
OPERA TIONS RESEARCH CENTER

Working Paper

Computational Experience and the Explanatory Value of
Condition Numbers for Linear Optimization

by

Fernando Ordonez
Robert M. Freund

OR 361-02 January 30, 2002

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Computational Experience and the Explanatory
Value of Condition Numbers for Linear Optimization

Fernando Ord6fiez* and Robert M. Freundt

January 30, 2002

Abstract

The modern theory of condition numbers for convex optimization problems
was initially developed for convex problems in the following conic format:

(CPd) z := min{ctx Ax - b E Cy, x Cx}

The condition number C(d) for (CPd) has been shown in theory to be connected
to a wide variety of behavioral and computational characteristics of (CPd), from
sizes of optimal solutions to the complexity of algorithms for solving (CPd). The
goal of this paper is to develop some computational experience and test the prac-
tical relevance of condition numbers for linear optimization on problem instances
that one might encounter in practice. We used the NETLIB suite of linear opti-
mization problems as a test bed for condition number computation and analysis.
Our computational results indicate that 72% of the NETLIB suite problem in-
stances are ill-conditioned. However, after pre-processing heuristics are applied,
only 19% of the post-processed problem instances are ill-conditioned, and log C(d)
of the finitely-conditioned post-processed problems is fairly nicely distributed. We
also show that the number of IPM iterations needed to solve the problems in the
NETLIB suite varies roughly linearly (and monotonically) with log C(d) of the
post-processed problem instances. Empirical evidence yields a positive linear re-
lationship between IPM iterations and log C(d) for the post-processed problem
instances, significant at the 95% confidence level. Furthermore, 42% of the vari-
ation in IPM iterations among the NETLIB suite problem instances is accounted
for by log C(d) of the problem instances after pre-processing.

*MIT Operations Research Center, 77 Massachusetts Avenue, Bldg. E40-149, Cambridge, MA 02139,
USA, email: fordon@mit.edu

tMIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA, email: rfre-
und@mit.edu

1

1 Introduction

The modern theory of condition numbers for convex optimization problems was initially
developed in [20] for problems in the following conic format:

z* := min ctx

(CPd) s.t. Ax - b E Cy (1)
X E Cx,

where, for concreteness, we consider A to be an m x n real matrix, b E mR, c E n,
and Cx c En, Cy C Rm are closed convex cones, and the data of the problem is the
array d = (A, b, c). We assume that we are given norms IxH and IIyl on n and IRm,

respectively, and let HAIl denote the usual operator norm; let jjvt*, denote the dual norm
associated with the norm IIwH1 on Rn or Rm. We define the norm of the data instance
d = (A, b, c) by Ildll := max{flAll, lbll, Itc*}.

The theory of condition numbers for (CPd) focuses on three quantities - pp(d), pD(d),
and C(d), to bound various behavioral and computational measures of (CPd). The
quantity pp(d) is called the "distance to primal infeasibility" and is defined as:

pp(d) := inf{l Ad I Xd+Ad = 0},

where Xd denotes the feasible region of (CPd):

Xd := {x E Rn I Ax - b E Cy, x E Cx}

The quantity pD(d) is called the "distance to dual infeasibility" for the conic dual

(CDd) of (CPd):

z* := max bty
(CDd) s.t. c - At y E Cx (2)

y C .

and is defined similarly to pp(d) but using the dual problem instead. The quantity
C(d) is called the "condition number" of the problem instance d and is a scale-invariant
reciprocal of the smallest data perturbation Ad that will render the perturbed data
instance either primal or dual infeasible:

2

C

a^IIsod e spplal alqeI^eA puapuadapu aq se (p), 2°I pue alqei^eA 4uapuadap ar se suol

-?Ja! IwdI Jo Iapom uossala I leaul aldLuls V sasuesui muaIqotd passaaold-4sod aq4 jo

(P)D oI rIA' (-IIgIuoo01UomU pUe) XIaleauI £14nol saleA aIns gIJILIN aq4 uT suai9qod
ai4 a{Aos o0 papaau suolTela4! AIdI JO Taqu9nu a i hll Mo s aA4m ''1s uo!aaS uI j sausui

uIalqold a o saqmnu uor!puoa a h AXq oj pahunoaxe aq ue (ums .Xpea[l aqle)

suoeT:la i WdAII Jo aqunu a u! UOIhtiA paAjasqo ai i4aqaqA s ua >se o4 uoThsanb

sinleu V (oai4 Xh4xa9ldumo al o uaudolaap al4 uT pasn alHe 1ri sulq4!4lo1 Ae dI
a4 uoroJJ ualaIjjp aei aa a4aeld uT pasn ale 4q sq1lllo0 2NdI a14 'asmnoo Jo) slIeap

