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Stabilization and Global Climate Policy

Marcus C. Sarofim*, Chris E. Forest*, David M. Reiner† and John M. Reilly*

Abstract

Academic and political debates over long-run climate policy often invoke “stabilization” of
atmospheric concentrations of greenhouse gases (GHGs), but only rarely are non-CO2 greenhouse
gases addressed explicitly. Even though the majority of short-term climate policies propose trading
between gases on a global warming potential (GWP) basis, discussions of whether CO2

concentrations should be 450, 550, 650, or perhaps as much as 750 ppm leave unstated whether there
should be no additional forcing from other GHGs beyond current levels or whether separate
concentration targets should be established for each GHG. Here we use an integrated modeling
framework to examine multi-gas stabilization in terms of temperature, economic costs, carbon uptake,
and other important consequences. We show that there are significant differences in both costs and
climate impacts between different “GWP equivalent” policies and demonstrate the importance of
non-CO2 GHG reduction on timescales of up to several centuries.
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1. INTRODUCTION

The stated goal of Article 2 of the UN Framework Convention on Climate Change (UN

FCCC) is the “stabilization of greenhouse gas concentrations in the atmosphere” at a level that

would “prevent dangerous anthropogenic interference with the climate system.” The 1997

Technical Paper III of the Intergovernmental Panel on Climate Change (IPCC) attempted to

clarify the Convention’s stabilization goal (Schimel et al., 1997). Sensitivity to small deviations

in other GHG emissions was evaluated and the study revealed that in the short term these

deviations could have significant impact. The Technical Paper also noted that since pre-industrial

times the contribution of these ‘other’ substances to radiative forcing is comparable to that of

CO2. But in academic papers, control of other gases is at best usually relegated to footnotes or

asides (Dai et al., 2001a; Nordhaus, 2001; Arnell et al., 2002; Hoffert et al., 2002; O’Neill and

Oppenheimer, 2002). Question 6 of the Synthesis Report to the IPCC Third Assessment Report

(TAR) asks what the consequences are of stabilizing concentrations in carbon dioxide

equivalents, but the text then only addresses CO2, and the stabilization scenarios are analyzed

with only one projection of other greenhouse gases, namely the unconstrained SRES A1B
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scenario (Watson and Core Writing Team, 2001). The U.S. National Assessment Report on

Climate Change Impacts relies heavily on the CGCM1 and HADCM2 models, both of which use

CO2 as a surrogate for other greenhouse gases (National Assessment Synthesis Team, 2001).

While most stabilization proposals only explicitly address carbon dioxide stabilization, shorter

term climate policies often include the possibility of trading among greenhouse gases by using the

global warming potentials (GWPs) established by the IPCC in order to reach more economically

efficient solutions than relying on CO2 reduction alone would allow. Indeed, the Kyoto Protocol

allows for precisely this sort of trading across greenhouse gases, using a 100-year GWP as the

‘exchange rate.’

Trading schemes that rely on constant GWPs will not generate stabilization of concentrations

or radiative forcing, as trading a reduction of a gas with a short lifetime for an increase of a long-

lived gas will inherently lead to reductions in radiative forcing in the near term and increases in

radiative forcing in the long term (and vice versa). Stabilizing radiative forcing would require

trading concentration levels of one GHG for another, which would imply that in terms of

emissions, emissions paths for each GHG be specified over at least the lifetime of the longest

lived of the two. Other studies equate a CO2 stabilization level with a forcing value, such as a

recent Hadley Centre analysis (Mitchell et al., 2000). These studies model varying CO2

concentrations and assume the concentrations of all other gases stay constant, but acknowledge

that, in reality, society might choose a different allocation among other GHGs and CO2 that add

up to the same total forcing level.

For a given CO2 equivalent stabilization target, the actual level at which CO2 will need to be

stabilized is therefore likely to be significantly lower and, moreover, such studies provide no

direct guidance on the emissions paths that would be consistent with stabilization of radiative

forcing. The question of stabilization of multiple greenhouse gases is inevitably linked to the

issue of comparison among them, and thus the inadequacy of GWPs (e.g., Reilly et al., 1999).

One approach is to set a specific climate or radiative forcing target and endogenously estimate

the optimal control path of different gases (e.g., Manne and Richels, 2001). Work in this vein has

relied on highly stylized climate and atmospheric chemistry relationships because that assures

that the mathematical system has a single optimal path or that it is numerically feasible to solve

for it. Absent in these efforts are important relationships among methane, the hydroxyl radical,

and tropospheric ozone (and its precursors).

