂〉
= 〈s,PJ̄(x̄)− x̂〉+ 〈s,PL\J̄(x̄)〉. (23)

By Corollary 6(i), ŝ` = −g(π̂`). Since by Lemma 3(ii), |x` − x̂|2 = 1
µ`
|ŝ` + ν̂`|2,

from Lemma 8 we have that |ŝ` + ν̂`| → 0. For j ∈ L\J̄ , since Iˆ̀ = ∅, ŝ`
j ≥ 0.

If j ∈ J̄ and x̂j = 0, then ν̂`
j ≤ 0, thus dist(ŝ`

j , IR+) → 0. Finally, if j ∈ J̄

and x̂j > 0, ν̂`
j = 0 which implies that ŝ`

j → 0. Therefore, the right hand side
in (23) written with s = ŝ` and ϕ = f̌B converges to a nonnegative number, a
contradiction.

The proof of Lemma 8 puts in evidence an interesting issue. Namely, as long
as J`+1 ⊃ J` at null steps, from the dual point of view it does not really matter
how the index set is chosen. The situation is quite the opposite at serious steps.
In this case we show that, to ensure convergence, we are bound to requiring
eventual exact separation of the active primal elements.

Lemma 10. Consider Algorithm 4 applied to the minimization problem (2).
Suppose there there are infinitely many serious steps and let `k denote an itera-
tion index giving a serious step: x̂k+1 = x`k . Then

(i) δ`k
→ 0 when k →∞.

Suppose that in (1) g is affine and Q is convex. Suppose, in addition, that the
Separation Procedure satisfies (5) and there is a descent iteration index K such
that for all k ≥ K

I`k
=∪{

SepOr(pi, Ĵk+1) : i ∈ Bact
`k

}
= ∅ .

Then, if 0 < µmin ≤ µ`k
≤ µmax for all k ≥ K, the following holds:

(ii) There exists x̄ solving (2) such that {x̂k} → x̄ and f̌B`k
(x̂k+1) → f(x̄).

(iii) J`k
⊃ J̄ := {j ∈ L : x̄j > 0} for all k ≥ K.

Proof. Let f̄ denote the optimal value in (2), which is finite because the
assumption that there exists a strictly feasible primal point implies that f
is bounded below. When the descent test holds, f̂k+1 ≤ f̂k − mδ`k

for all
k. By summation over the infinite set of serious step indices, we obtain that
0 ≤ m

∑
k δ`k

≤ f̂0 − f̄ . Thus, the series of nominal decreases is convergent:
lim

k
δ`k

= 0, as stated in item (i). From Lemma 3(v), both the series ê`k
and

1
µ`k

|ŝ`k + ν̂`k |2 converge:

lim
k

ê`k
= 0 and, because µ`k

≤ µmax, lim
k
|ŝ`k + ν̂`k |2 = 0 . (24)

Dynamic bundle methods 19

Our assumptions and Corollary 6(ii) imply that for all k ≥ K the element ν̂`k is
in the normal cone. By Lemma 3(iv), f(x) ≥ f̂k +

〈
ŝ`k + ν̂`k , x− x̂k

〉− êk, i.e.,

∀x ∈ IRn
≥0 it holds that

〈
ŝ`k + ν̂`k , x− x̂k

〉 ≤ f(x)− f̂k + êk . (25)

In the square below, add ±x̂k and use the relation 0 = ŝ`k + ν̂`k +µ`k
(x̂k+1− x̂k)

given by (14) to obtain

|x− x̂k+1|2 = |x− x̂k|2 +
〈
x− x̂k, x̂k − x̂k+1

〉
+ |x̂k − x̂k+1|2

= |x− x̂k|2 +
2

µ`k

(〈
x− x̂k, ŝ`k + ν̂`k

〉
+

1
2
µ`k

|ŝ`k + ν̂`k |2
)

.