:IOJ [Z] aas 'arn4eu leauqaa alo1iu e Jo ae punoq a14 ul sulao Ja140lo alq a[laq 'joJ

plepu3s U uo!ez 1TUm!do eauil :oJ (... + (p)q)Sojl/)O Xq suoihc4aR1 ndI aq4 punoq

uva auo 's!skuue AXxadmuoa : loj iapoTur aqmnu-uolppuoa aq 2uTsfl aldusxa oj '[TI]

aas 'sazIs uialqoid Jo a u 2 an e laAo 'suo4al 001 04 01 IUO1J A1A o paAlasqo uaaq

smtJ aszuexsu! uo!ez4Tuldo xeauil e aIos oh papaau s0uo4l9ela ! d1 I jo l aqJ nu a1 'uo

- czuldo eauIT o03 suo14T11 (AdI) poqham-4ulod-.olaxaui u.apomu Jo as1e a14 uI

·pa4nqlIxsip XIaalu AXIJ s suaIqo:d passaaold-4sod

pauoTq!puo)-xla9uT1 aq4 Jo (P)3D °I mlp pue 'pauo puoa-HT ale a1n s 4 IRTL2N aq 1U

saaut4su! ualqold passa0aod-4sod Jo %6T AXluo eTl4 puTJ OA 'I'L Xd3IdD Aq Sussao01d

-ald aulno 1aJ1e 'aaMoH pauop!puoa-IIT ale saau4msu malqold uo!qezuldo eau! Jo

ah4ns FIrI¶LN aq4 Jo %OL 434 4 a3e)Tpu! el slnsal euolendoo uasad a 'suaI

-qod drI a3uap ap pue 3le4snpu! Jo a4Tns FIJIjN arjOJ 1 s 1aqumnu uollpuoa aq azfIture

pue a9ndmuoa a aaqlM 'aded sr ul uo4sanb asal iaisue o u!2aq aM ,pa94nq!4S1ip

su1alqold 13ans Jo saqunu uoi4lpuoa a al moAq pue 'pauo!4!puo3a-I 10 -aa fllreT

-dX sualqold iolns alV ,aalaa13d UT as1e 414 saqmunu uoi4lpuoa Jo sanleA leidRq ax1e

41iM 1aS O tS 0 l41nBU SI I4 's4ns5al 1guui asaq4 Jo aau4l4odu! Wlpalaaoaq a ua! oD

pau4l4uoa saauaxa.JaJ ar Jo auuos pue '[z] pu1 '[] '[] '[L] '[9] UT padol9aa p uaaq s1

smuIh!loT1oe Jo AR4xaJlduuo a o saqunu uo!!puoa as1ao o jo uo!aauuoa aq L '[SI] pu

[r17] aas 'lo4o9aa1l j4lua a uIppeai 4salaahu Jo sal~Tluenb snol^eA o0 pa4aauuoa aq

o04 uvMoS uaaq ose aeari saqunu uo!0jpuoa aa14 amues asa4 'uo!3ezTmu!do a4ulTapTuas

pure 13au! JoJ spoau 4uiod-lolau41 JO 4xaoU0 a uI [S] '[L,] '[Z] '[9Z] '[Z] '[SZ]

'[8] '[L] '[91 '[] '[P '[] '[] aas 'surpo49 u JOlaa jo suo1nduoa sqa11e 1eau! a o4
palia^ spunoq ILllarmunu pue 'uoe1qnl4ad :apun sanleA a!Zaafqo ul do UT sauers

uo spunoq 'uoTl4eqxnl4ad japun uolal a9qlsaJ a14 JO UOheulIoJap Jo a4e a4 uo spunoq

'uoi2a alqlseaJ ar4 u se q paqljasul Jo SOeX aadse pu sazls a11 uo spunoq 'sanleA

a40xaafqo I-UmTdo uo spunoq 'suot4nlos tuh1do o so s uo spunoq 'suo4nlos aiqlseaJ Jo

sazms uo spunoq 2uipnlu! 'np s4l pue (P 3) JO sjtSs!t9aOY131ea 1e3ot^A3aq Jo _Aa11 ap

e o4 pa4aauuoa aq o4 AXoall u UmoiS uaaq a^l4 (p)j pu '(p)ad '(p)dd saT!hTuenb ajll

{(p)ad'(p>)d}uuI ()
11PlH

linear relationship between IPM iterations and log C(d) for the post-processed problem
instance, significant at the 95% confidence level, with R2 = 0.4258. Therefore, over 42%
of the variation in IPM iterations among the NETLIB suite problems is accounted for
by log C(d) of the problem instances after pre-processing.

The organization of this paper is as follows. In Section 2, we lay the groundwork for
the computation of condition numbers for the NETLIB suite. Section 3 describes our
methodology for computing condition numbers. Section 4 contains the computational
results, and Section 5 contains summary conclusions.