In this study we use the MIT Integrated Systems Model (IGSM) to examine several different

ways in which a stabilization target might be interpreted. Economic projections were made under

different policy constraints to develop emissions scenarios and also to examine economic

impacts. The IGSM’s internal earth systems model was used to determine the climate impacts of

the various emissions scenarios. The inclusion of chemistry, terrestrial ecosystem, and other

components in the coupled natural system model enables examination of processes such as ozone

generation and the carbon cycle on both 100-year and several century timescales. Previously,
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different components of the MIT IGSM have been used to examine the economics of non-CO2

gas abatement (Hyman et al., 2003), the Kyoto protocol (Prinn et al., 1999; Reilly et al., 2002),

and the climate impacts of reductions in non-CO2 gases (Reilly et al., 2003). The unique

contribution of this study is an examination of the complex relationships among physical climate

system components as they affect stabilization. By extending the IGSM to consider periods well

beyond 2100, we examine the limits of the 2100 horizon often used in the literature for

stabilization discussions. More generally, this study is designed to bring the definitional issues

involved in stabilization policy discussions into sharper focus. While the results of the model

runs depend on several assumptions, comparisons between the various policies do provide an

indication of the economic and climatic importance of these definitions.

2. MODEL OVERVIEW

The MIT IGSM has recently been described in Webster et al. (2003). To summarize, the

IGSM includes: (a) the MIT Emissions Prediction and Policy Analysis (EPPA) model which is

designed to project emissions of climate relevant gases and the economic consequences of

policies to limit them; (b) a two-dimensional (2D) zonally-averaged land-ocean resolving

atmospheric model coupled to an atmospheric chemistry model; (c) a 2D ocean model; (d) the

Terrestrial Ecosystem Model (TEM 4.1) (Tian et al., 1999); (e) a reduced form urban air

chemistry model; and (f) a Natural Emissions Model (NEM).

Climate system properties were chosen as the median of distributions used in the works of

Forest and Webster (Forest et al., 2002; Webster et al., 2003). Namely, ocean diffusivity (Kv),

a parameterization for diffusion of heat into the deep ocean, was set to 9.2 cm2/s, climate

sensitivity (S), a parameter for cloud feedback that determines the sensitivity of the model, was

set to 2.4 °C, and an aerosol forcing constant (Faer), a measure of forcing from a given aerosol

loading, was set to -0.61 W/m2, corresponding to loading for the 1980s.

3. RESULTS

We considered several ways that a stabilization goal might be achieved. Two primary targets

were considered—550 ppm and 650 ppm—using the MIT IGSM, which includes an economic

model capable of estimating the cost of multiple greenhouse gas control (Prinn et al., 1999;

Babiker et al., 2001; Hyman et al., 2003). The CO2ONLY scenarios restrict CO2 but no other

gases. In these scenarios, emissions paths were designed to control CO2 starting in 2005 with a

global carbon price that rose at 5% per year and to achieve their target CO2 stabilization level

sometime after 2100 given the median climate parameters described above. Reductions in other

GHGs occurred only as side effects of the CO2 quotas. The GHGTRADE scenarios used the

appropriate CO2ONLY scenario as a baseline, and then allowed trading of other GHGs as

weighted by their GWPs in order to achieve identical GWP emission profiles. A third case,

PROPRED, assumes the same CO2 quotas as the CO2ONLY scenarios, but imposes proportional
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reductions from the baseline path of the other GHGs. Finally, a fourth case, GHGCONST, uses

the same CO2 emissions pathway but holds all other GHG emissions constant at their 2005 levels.

Each of these scenarios is a plausible interpretation of a stabilization goal but we find very

different temperatures changes and economic costs on the century timescale (Table 1) (Babiker

et al., 2001). In the reference (no policy) case the temperature increase was 2.8 oC by the end of

the century. For 550 (650) ppm stabilization, the CO2ONLY case reduced the temperature by

roughly three quarters (one-half) a degree at a cost of 1.2% (0.4%) of net present value of

consumption (final consumption being a measure of societal welfare in the EPPA model,

discounted at 5% per year over the century). The GHGTRADE cases were at least 50% more

effective in temperature reduction on the century timescale than the CO2ONLY scenarios, at

less than half the cost. The PROPRED case achieved nearly twice the temperature reduction

compared to the CO2ONLY case but at a 40% increase in cost.

In general, these costs are likely to be low because optimal reduction through time assumes

the most cost effective approach to emissions reduction (Wigley et al., 1996). Our policies also

assume participation by all countries from the start, and thus include the most cost-effective

reductions in all parts of the world. In contrast, when we simulated the economic cost of an

extended Kyoto policy where the Kyoto reductions in 2008-2012 are gradually deepened in the

industrialized world and then later extended to developing countries in such a way as to achieve

approximate stabilization of CO2 at 550 ppm, the net present consumption loss due to this policy

was 2.0%, higher than in any of the present 550 stabilization cases (Reilly et al., 1999).