Together with (25), using the expression for δ`k
in Lemma 3(v) and the fact that

µ`k
≥ µmin > 0, we have

|x− x̂k+1|2 ≤ |x− x̂k|2 +
2

µmin

(
f(x)− f̂k + δ`k

)
for all x ∈ IRn

≥0 . (26)

In particular, (26) implies that the sequence {x̂k} is minimizing for (2). Other-
wise, suppose for contradiction purposes that there is x∗ ∈ IRn

≥0 and ω > 0 such
that f(x∗) + ω ≤ f̂k. From (26) written for x = x∗,

|x∗ − x̂k+1|2 ≤ |x∗ − x̂k|2 +
2

µmin
(−ω + δ`k

) .

Since δ`k
→ 0, there is eventually a K∗ ≥ K such that for all k ≥ K∗ it holds

that δ`k
≤ ω/2 and, thus,

1
µmin

ω ≤ |x∗ − x̂k|2 − |x∗ − x̂k+1|2 .

By summation over such k, we obtain the desired contradiction.
Now let x̄ be a minimizer of f on IRn

≥0 (which exists, because (1) has a strictly
feasible point, by assumption). By (26) written for x = x̄,

|x̄− x̂k+1|2 ≤ |x̄− x̂k|2 +
2

µmin
δ`k

, (27)

which shows that the sequence {x̂k} is bounded, because δ`k
→ 0. As a result,

any cluster point of the (minimizing) sequence {x̂k} is a minimizer to (2). Let x̄
denote such accumulation point. For any given ω > 0, let Kω ≥ K such that

|x̄− x̂Kω |2 ≤ ω

2
and

2
µmin

+∞∑

k=Kω

δ`k
≤ ω

2
.

Let k′ ≥ Kω be an arbitrary serious step index. By summation of (27) over
Kω ≤ k ≤ k′, we obtain that

|x̄− x̂k′+1|2 ≤ |x̄− x̂kω |2 +
2

µmin

k′∑

k=Kω

δ`k
.

20 Belloni and Sagastizábal

Therefore, |x̄−x̂k′+1|2 ≤ ω for all k′ big enough and x̄ is the unique accumulation
point of the sequence {x̂k}. The fact that f̌B`k

(x̂k) → f(x̄) follows from (26)
written for x = x̄ and the definition of δlk .
Finally, to show item (iii) we proceed again by contradiction. If there are infinite
serious step indices k′ such that J̄ 6⊂ J`k′ , since L is finite, there must be an
index j̄ ∈ J̄\J`k′ . Then x̄j̄ > 0, but x̂k′

j̄
= 0, because j̄ 6∈ J`k′ . Hence,

0 < x̄j̄ = |x̂k′
j̄ − x̄j̄ | ≤ |x̂k′ − x̄| .

The contradiction follows, because by item (ii), x̂k → x̄, which means that
|x̂k − x̄| ≤ ω for all ω > 0 (for instance, ω := x̄j̄/2) and k big enough.

In the next section we show that a variant of Algorithm 4 (which never deletes
active elements from the bundle) has finite termination when the dual function
is polyhedral, i.e., when Q is finite and the primal problem is a suitable linear
program.

6. Finite termination. Primal Results

We now study when Algorithm 4 gives solutions to the primal problem (1). We
consider a variant that keeps all the active elements, without ever inserting an
aggregate couple in the bundle.

Primal solutions can be obtained by a dual approach only when there is no
duality gap. This is the purpose of our assumption below.

Assumption 11. We suppose that C and g, the functions defining (1), are
affine. Letting convQ denote the convex hull of the set Q, we suppose that the
primal problem has the so-called integrality property, i.e., solutions to

max
p

C(p)

p ∈ convQ
gj(p) ≤ 0 , j ∈ L,

are solutions to (1).

First we show that when tol = 0, if the Algorithm stops, it finds a primal optimal
point.

Lemma 12. Let Algorithm 4 be applied to the minimization problem (2) with Q
replaced by convQ. Suppose that B̂` = ∅ for all ` and there is an iteration `ast
such that δ`ast = 0. Let k(`ast) denote the current descent index and let π̂`ast

denote the corresponding primal convex point:

π̂`ast :=
∑

i∈Bact
`ast

α∗
`ast

pi.