2 Linear Programming, Conic Format, and Ground-
Set Format

In order to attempt to address the issues raised in the previous section about practi-
cal computational experience and the relevance of condition numbers, one can start by
computing the condition numbers for a suitably representative set of linear optimization
instances that arise in practice, such as the NETLIB suite of industrial and academic
linear optimization problems, see [13]. Practical methods for computing (or approxi-
mately computing) condition numbers for convex optimization problems in conic format
(CPd) have been developed in [7] and [17], and such methods are relatively easy to im-
plement. It would then seem to be a simple task to compute condition numbers for the
NETLIB suite. However, it turns out that there is a subtle catch that gets in the way of
this simple strategy, and in fact necessitates using an extension of the condition number
theory just a bit, as we now explain.

Linear optimization problem instances arising in practice are typically conveyed in
the following format:

min. ctx
s.t. Aix < bi ,i E L

Aix = bi , i E (4)
Aix > bi , i E G
xj > Ij , j E LB

xj < uj, j E UB ,

where the first three sets of inequalities/equalities are the "constraints" and the last
two sets of inequalities are the lower and upper bound conditions, and where LB, UB C

{1, ... , n}. (LP problems in practice might also contain range constraints of the form
"bi,l < Aixz bi," as well. We ignore this for now.) By defining Cy to be an appropriate
cartesian product of nonnegative halflines R+, nonpositive halfines -ff+, and the origin

4

{0}, we can naturally consider the constraints to be in the conic format "Ax - b E Cy"
where Cy C Rm and m = ILI + Ej + IGI. However, for the lower and upper bounds
on the variables, there are different ways to convert the problem into the required conic
format for computation and analysis of condition numbers. One way is to convert the
lower and upper bound constraints into ordinary constraints. Assuming for expository
convenience that all original constraints are equality constraints and that all lower and
upper bounds are finite, this conversion of (4) to conic format is:

P1 :minz ctx
s.t. Ax -b=O

Ix - I > 0
Ix -u < O .

whose data for this now-conic format is:

A b:= 1 ,C:=c

with cones:

Cy := {0}m x R x -R_ and Cx := 1R.n

Another way to convert the problem to conic format is to replace the variables x
with nonnegative variables s := x - 1 and t := u - x, yielding:

P2 : mins,t cts + ctl
s.t. As - (b- Al) =

Is + It- (u-) = 0
s, t > O ,

whose data for this now-conic format is:

A 0 - Al
A:= (I ' 5:= C

with cones:

Cy := {0}m x {0}n and Cx := R x JRff .

5

I 1 P1 I P2 I
lldll 428 405

pp(d) 0.24450 0.90909
PD(d) 0.00250 1.00000
C(d) 171,200 445

Table 1: Condition Numbers for two different conic conversions of the same problem.

These two different conic versions of the same original
and different cones, and so will generically have different
illustrated on the following elementary example:

problem have different data
condition numbers. This is

P: min,,lx 2 x1

s.t. x1 + x2 > 1
400x1 + x2 < 420
1 x1 < 5
-1 <x 2 .-

Table 1 shows condition numbers for problem P under the two different conversion
strategies of P1 and P2, using the LO-norm in the space of the variables and the Ll-norm
in the space of the right-hand-side vector. (The method for computing these condition
numbers is described in Section 3.) As Table 1 shows, the choice of the conversion
strategy can have a very large impact on the resulting condition number, thereby calling
into question the practical significance of performing such conversions to conic format.

2.1 Ground-Set Model Format

As a means to overcome this problem, we instead consider the linear optimization prob-
lem (4) as an instance of the "ground-set" model format for convex optimization:

(GPd)
z,(d) = min ctx

s.t. Ax-b E Cy
x E P,

(5)

where P is called the ground-set; P is no longer required to be a cone, but instead can
be any closed convex set (and obviously includes the conic format as a special case when
P = Cx). We denote problem (5) as (GPd) because the instance depends on the data
triplet d = (A, b, c). The set P and the cone Cy remain fixed as part of the definition of