To consider the extent to which 2100 conditions were consistent with stabilization, we ran

the earth system components of the MIT IGSM beyond 2100. We considered stabilization at

550 ppm in the CO2ONLY case. To achieve long-term stabilization of CO2 we imposed

continued emissions reductions at 1% per year from 2100 to 2300. This simple extrapolation of

the emissions path was used because the EPPA model was designed to run only through 2100.

Table 1. Results of Different Policies on Temperature and Costs

CO2ONLY GHGTRADE PROPRED GHGCONST

650 ppm
∆T from BAUa

NPC lossb

2005 C-equiv Pricec

0.47
0.4%
$23

0.86
0.2%

$1

0.86
0.5%

$0 to $23

1.02
0.6%

$0 to $23
550 ppm
∆T from BAUa

NPC lossb

2005 C-equiv Pricec

0.75
1.2%
$50

1.18
0.5%

$4

1.46
1.7%

$0 to $50

1.34
1.4%

$0 to $50

a ∆T from BAU: Difference in decadal global mean temperature in 2100 between the policy case and the no policy
(“business as usual”) case (with warming of 2.8 oC).

b NPC loss: Percent reduction in net present consumption through 2100 given a 5% discount rate.
c C-equiv Price: The carbon-equivalent price is the price that would clear a permit market in emissions given the emissions

constraint imposed on the model in 2005. Note that in the PROPRED and GHGCONST cases there is no trading between
gases, so there are different prices for each gas, but the non-CO2 gases have near zero prices in early periods.
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For the remaining cases, we decreased CO2 emissions at the same rate as in the CO2ONLY case

and maintained all other gases at their 2100 emissions levels. We note that the CO2ONLY case

does not stabilize radiative forcing, which is still rising at 0.01 W/m2 per decade at the end of the

extended period. Radiative forcing in the GHGTRADE case, which continues to be GWP

equivalent to the CO2ONLY case, is rising at the much faster rate of 0.1 W/m2 per decade in

2300. The GHGCONST case has nearly stabilized radiative forcing despite continued emissions

of long-lived gases, and radiative forcing is actually decreasing at 0.01 W/m2 per decade in the

PROPRED case.

For the CO2ONLY scenario (Figure 1) CO2 emissions (orange), which were declining at a

rate of 0.1 GtC/yr in 2100, still have not yet reached zero in 2300. Emissions of CH4 and CO are

significant sources of CO2 and must be included in the eventual stabilization plan (purple). In

order to stabilize concentrations, CO2 emissions must continue to decrease, eventually

approaching zero (Hoffert et al., 2002), but even out to 2300 there remains some positive ocean

uptake (see Figure 1) mainly due to the ocean’s slow mixing processes. Uptake by the ocean in

the 550 ppm CO2ONLY stabilization scenario peaks at 4.2 GtC in 2070 and drops to 1.6 GtC in

2300 and is still declining thereafter. Terrestrial uptake peaks at 1.7 GtC in 2050 and is nearly

zero by 2300. The strength of these sinks at any point in time and their overall response depend

Figure 1. Components of carbon-cycle budget and CO2 concentrations for the CO2ONLY 550 ppm
stabilization case. Annual average uptake, emissions, and concentrations are shown.
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strongly on the properties controlling the climate system response (S and Kv) and on the features

of the terrestrial ecosystems model in the IGSM (Webster et al., 2003). For the CO2ONLY case

in 2100, the 95% bounds on CO2 concentration due to S and Kv uncertainty alone range from 500

to 585 ppm. With declining anthropogenic emissions, atmospheric concentrations of CO2 begin

to stabilize, allowing the terrestrial ecosystem to reach equilibrium with the atmosphere. The

ocean mixed layer also approaches equilibrium, and further ocean uptake is then limited by

diffusion into the deep ocean. Furthermore, there are temperature effects on both terrestrial

ecosystem and oceanic uptake rates.

In the trading cases, more of the reductions come from CH4 than from CO2 because of the

relative opportunities for least cost emissions reductions. Because CO2 is longer-lived than CH4,

this means that the GHGTRADE cases show greater reductions in temperature from the reference

case in the short term than the CO2ONLY cases. But, with more long-lived CO2 accumulating in

the atmosphere, the GHGTRADE cases should eventually become warmer. Analysis of the

550 ppm scenarios (Figure 2) shows that the temperature rise under GHGTRADE exceeds the

CO2ONLY case after 2240, when the CO2 concentration in the former case is 780 ppm. The

‘short term’ benefits of CH4 reduction thus remain for a surprisingly long period. Due to inertial

effects, sea level rise in the two cases is comparable only after about another 100 years (2330),

when the rise is 1.1m above present in both cases. The comparison between the GHGTRADE and

CO2ONLY cases again raises the question of whether GWPs are an appropriate ‘exchange rate’

in trading GHG reductions (Reilly et al., 1999; Smith and Wigley, 2000; Manne and Richels,

2001; Sygna et al., 2002). If the rate of temperature change is an important factor in designing a

Figure 2. Decadal global mean average temperature and sea level rise results for the CO2ONLY and
GHGTRADE 550 ppm scenarios.
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policy, as studies on thermohaline circulation collapse suggest (Schneider, 2003), then non-CO2

greenhouse gases are being undervalued by GWP measures, whereas if long-term radiative

forcing stabilization is the criteria of interest, then gases such as methane are being overvalued.