If Assumption 11 holds, then f(xk(`ast)) = C(π̂`ast).
Furthermore, if I`ast = SepOr(π̂`ast, J`ast) = ∅, then π̂`ast is a solution to (1).

Dynamic bundle methods 21

Proof. The assumption that B̂` = ∅ implies that all items in Corollary 6 apply.
By Lemma 3(v), both ê`ast and ŝ`ast + ν̂`ast are zero. Therefore, by (14), x`ast =
x̂k(`ast) and, by definition of δ, f(x̂k(`ast)) = f̌B`ast

(x`ast) = f̌B`ast
(x̂k(`ast)).

Together with (19), this gives

f(x̂k(`ast)) = C(π̂`ast)−
〈
g(π̂`ast), x̂k(`ast)

〉
.

We show now that the right hand side scalar product is zero. Since x̂k(`ast) =
PJ`ast

(x̂k(`ast)), we only need to consider those components in J`ast. By item
(i) in Corollary 6, ŝ`ast

j = −gj(π̂`ast). Since ŝ`ast + ν̂`ast = 0, we obtain that
ν̂`ast

j = gj(π̂`ast) for j ∈ J`ast. Therefore, because P
J`ast

(ν̂`ast) ∈ NIRn
≥0

(x̂k(`ast)),
by the characterization of normal elements in [HUL93, Ex. III.5.2.6(b)], we see
that {

gj(π̂`ast) = 0 for j ∈ Ĵk(`ast)

gj(π̂`ast) ≤ 0 for j ∈ J`ast\Ĵk(`ast),

so
〈
g(π̂`ast), x̂k(`ast)

〉
= 0, with gj(π̂`ast) ≤ 0 for all j ∈ J`ast. If, in addition,

SepOr(π̂`ast, J`ast) = ∅, then π̂`ast is primal feasible. Together with (3), the
result follows.

We finish our analysis by studying the behaviour of Algorithm 4 for a poly-
hedral dual function.

6.1. The case of a polyhedral dual function

Suppose that Q in (1) is finite, with q elements p1, p2, . . . , pq. The corresponding
dual function has the form

f(x) = max
i≤q

C(pi)−

∑

j∈L

xjgj(pi)

 .

As a result, f has at most q different subgradients si = −g(pi). Likewise, for a
fixed stability center k(`), the linearization errors

ei = f(xk(`))− f(xi)−
〈
si, xk(`) − xi

〉

can only take a finite number of different values, at most q. We now show that
in this case a specialized variant of Algorithm 4 cannot loop forever, there is an
iteration `ast such that δ`ast = 0 and, thus, Lemma 12 applies.

Theorem 13. Consider Algorithm 4 with m = 1 and B̂` = ∅ applied for solving
problem (1) with Q finite. Suppose, that the Separation Procedure satisfies (5)
and there is a descent iteration index K such that for all k ≥ K

I`k
= ∪

{
SepOr(pi, Ĵk+1) : i ∈ Bact

`k

}
= ∅ .

Suppose in addition, that 0 < µmin ≤ µ`k
≤ µmax, with µ` = µk(`) at null step

iterations. Then the algorithm stops after a finite number of iterations.

22 Belloni and Sagastizábal

Proof. For contradiction purposes, suppose Algorithm 4 loops forever. Then
the asymptotic results stated for m ∈ [0, 1] in Section 5 apply, namely, Corol-
lary 7, item (i) in Lemma 8, and Lemma 10.
Suppose first that there is an infinite number of null steps, after a final serious
step, k(`ast). Since B̂` = ∅, the assumption that Q is finite implies that for all
` ≥ `ast, linearization errors and subgradients can only have a finite number of
different values, say {(e1, s

1), . . . , (eq, s
q)}, even when ` → ∞. By Lemma 8(i),

J` = J̄ , so the QP yielding iterates x` in Step 1 eventually has the form

min
α

1
2µk(`ast)

∑

j∈J̄

min(0,
∑

i≤q

αis
i
j)