6

~~~-"-`-~_ , 



the problem, and are not considered to be part of the data. Many aspects of the theory
of condition numbers for conic convex optimization have been extended to the more
general ground-set model format, see [16]. We will treat linear optimization problems
conveyed in the format (4) to be an instance of (GPd) by setting the ground-set P to be
defined by the lower and upper bounds:

P := {x I x j > ij for j E LB, xj < uj for j E UB}, (6)

and by re-writing the other constraints in conic format as described earlier. But now
notice the data d does not include the lower and upper bound data 1j, j E LB and
uj, j E UB. This is somewhat advantageous since in many settings of linear optimization
the lower and/or upper bounds on most variables are 0 or 1 or other scalars that are
"fixed" and are not generally thought of as subject to modification. (Of course, there
are other settings where keeping the lower and upper bounds fixed independent of the
other constraints is not as natural.)

2.2 Definition of C(d) for Ground-Set Format

The general set-up for the development of condition-number theory for the ground-set
model format is developed in [16]. We review this material briefly here for completeness.

Let Xd denote the feasible region of (GPd):

Xd := {x E Rn Ax - b E Cy, x E P}

and define the primal distance to infeasibility pp(d):

pp(d) := inf{ lAdI| Xd+Ad = 0},

similar to the conic case. In order to state the Lagrange dual of (GPd) we use the
following definitions, which depend on the ground-set P.

Recall that a vector r E "R is a ray of P if there is a vector x E P such that for all
0 > O the vector x + Or E P. Let R denote the set of rays of P. Since P is a closed
convex set, the set of rays R is a closed convex cone.

Define
Cp := (x, t) x E tP, t > 0}

and let C denote the closed convex cone

C := clCp,

7

_I _I _� �1_1 _1_1__1_



where "clS" denotes the closure of a set S. Then it is straightforward to show that

C = CpU{(r,O) I r E R}

and that

C* := {(s,v) stx+v > Oforany x E P}

{(s,v) inf st >-v}.

The Lagrange dual of (GPd) is:

z*(d)= maxy,v bty-v
(GDd) s.t. (c - A ty, v) c C* (7)

y E Cy .

Let Yd denote the feasible region of the dual problem (GDd):

Yd := {(y, v) CE m x I (c- Ay, v) E C* , y E C)

and define the dual distance to infeasibility pD(d):

pD(d) := inf{(lAdll I Yd+ d = 0}

The quantities pp(d), pD(d) are shown in [16] to be connected to a variety of behavioral
characteristics of (GPd) and its dual, including sizes of feasible solutions, sizes of optimal
solutions, optimal objective values, sizes of inscribed balls, deformation of the feasible
region under perturbation, and the complexity of a variety of algorithms.

Let Y denote the set of data instances d for which both (GPd) and (GDd) are feasible,
these are well-posed data instances:

Y= { d I Xd 0 and Yd 0}.

For d E X, the definition of condition number in the ground set model is identical to
the definition in the conic case:

IIdIC(d) ::
min{pp(d), pD(d) }

it is the scale invariant reciprocal of the distance to the set of data instances that are
either primal or dual infeasible. For completeness we mention that for a data instance
d E F, the quantity p(d) := min{pp(d), pD(d)} is the distance to ill-posedness.

8

_ �-..- -- -..II-- .II I·-I-�-l_----(·LUIYPLIIIII�LIIIIIIIII_-l (I--I·.)·�___.



3 Computation of pp(d), pD(d), and C(d) via Convex
Optimization

In this section we show how to compute pp(d) and pD(d) for linear optimization data
instances d = (A, b, c) of the ground-set model format, as well as how to estimate IHdlI
and C(d). The methodology presented herein is an extension of the methodology for
computing pp(d) and pD(d) developed in [7]. We will make the following choice of norms
throughout this section and the rest of this paper:

Assumption 1 The norm on the space of the x variables in R is the LOO-norm, and
the norm on the space of the right-hand-side vector in IRm is the Ll-norm.

Using this choice of norms, we will show in this section how to compute p(d) for linear
optimization problems by solving 2n + 2m LPs of size roughly that of the original
problem. As is discussed in [7], the complexity of computing p(d) very much depends on
the chosen norms, with the norms given in Assumption 1 being particularly appropriate