In addition to timescale issues, the implications of non-CO2 GHGs for atmospheric chemistry

such as the impact of methane on ozone levels (Table 2) might also be important for air quality

and for changing the lifetimes of other greenhouse gases. Because the GHGTRADE scenario has

both superior temperature and cost characteristics, our study shows that adhering to a definition

of stabilization that emphasizes CO2 is likely to miss win-win opportunities (Reilly et al., 2003).

These results depend on the specific reference emissions projections which, for CO2, at a

cumulative level of 1700 GtC, falls into the “medium-high” range for the IPCC’s SRES

scenarios, but considerable uncertainty exists in future emissions of CO2 and perhaps even more

so for the other GHGs (Webster et al., 2002). The projections of non-CO2 emissions and

concentrations in our reference scenario clearly have an impact on the results. By the end of the

century, the EPPA model reference scenario projects methane emissions of 860 Tg (comparable

to the A2 SRES scenario of 889 Tg), and N2O emissions of 22 Tg (which is slightly higher than

the 20 Tg of the upper range of the SRES scenarios). The resulting methane concentration is,

however, significantly higher than the SRES projections. The MIT IGSM includes stratospheric

chemistry, natural emissions of methane and N2O, and a more complex tropospheric chemistry

model than the single box model used by the TAR, which likely contributes to the much higher

atmospheric concentration results in this study, even though methane emissions are comparable.

Table 2. Greenhouse Gas Concentrations in Year 2100a

CO2

(ppm)
CH4

(ppm)
N2O

(ppb)
O3

(ppb)
∆∆∆∆ Radiative

Forcingb (W/m2)

No Policy, 2100 822 5.42 483 51 7.4
650 ppm cases, 2100

CO2ONLY 608 4.09 473 46 5.0
GHGTRADE 673 2.12 410 45 4.4
PROPRED 606 2.23 418 45 4.0
GHGCONST 605 2.12 414 46 3.8

550 ppm cases, 2100
CO2ONLY 529 3.80 466 45 4.0
GHGTRADE 592 1.96 402 44 3.5
PROPRED 527 1.48 393 41 2.7
GHGCONST 527 2.14 413 45 3.0

550 ppm cases, 2300
CO2ONLY 562 3.58 676 44 5.0
GHGTRADE 868 1.85 514 43 6.3
PROPRED 540 1.14 444 44 2.8
GHGCONST 550 2.12 510 45 3.6

a HFCs and SF6 are also included in the model though the numbers are not shown here due to their comparatively
smaller contributions to net forcing.

b Change in radiative forcing since 1990 of all GHGs, not including sulfate aerosols.



8

The feedbacks and uncertainties involved in the response of natural emissions of CH4 and

N2O to climate change, like the uncertainty in CO2 uptake, add to the complexity of designing

climate policies. Yet another emission uncertainty has to do with non-GHG climatically

important substances that may be controlled by non-climate related policies (Dai et al., 2001b).

Our SO2 emission projections also differ from those of the SRES scenarios. Further exploration

of these uncertainties and those of climate system parameters is warranted, but the first step

towards a study of stabilization under uncertainty is an examination of what stabilization means

for a single set of reference conditions.

4. CONCLUSIONS

Stabilization of concentrations is a long-term goal of climate policy, and while exact

consensus on its meaning may not be needed to proceed with mitigation efforts in the near term,

we have shown that different interpretations of how other greenhouse gases are considered in a

stabilization target have a substantial affect on how much warming is avoided. As stated by

Hasselmann, et al. (2003), successful climate policies should take into account both short term

policies and long term goals. Judgments about the adequacy of climate policy in light of a long

term target, whatever it might be, will need to consider just what is meant by stabilization and

how, in terms of the mix of GHG reductions, a target will be achieved. As seen in the heated

debates over forest and agricultural sinks in the Kyoto Protocol negotiations, settling on

definitions may ultimately be a political matter, but these debates can only benefit from being

placed in a framework that elucidates the discussions (Watson and Intergovernmental Panel on

Climate Change, 2000). Our results suggest that any policy measure that does not take into

account all greenhouse gases will be both more expensive and less effective through the next

century and beyond.
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