2 +
∑

i≤q

α̃iei

α ∈ ∆ := {z ∈ IRq : zi ≥ 0 ,
∑

i≤q zi = 1} ,

where the variable is no longer in IR`, but in IRq. We know from Lemma 3(v) that
∆` is the optimal value of this QP. By Corollary 7, the sequence {∆`}`>`ast is
strictly decreasing. This contradicts the fact that there is only a finite number of
possible different values for ∆`+1. Therefore, there cannot be an infinite number
of null steps.
Suppose now that there is an infinite number of serious steps and let `k denote
an iteration giving a serious step. We consider a quadratic program without the
linear term in the objective, fixing µ:

min
α

1
2µmax

∑

j∈J̄

min(0,
∑

i∈B
αis

i
j)

2

α ∈ ∆ := {z ∈ IR|B| : zi ≥ 0 ,
∑

i∈B zi = 1} .

(28)

We denote by β(B, J) the optimal value of this problem. Note that there is only
a finite number of different values for β, because J ⊂ L is finite and there are at
most q different subgradients si. Consider the particular value β`k

:= β(Bact
`k

, J`k
)

and let ᾱ denote the corresponding minimizer. Since µ`k
≤ µmax and the linear

term in the objective function of (13) has nonnegative values, β`k
≤ ∆`k

. Thus,
for `k big enough β`k

= 0, because by Lemma 10, δ`k
and, hence, ∆`k

, go to 0.
Therefore, {

∀j ∈ J`k
min(0,

∑
i∈Bact

`k

ᾱis
i
j) = 0 (a)

ᾱ ∈ ∆B (b)

and, for any x∗ such that f̌Bact(x∗) = C(pi)− 〈
g(pi), x∗

〉
for all i ∈ Bact,

∀i ∈ Bact ᾱi(C(pi)− 〈
g(pi), x∗

〉− f̌Bact
`k

(x∗)) = 0 (c).

In particular, x∗ = x`k satisfies the system (a)(b)(c), which by (20) gives the
optimality conditions for

min
dJ∈IR

|J`k
|

{(
f̌Bact

`k
+ I≥0

)
(x̂k + (dJ , 0L\J))

}
.

Dynamic bundle methods 23

Therefore, x`k is one of such minimizers. We now show that the dual solution x̄
from Lemma 10(ii) is also one of such minimizers. First, we show that f(x̄) =
f̌B`k

(x̄). More precisely, for all i ∈ Bact
`k

we have that

0≤f(x̄)−C(pi)+
〈
g(pi), x̄

〉
= f(x̄)− f̌B`k

(x`k) + f̌B`k
(x`k)− C(pi) +

〈
g(pi), x̄

〉

= f(x̄)− f̌B`k
(x`k) +

〈
g(pi), x̄− x`k

〉

≤ f(x̄)− f̌B`k
(x`k) + |g(pi)||x̄− x`k |,

where we used the definition of f , of i ∈ Bact
`k

and the Cauchy Schwarz inequality.
By Lemma 10, xk+1 = x`k → x̄ and f̌B`k

(xk+1) → f(x̄) as `k →∞, so the right
hand side terms in the inequality above go to 0. Since the left hand side term
does not depend on `k, it must be null: f(x̄) = f̌B`k

(x̄) = C(pi)− 〈
g(pi), x̄

〉
for

all i ∈ Bact
`k

, which means that (c) holds for ᾱ and x∗ = x̄. Hence

f(x̄) = f̌B`k
(x̄) = f̌B`k

(x`k)

for all k sufficiently large.
When m = 1, the descent test in Step 3 becomes f(x̂k+1) ≤ f(x̂k) − δ`k

=
f̌B`k

(x̂k+1) = f(x̄). Since infinite serious steps decrease the function values,
f(x̄) < f(xk+1), yielding the desired contradiction.

The various convergence results presented in Sections 5 and 6 can be summed
up as follows:
– If in (1) g is affine and Q is convex, Algorithm 4 converges to a dual solution

for all variants.
– If (1) satisfies Assumption 11 and Q is finite, a variant of Algorithm 4 (with

m = 1, B̂` = ∅, and fixed prox-parameter at null steps) stops after a finite
number of iterations with a primal solution of (1).