for efficient computation. We begin our analysis with a seemingly innocuous proposition
which will prove to be very useful.

Proposition 1 Consider the problem:

Z = min,, f(v,w)
s.t. vII o =1 (8)

(v, w) K,

where v E k, W E 1', KZ is a closed convex cone in Rk+l, and f(.) R k+l , fR+
is positively homogeneous of degree one (f(a(v, w)) = Ic lf(v,w) for any o E 1 and
(v, w) E fk+l). Then problem (8) and (9) have the same optimal values, i.e., z1 = Z2,

where
Z2 = mini j min,, f (v, w)

Ei E {1, .. .,n}, -1, j (9)
(v, w) K.

Proof: Let (v*, w*) be an optimal solution of (8). Since v* = 1, there exist i* 
1,. . ., n and j* E {-1, 1 such that vi = j*. Therefore (v*, w*) is feasible for the

inner problem in (9) for i = i* and j = j*, and so z2 < zl.

If (v*, w*) is an optimal solution of (9) with i = i* and j = j*, then 1v* II > 1. If
Hv* oo = 1, the point (v*, w*) is feasible for (8) which means that z < z2, completing
the proof. Therefore, assume that IIv* , > 1, and consider the new point (, ) :=)

9



Iv*1o (v*, w*) E K. Then (, Z) is feasible for an inner problem in (9) for some i = i i*

and j = j, and so z2 < f(B, W) = f ( (v*,w*)) = f(v*, w*) < Z2, which now
implies that (v,w) is also an optimal solution of (9). Since jll'ov = 1, the previous
argument implies that z < 2, completing the proof. U

3.1 Computing pp(d) and pD(d)

The following theorem, which is proved in [16], characterizes
optimal solution values of certain optimization problems.

Theorem 1 (see [16]) Suppose d E F, and that the norms are
1. Then pp(d) = jp(d) and pD(d) = jD(d), where

jp(d) = minys,v
s.t.

max {lAtyy + sll, b ty - vl}
IlYlloo 1
y E C*
(s,) )E C* ,

jD(d) = minx,p,g max {|Ax - pll, c tx + gl}
s.t. 1Ix100 = 1

xER
p E Cy
g>O.

Neither (10) nor (11) are convex problems. However, both (10)
(8), and so we can invoke Proposition 1, and solve (10) and
From Proposition 1, we have:

and (11) are of the form
(11) using problem (9).

min
i C {1,...,m},j C {-1,1}

miny,S,V max { IlAty
s.t. Yi = j

y E C

(s, v) C*

+ sill, bty - vl}

(12)

min
i C {1,. . . ,n},j {-1,1}

minx,p,g max {lAx -pll , Ictx + 9g }
s.t. xi = j

xER
p E Cy
g O.

10

pp(d) and pD(d) as the

chosen as in Assumption

and

(10)

(11)

pp(d) =

and

pD(d) =

(13)



Taken together, (12) and (13) show that we can compute pp(d) by solving 2m convex
optimization problems, and we can compute pD(d) by solving 2n convex optimization
problems. In conclusion, we can compute p(d) by solving 2n + 2m convex optimization
problems, where all of the optimization problems involved are of the roughly the same
size as the original problem GPd.

Of course, each of the 2n + 2m convex problems in (12) and (13) will be computa-
tionally tractable only if we can conveniently work with the cones involved; we now show
that for the special case of linear optimization models (4), there are convenient linear
inequality characterizations of all of the cones involved in (12) and (13). The cone Cy
is easily seen to be:

Cy = {p E Rm I pi < for i E L,pi = for i E E,pi > 0 for i E G}, (14)

and so

C= {y E IRm I y <0 for i c L, yi E for i E E, yi > O for i E G} (15)

With the ground-set P defined in (6), we have:

R = {x E R I xj > O for j E LB, j < O for j E UB} , (16)

and also

C = {(x,t) cE R x | I t > 0, xj > jt for j E LB, xj < ujt for j E UB} . (17)

The only cone whose characterization is less than obvious is C*, which we
ize. Consider the following system of linear inequalities in the variables
Rn x R x RI x RI:

s-s+ +s - = 0
s+ > 0
s- > 0
sy = 0

s+ = 0

V+- jSj+- : ujs -> 0,
jELB jEUB

where we use the notation N := {1,..., n} and S\T
T}.

for j E N \ UB
for j E N \ LB

now character-

(s,v,s+,s - ) E

(18)

is the set difference {k I k E S, k ¢

Proposition 2 For the ground-set P defined in (6), the cone C* is characterized by

C* = {(s, v) E Rn X R (s, V, +, S- ) satisfies (18) for some s+, s - E En'}.

11



Proof: Suppose first that (s, v) together with some s+, s - satisfies (18). Then for all
(x, t) E C we have

(x, t)t(sv) = > s+j - E s-xj + tv
jELB jEUB

(19)> > sj+ljt- 3 s-ujt+tv
jELB jEUB

> ,

and so (s, v) E C*. Conversely, suppose that (s, v) E C*. Then

n

-co < -v < minxEp s tx = min E sjxj
j=1

s.t. xj > lj for j LB
xj < uj for j E UB,

(20)