For both results to hold, the Separation Procedure must satisfy (5) and even-
tually separate all inequalities for aggregate primal points π̂. In order to evaluate
the impact of these assumptions, we analyze the behaviour of Algorithm 4 for
two Combinatorial Optimization problems.

7. Numerical results

In order to test the proposed method, two combinatorial problems were investi-
gated. For each one, a family of inequalities was dynamically dualized, and both
the Separation Oracle and the Dual Evaluation procedures were implemented.
Before proceeding to the computational results, we briefly describe each problem
formulation.

24 Belloni and Sagastizábal

7.1. Linear Ordering Problems

The Linear Ordering Problem (LOP) consists in placing elements of a finite set
N in sequential order. If object i is placed before object j, we incur in a cost cij .
The objective is to find the order with minimum cost.

The LOP Linear Integer Programming formulation in [GJR84] uses a set of
binary variables {pij : (i, j) ∈ N × N}. If object i is placed before object j,
pij = 1 and pji = 0.

min
p

∑

(i,j):i 6=j

cijpij

pij + pji = 1, for every pair (i, j)
pij ∈ {0, 1}, for every pair (i, j)
pij + pjk + pki ≤ 2, for every triple (i, j, k) (∗)

The 3-cycle inequalities in constraint (*) above have a huge cardinality. They
are the natural candidates for our dynamic scheme, so we associate a multiplier
xijk to each one of them. After relaxation, it results a concave dual function,
corresponding to −f(x) in (2), whose evaluation at any given x is done by solving
(N2 − N)/2 small problems with only two variables each. More precisely, each
Dual Evaluation amounts to solving

∑

(i,j):i<j

min
{pij ,pji}

c̃ijpij + c̃jipji

pij + pji = 1
pij , pji ∈ {0, 1}

where c̄ij = cij −
∑

k∈N\{i,j} xijk depends on the multiplier x.
For initialization purposes, we need J0 6= ∅. To obtain this first set of in-

equalities, we just separate a solution of the relaxed problem with J = ∅. This
procedure generates a non-empty set of inequalities to start with (otherwise we
have found the optimal solution and we are done).

For this test problem, there is only a polynomial number of dynamically
dualized constraints. The Separation Procedure is therefore easy: it just consists
of checking any triple of indices, a task that can be done in constant time for
each triple. So all assumptions required for dual and finite/primal convergence
are met. To illustrate the application of the method we used 49 instances of the
library LOLIB2 ; see Table 1 below.

7.2. Traveling Salesman Problem

Let G = G(Vn, En) be the undirected graph induced by a set of nodes Vn and a
set of edges En. For each edge of the graph, a cost ce is given, and we associate
a binary variable pe which equals one if we use the edge e in the solution and

2 http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB/

Dynamic bundle methods 25

equals zero otherwise. For every set S ⊂ Vn, we denote by δ(S) = {(i, j) ∈ En :
i ∈ S, j ∈ Vn \ S} the edges with exactly one endpoint in S. Finally, for every
set of edges A ⊂ En, p(A) =

∑
e∈A pe. The Traveling Salesman Problem (TSP)

formulation of Dantzig, Fulkerson and Johnson is given by

min
p

∑

e∈En

cepe

p(δ({j})) = 2 , for every j
p(δ(S)) ≥ 2 , S ⊂ Vn, S 6= ∅
pe ∈ {0, 1} , e ∈ E.

(29)

As in the well known Held and Karp (HK) bound, we make use of 1-tree struc-
tures. Let Vn denote the set of vertices, and let En the set of edges. Given a
vertex v1, we call a 1-tree the set of edges formed by the union of a tree on
Vn \ v1 and any two edges that have v1 as one end node. For

X := {x ∈ IR|En| : x is a 1-tree},

we define an equivalent problem of (29) by

min
p

∑

e∈En

cepe

p(δ({j})) = 2 , for every j (#)
p ∈ X

(30)

The HK bound is obtained by solving a dual problem resulting from dualizing
constraints (30.#). In order to obtain tighter bounds, we introduce a family
of facet inequalities for the associated polytope, called the r-Regular t-Paths
Inequalities, following the approach in [BL02a]. More precisely, we choose
vertex sets H1,H2, . . . , Hr−1 and T1, T2, . . . , Tt, called “handles” and “teeth”
respectively, which satisfy the following relations:

H1 ⊂ H2 ⊂ · · · ⊂ Hr−1

H1 ∪ Tj 6= φ for j = 1, . . . , t
Tj \Hh 6= φ for j = 1, . . . , t
(Hi+1 \Hi) \ ∪t

j=1Tj for 1 ≤ i ≤ r − 2.

The corresponding p-Regular t-Path inequality is given by

r−1∑

i=1

y(γ(Hi)) +
t∑

j=1

p(γ(Tj)) ≤
r−1∑

i=1

|Hi|+
t∑

j=1

|Tj | − t(r − 1) + r − 1
2

.

When introducing these inequalities as additional constraints in (30), we
may improve the HK bound. However, since the number of such inequalities
is exponential in the size of the problem, a dynamic scheme of dualization is
needed.

The initial set J0 is given by the set of inequalities dualized by Held and
Karp.

26 Belloni and Sagastizábal

For this test problem, the Separation Oracle can only use heuristics, since
no efficient exact separation procedure is known. Fortunately, the Separation
Oracle is called to separate inequalities from 1-tree structures. In this case,
thanks to integrality and the existence of exactly one cycle, the heuristic search
for violated inequalities is much easier than for general sets. Essentially, we
search first for any node with three or more edges, and then try to expand an
odd number of paths from such a node.

Computational tests were made over TSPLIB3 instances which are symmetric
and have dimension smaller than 1000 cities; see Table 2 below.

7.3. Comparison with a subgradient method

To implement the dynamic version of the bundle method, we use as a start-
ing point the code described in [Fra02]. This code is versatile enough to han-
dle the specialized operations needed to carry out our dynamic scheme (e.g.,
adding/removing inequalities).

For our comparisons, we use a subgradient method, as in [BL02b] and [Luc92].
The stepsize, of the form m(f(x`)−f∗)/|s(x`)|2 with m ∈]0, 2[, needs an estimate
f∗ of the optimal dual value. We use bounds given by primal feasible points in
LOP problems, and (known) optimal values for TSP problems.

As usual in Combinatorial Optimization, a stopping test checking for zero
duality gap is always available. If this test is not satisfied, the dual method
should trigger an intrinsic stopping test, indicating that the dual function has
been minimized. It is known that in general subgradient methods lack of reliable
stopping tests. Hence, we stop the subgradient variants when a maximum num-
ber of iterations is reached. In Tables 1 and 2 below we denote the corresponding
variant by SGnK, where n stands for a maximum of n thousands of iterations.
By contrast, bundle methods do have reliable stopping tests, essentially check-
ing when δ` < tol. In our runs we use tol = 10−4 for both test problems and
|Bmax| = 25 and 80 for LOP and TSP instances, respectively.

Primal-Dual results
DualEval Gap (%) Time w.r.t SG3K

SG3K 1517 0.001 1
Bundle 302 0.004 8.595

Constraints/Size (#)
Active Maximum Average

SG3K 61.217 114.465 61.255
Bundle 124.056 154.696 100.807

CPU times (%)
SepOracle DualEval Manage Directions

SG3K 16.090 11.617 8.105 5.132
Bundle 5.813 4.756 14.402 74.543

Table 1. Summary of Results for LOP instances

3 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Dynamic bundle methods 27

Primal-Dual results
DualEval Gap (%) Time w.r.t. SG2K

SG2K 1948 0.787 1
SG5K 4881 0.503 2.381
Bundle 1374 0.533 2.614

Constraints/Size(#)
Active Maximum Average

SG2K 0.165 0.192 0.157
SG5K 0.158 0.190 0.154
Bundle 1.759 2.089 0.437

CPU times (%)
SepOracle DualEval Manage Directions

SG2K 2.434 96.906 0.321 0.192
SG5K 2.950 96.299 0.205 0.121
Bundle 3.152 36.733 7.559 52.123