and define s+ and s- to be the positive and negative parts of s, respectively. Then
s = s+ - s - , s + > 0, and s- > 0, and (20) implies s = 0 for j E N \ LB, S = 0
for j E N \ UB, as well as the last inequality of (18), whereby (s, v, s+, s - ) satisfies all
inequalities of (18). U

Taken together, we can use (14), (15), (16), (17), and Proposition 2 to re-write the
right-most minimization problems of (12) and (13) and obtain:

mln

i E {1,,m}
j E {-1, 1}

miny,s+,s-,v max {llAtY + s + - s-lll, bty - vl }
s.t. Yi = j

Yl <0 for lEL
yl > O for lEG
s = for k E N \ UB

k+ =0 for k N\LB

V + > IkS - UkSk O

kELB kEUB

s+, s- > 0

12

pp(d) =

(21)



min
i E{1, ,}
j c {-1,1}

minx,p,, max {l
s.t. xi =j

Xk > 

Xk < 

P <0
Pt = 0
Pl > 
g > ,

Ax-pI 1l, c tx+g 91}

if k E LB
for k E UB
for 1 E L
for I E
for c G

whose right-most
tion problems by
pp(d), pD(d), and
Assumption 1.

objective functions can then easily be converted to linear optimiza-
standard techniques. This then shows that we can indeed compute
p(d) by solving 2n + 2m LPs, under the choice of norms given in

3.2 Computing ldll

In order to compute the condition number, given by C(d) := fldll/p(d), we must also
compute Idl = max{ lAlI, llblI, IIc*}. Under Assumption 1 we have Ilbll = lbllJ1 and
cII = IIcII1, which are both easy to compute. However, IJAIl is the operator norm,

and so IHAJI := IIAIoK,l := max{llAxlll I llxl1 = 1}, whose computation is a hard
combinatorial problem. We therefore will bound IIAlKo,l and hence lldli from below and
above, using the following elementary norm inequalities:

max {IA 11, 1,AlA ,2 I, AIF IF Ael1, 1lA A 1 } • IAI, 1 • max { Alli,1 i- IIA112,2 } 

where
IIAh1,1 = maxj=l,,...n ,lA.jll,

IIAil2,2 = /)Amax(A tA),

A hIF = 1Ei=l E>j (Ai,j)2,

IIAIIL, = m j IAiji
e := (1,..., 1)t, and x is defined using :j = sign(Ai,j), where i* = argmaxi=l,...,m IAi. 11.

13

and

pD(d) =

(22)



4 Computational Results on the NETLIB Suite of
Linear Optimization Problems

4.1 Condition Numbers for the NETLIB Suite prior to Pre-
Processing

We computed the distances to ill-posedness and condition numbers for the NETLIB suite
of linear optimization problems, using the methodology developed in Section 3. The
NETLIB suite is comprised of 98 linear optimization problem instances from diverse
application areas, collected over a period of many years. While this suite does not
contain any truly large problems by today's standards, it is arguably the best publicly
available collection of practical LP problems. The sizes of the problem instances in the
NETLIB suite range from 32 variables and 28 constraints to problems with roughly 7,000
variables and 3,000 constraints. 44 of the 98 problems in the suite have non-zero lower
bound constraints and/or upper bound constraints on the variables, and five problems
have range constraints. We omitted the five problems with range constraints (boeingl,
boeing2, forplan, nesm, seba) for the purposes of our analysis. We also omitted an
additional five problems in the suite because they are not readily available in MPS format
(qap8, qapl2, qapl5, stocfor3, truss). (These problems are each presented as a code that
can be used to generate an MPS file.) Of the remaining 88 problems, there were five more
problems (dfOO01, fit2p, maros-r7, pilot, pilot87) for which our methodology was unable
to compute the distance to ill-posedness in spite of over a full week of computation
time. These problems were omitted as well, yielding a final sample set of 83 linear
optimization problems. The burden of computing the distances to ill-posedness for the
NETLIB suite via the solution of 2n + 2m LPs obviously grows with the dimensions of
the problem instances. On afiro, which is a small problem instance (n = 28, m = 32),
the total computation time amounted to only 0.28 seconds of machine time, whereas for
d6cube (n = 5,442 and m = 402 after pre-processing), the total computation time was
77,152.43 seconds of machine time (21.43 hours).

Table 2 shows the distances to ill-posedness and the condition number estimates for
the 83 problems, using the methodology for computing pp(d) and pD(d) and for esti-
mating Ildll presented in Section 3. All linear programming computation was performed
using CPLEX 7.1 (function primopt).

14



Table 2: Condition Numbers for the NETLIB Suite prior to