Table 2. Summary of Results for TSP instances

Tables 1 and 2 summarize our average results for LOP and TSP instances.
Each table contains three subtables describing primal-dual results, separation
statistics, and CPU time distribution, respectively. Primal-dual results subtable
reports on (average) number of dual evaluations, duality gaps, and time ratio
with respect to the fastest subgradient variant. The second subtable, on the
separation procedure, reports the number of active dualized constraints at the
final point, as well as the maximum and average number of dualized constraints.
Here, averages are taken after normalization relative to the instance size (number
of objects in LOP and of cities in TSP). Finally, the third subtable reports
the fraction of total CPU time spent by the Separation Oracle, by the Dual
Evaluation, and by the Managing module, where we split the time spent on
addition/removal of inequalities from the time needed to generate a new dual
iterate.

Note that in both tables the number of Dual Evaluations required by the
dynamic bundle scheme is substantially lower than in the subgradient scheme.
This suggests the high quality of the directions generated by the bundle method
at each iteration. Furthermore, the average number of inequalities in the Bundle
Method is consistently larger, due to the “memory” imposed by our method,
which only removes inequalities at serious steps. In its current version, the bun-
dle code uses cold starts for QP subproblems. This feature, together with the fact
that there are more dual variables (i.e., more dualized constraints in average),
explains the huge fraction of CPU times spent on the Managing module. Warm
starts (for example, starting QP matrices factorizations not from scratch, but
from previous computations) should lead to a more favourable time distribution.
For the Separation Oracle, we take advantage of the integrality of the relaxed
primal point in order to implement more efficiently the search (or the heuristic)
in the separation procedure. The small time fraction spent on the Separation
Oracle reflects this feature.

28 Belloni and Sagastizábal

8. Concluding Remarks

In this paper, we give a theoretical proof of convergence to a particular Re-
lax and Cut method. The main point was to introduce a sophisticated rule for
removing inequalities that ensures convergence. By combining a bundle method-
ology with the Relax and Cut framework, we devised Algorithm4, and proved
its convergence for the following general cases:
– If in (1) g is affine and Q is convex, Algorithm 4 converges to a dual solution

for all variants of bundle compression.
– If (1) satisfies Assumption 11 and Q is finite, a variant of Algorithm 4 (with

m = 1, B̂` = ∅, and fixed prox-parameter at null steps) stops after a finite
number of iterations with a primal solution of (1).

For these results to hold, the Separation Procedure must be “good enough” and
able to eventually separate all violated inequalities.

When compared to an algorithm using a subgradient method for the dual
step, the Dynamic Bundle Algorithm4 has the important property of generating
a descent (sub)sequence of iterates. This feature is crucial for proving conver-
gence. So, at first sight, trying to extend our proofs to subgradient methods does
not seem to be straightforward.

We assess our approach with two different examples: one where the Separa-
tion Procedure does satisfy the assumption (LOP), and another one where the
assumption does not hold (TSP). Numerical results confirm the quality of the
directions generated by the Dynamic Bundle Method. In the case of the TSP
instances, due to the use of heuristic separation techniques, one might expect for
the method to terminate before it can find all the right inequalities4. Finally, the
main improvement effort must be focused on the QP performances as inequal-
ities are added and removed along iterations: in average more than 50% of the
total CPU time is spent by the QP solver. In its actual form, our code is suit-
able only for those cases where each Dual Evaluation is extremely expensive (for
example when each subproblem involves the solution of a large-scale stochastic
program, or the integration of large systems of nonlinear differential equations,
or stochastic simulations).

References

[BA00] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with
a subgradient method. Math. Program., 87(3, Ser. A):385–399, 2000.

[Bea90] J. E. Beasley. A Lagrangian heuristic for set-covering problems. Naval Res. Logist.,
37(1):151–164, 1990.

[BGLS03] J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Opti-
mization. Theoretical and Practical Aspects. Universitext. Springer-Verlag, Berlin,
2003. xiv+423 pp.

[BL02a] A. Belloni and A. Lucena. Improving on the Help and Karp Bound for the STSP
via Lagrangian Relaxation. Working paper, 2002.