Pre-Processing

ldll log C(d)
Lower Upper Lower Upper

Problem pp (d) pD (d) Bound Bound Bound Bound

25fv47 0.000000 0.000000 30,778 55,056 oo 00
80bau3b 0.000000 0.000000 142,228 142,228 oo oo
adlittle 0.000000 0.051651 68,721 68,721 oo oo
afiro 0.397390 1.000000 1,814 1,814 3.7 3.7
agg 0.000000 0.771400 5.51E+07 5.51E+07 oo oo
agg2 0.000000 0.771400 1.73E+07 1.73E+07 0o o0
agg3 0.000000 0.771400 1.72E+07 1.72E+07 oo oo
bandm 0.000000 0.000418 10,200 17,367 oo oo
beaconfd 0.000000 0.000000 15,322 19,330 oo oo
blend 0.003541 0.040726 1,020 1,255 5.5 5.5
bnll 0.000000 0.106400 8,386 9,887 00 00
bnl2 0.000000 0.000000 36,729 36,729 oo oo
bore3d 0.000000 0.003539 11,912 12,284 oo o0
brandy 0.000000 0.000000 7,254 10,936 oo oo
capri 0.000252 0.095510 33,326 33,326 8.1 8.1
cycle 0.000000 0.000000 365,572 391,214 00oo oo00
czprob 0.000000 0.008807 328,374 328,374 oo oo
d2qO6c 0.000000 0.000000 171,033 381,438 oo oo00
d6cube 0.000000 2.000000 47,258 65,574 00oo 
degen2 0.000000 1.000000 3,737 3,978 oo oo
degen3 0.000000 1.000000 4,016 24,646 oo 00

e226 0.000000 0.000000 22,743 37,344 oo oo
etamacro 0.000000 0.200000 31,249 63,473 oo 00
fffff800 0.000000 0.033046 1.55E+06 1.55E+06 00oo oo
finnis 0.000000 0.000000 31,978 31,978 oo o0
fitld 3.500000 00 493,023 618,065 5.1 5.2
fitlp 1.271887 0.437500 218,080 384,121 5.7 5.9
fit2d 317.000000 oo 1.90E+06 2.25E+06 3.8 3.9
ganges 0.000000 1.000000 1.29E+06 1.29E+06 oo oo
gfrd-pnc 0.000000 0.347032 1.63E+07 1.63E+07 oo oo00
greenbea 0.000000 0.000000 21,295 26,452 oo oo00
greenbeb 0.000000 0.000000 21,295 26,452 0c oo
growl5 0.572842 0.968073 209 977 2.6 3.2
grow22 0.572842 0.968073 303 1,443 2.7 3.4
grow7 0.572842 0.968073 102 445 2.3 2.9
israel 0.027248 0.166850 2.22E+06 2.22E+06 7.9 7.9
kb2 0.000201 0.018802 10,999 11,544 7.7 7.8
lotfi 0.000306 0.000000 166,757 166,757 00oo oo

15



jldll log C(d)
Lower Upper Lower Upper

Problem pp (d) PD (d) Bound Bound Bound Bound

maros 0.000000 0.000000 2.51E+06 2.55E+06 co oo
modszkl 0.000000 0.108469 1.03E+06 1.03E+06 co oo
perold 0.000000 0.000943 703,824 2.64E+06 co oo
pilot.ja 0.000000 0.000750 2.67E+07 1.40E+08 o oo
pilot.we 0.000000 0.044874 5.71E+06 5.71E+06 co oo
pilot4 0.000000 0.000075 763,677 1.09E+06 co oo
pilotnov 0.000000 0.000750 2.36E+07 1.35E+08 oo oo
recipe 0.000000 0.000000 14,881 19,445 co oc
sc105 0.000000 0.133484 3,000 3,000 oc oo
sc205 0.000000 0.010023 5,700 5,700 co oo
sc50a 0.000000 0.562500 1,500 1,500 co oo
sc50b 0.000000 0.421875 1,500 1,500 co oo
scagr25 0.021077 0.034646 430,977 430,977 7.3 7.3
scagr7 0.022644 0.034646 120,177 120,177 6.7 6.7
scfxml 0.000000 0.000000 21,425 22,816 co oo
scfxm2 0.000000 0.000000 44,153 45,638 c o co
scfxm3 0.000000 0.000000 66,882 68,459 co oo
scorpion 0.000000 0.949393 5,622 5,622 co oo
scrs8 0.000000 0.000000 68,630 69,449 co oo
scsdl 5.037757 1.000000 1,752 1,752 3.2 3.2
scsd6 1.603351 1.000000 2,973 2,973 3.5 3.5
scsd8 0.268363 1.000000 5,549 5,549 4.3 4.3
sctapl 0.032258 1.000000 8,240 17,042 5.4 5.7
sctap2 0.586563 1.000000 32,982 72,870 4.7 5.1
sctap3 0.381250 1.000000 38,637 87,615 5.0 5.4
sharelb 0.000015 0.000751 60,851 87,988 9.6 9.8
share2b 0.001747 0.287893 19,413 23,885 7.0 7.1
shell 0.000000 1.777778 253,434 253,434 co o
shipO41 0.000000 13.146000 811,956 811,956 co oc
shipO4s 0.000000 13.146000 515,186 515,186 co oo
ship081 0.000000 21.210000 1.91E+06 1.91E+06 co oo
ship08s 0.000000 21.210000 1.05E+06 1.05E+06 o oo
shipl21 0.000000 7.434000 794,932 794,932 co oo
shipl2s 0.000000 7.434000 381,506 381,506 o oo
sierra 0.000000 oo 6.60E+06 6.61E+06 co oo
stair 0.000580 0.000000 976 1,679 co oo
standata 0.000000 1.000000 21,428 23,176 co oo
standgub 0.000000 0.000000 21,487 23,235 co oo
standmps 0.000000 1.000000 22,074 23,824 co oo
stocforl 0.001203 0.011936 23,212 23,441 7.3 7.3
stocfor2 0.000437 0.000064 462,821 467,413 9.9 9.9

16

_I� _ I_ �Y I_�__II·



Table 3 presents some summary statistics of the condition number computations
from Table 2. As the table shows, 72% (60/83) of the problems in the NETLIB suite
are ill-conditioned due to either pp(d) = 0 or pD(d) = 0 or both. Furthermore, notice
that among these 60 ill-conditioned problems, that almost all of these (58 out of 60)
have pp(d) = 0. This means that for 70% (58/83) of the problems in the NETLIB suite,