[BL02b] A. Belloni and A. Lucena. Lagrangian Heuristics to Linear Ordering. Working
paper, 2002.

4 An indicative of this effect is that the SG5K variant finds slightly better bounds.

Dynamic bundle methods 29

[BMS02] L. Bahiense, N. Maculan, and C.A. Sagastizábal. The Volume Algorithm revisited.
Relation with Bundle Methods. Math. Program., Ser. A, 94(1):41–69, 2002.

[CB83] N. Christofides and J. E. Beasley. Extensions to a Lagrangean relaxation approach
for the capacitated warehouse location problem. European J. Oper. Res., 12(1):19–
28, 1983.

[CG59] E. Cheney and A. Goldstein. Newton’s method for convex programming and tcheby-
cheff approximations. Numerische Mathematik, 1:253–268, 1959.

[CLdS01] F. Calheiros, A. Lucena, and C. de Sousa. Optimal rectangular partitions. Technical
report, Laboratório de Métodos Quantitativos, Departamento de Administracão,
Universidade Federal do Rio de Janeiro, Brazil, 2001.

[EGM94] L. F. Escudero, M. Guignard, and K. Malik. A Lagrangian relax-and-cut approach
for the sequential ordering problem with precedence relationships. Ann. Oper. Res.,
50:219–237, 1994. Applications of combinatorial optimization.

[Erm66] Ju. M. Ermol′ev. Method for solving nonlinear extremal problems. Kibernetika
(Kiev), 2(4):1–17, 1966.

[Fra02] A. Frangioni. Generalized bundle methods. SIAM Journal on Optimization,
13(1):117–156, 2002.

[GJR84] M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear
ordering problem. Oper. Res., 32(6):1195–1220, 1984.

[GP79] C. Gonzaga and E. Polak. On constraint dropping schemes and optimality func-
tions for a class of outer approximation algorithms. SIAM Journal on Control and
Optimization, 17(4):477–497, 1979.

[GPT80] C. Gonzaga, E. Polak, and R. Trahan. An improved algorithm for optimization
problems with functional inequality constraints. IEEE Transactions on Automatic
Control, 25:49–54, 1980.

[Hel01] C. Helmberg. A cutting plane algorithm for large scale semidefinite relaxations.
Technical Report ZIB-Report ZR-01-26, Konrad-Zuse-Zentrum Berlin, 2001. To
appear in the Padberg Festschrift ”The Sharpest Cut”, SIAM.

[HFK01] M. Hunting, U. Faigle, and W. Kern. A Lagrangian relaxation approach to the
edge-weighted clique problem. European J. Oper. Res., 131(1):119–131, 2001.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algo-
rithms. Number 305-306 in Grund. der math. Wiss. Springer-Verlag, 1993. (two
volumes).

[HWC74] M. Held, Ph. Wolfe, and H.P. Crowder. Validation of subgradient optimization.
Math. Programming, 6:62–88, 1974.

[Kel60] J. E. Kelley. The cutting plane method for solving convex programs. J. Soc. Indust.
Appl. Math., 8:703–712, 1960.

[Kiw85] K.C. Kiwiel. Methods of descent for nondifferentiable optimization. Springer-Verlag,
Berlin, 1985.

[LB96] Abilio Lucena and John E. Beasley. Branch and cut algorithms. In Advances in
linear and integer programming, volume 4 of Oxford Lecture Ser. Math. Appl., pages
187–221. Oxford Univ. Press, New York, 1996.

[Luc92] A. Lucena. Steiner problem in graphs: Lagrangean relaxation and cutting-planes.
COAL Bulletin, 21(2):2–8, 1992.

[MLM00] C. Martinhon, A. Lucena, and N. Maculan. A relax and cut algorithm for the
vehicle routing problem. Technical report, Laboratório de Métodos Quantitativos,
Departamento de Administracão, Universidade Federal do Rio de Janeiro, Brazil,
2000.

[Sho85] N. Shor. Minimization methods for non-differentiable functions. Springer-Verlag,
Berlin, 1985.