arbitrarily small changes in the data will render the primal problem infeasible.

Notice from Table 2 that there are three problems for which pD(d) = 00, namely
fitld, fit2d, and sierra. This can only happen when the ground-set P is bounded, which
for linear optimization means that all variables have finite lower and upper bounds.

Table 3: Summary Statistics
to Pre-Processing.

of Distances to Ill-Posedness for the NETLIB Suite prior

pD(d)
Finite oo Totals

0 18 39 1 58
pp(d) Finite 2 21 2 25

1 Totals [1 20[ 60] 3 I1 83

4.2 Condition Numbers for the NETLIB Suite after Pre-Processing

Most commercial software packages for solving linear optimization problems perform
pre-processing heuristics prior to solving a problem instance. These heuristics typically
include row and/or column re-scaling, checks for linearly dependent equations, heuristics
for identifying and eliminating redundant variable lower and upper bounds, etc. The
original problem instance is converted to a post-processed instance by the processing
heuristics, and it is this post-processed instance that is used as input to solution software.
In CPLEX 7.1, the post-processed problem can be accessed using function prslvwrite.
This function writes the post-processed problem to disk, from where it can be read.

17

jdjd jlog C(d)
Lower Upper Lower Upper

Problem pp(d) pD (d) Bound Bound Bound Bound

tuff 0.000000 0.017485 136,770 145,448 o o00
vtp.base 0.000000 0.500000 530,416 534,652 00 00o

woodip 0.000000 1.000000 3.66E+06 5.04E+06 00 00

woodw 0.000000 1.000000 9.86E+06 1.35E+07 00 00

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. 
.-. . b . b '- ~~ _ s _ _ ............. . .SF"z _. .. A., ., . al ...

w



In order to get a sense of the distribution of the condition numbers of the problems
that are input to a modern IPM solver, we computed condition numbers for the post-
processed versions of the 83 NETLIB suite problems, where the processing used was the
default CPLEX preprocessing with the linear dependency check option activated. Table
4 shows the condition numbers in detail for the post-processed versions of the problems,
and Table 5 presents some summary statistics of these condition numbers. Notice from
Table 5 that only 19% (16/83) of the post-processed problems in the NETLIB suite are
ill-posed. The pre-processing heuristics have increased the number of problems with
finite condition numbers to 67 problems. In contrast to the original problems, the vast
majority of post-processed problems have finite condition numbers.

Table 4: Condition Numbers for the NETLIB Suite after Pre-
Processing by CPLEX 7.1

18

lldlllog C(d)
Lower Upper Lower Upper

Problem pp(d) PD (d) Bound Bound Bound Bound

25fv47 0.000707 0.000111 35,101 54,700 8.5 8.7
80bau3b 0.000000 0.000058 126,355 126,355 oo oc
adlittle 0.004202 1.000488 68,627 68,627 7.2 7.2
afiro 0.397390 1.000000 424 424 3.0 3.0
agg 0.000000 0.031728 3.04E+07 3.04E+07 o o00
agg2 0.000643 1.005710 1.57E+07 1.57E+07 10.4 10.4
agg3 0.000687 1.005734 1.56E+07 1.56E+07 10.4 10.4
bandm 0.001716 0.000418 7,283 12,364 7.2 7.5
beaconfd 0.004222 1.000000 6,632 6,632 6.2 6.2
blend 0.011327 0.041390 872 1,052 4.9 5.0
bnll 0.000016 0.159015 8,140 9,544 8.7 8.8
bnl2 0.000021 0.000088 18,421 20,843 8.9 9.0
bore3d 0.000180 0.012354 8,306 8,306 7.7 7.7
brandy 0.000342 0.364322 4,342 7,553 7.1 7.3
capri 0.000375 0.314398 30,323 30,323 7.9 7.9
cycle 0.000021 0.009666 309,894 336,316 10.2 10.2
czprob 0.000000 0.001570 206,138 206,138 00 00

d2qO6c 0.000000 0.003925 172,131 378,209 0oo o
d6cube 0.945491 2.000000 43,629 60,623 4.7 4.8
degen2 0.000000 1.000000 2,613 3,839 oo oc
degen3 0.000000 1.000000 4,526 24,090 0o oo
e226 0.000737 0.021294 21,673 35,518 7.5 7.7
etamacro 0.001292 0.200000 55,527 87,767 7.6 7.8
fffff800 0.000000 0.033046 696,788 696,788 00 oo
finnis 0.000000 0.000000 74,386 74,386 0o o0
fitld 3.500000 00 493,023 617,867 5.1 5.2
fitlp 1.389864 1.000000 218,242 383,871 5.3 5.6

~~ p~~ "~~' ~I-" I"~"~~~~~'^"" ~~"" l~~~~~ w~~s ~ ~ ~ l~~ ~~~^l. .... 



ldl log C(d)
Lower Upper Lower Upper

Problem pp(d) pD(d) Bound Bound Bound Bound

fit2d 317.000000 cc 1.90E+06 2.24E+06 3.8 3.8
ganges 0.000310 1.000000 143,913 143,913 8.7 8.7
gfrd-pnc 0.015645 0.347032 1.22E+07 1.22E+07 8.9 8.9
greenbea 0.000033 0.000004 65,526 65,526 10.2 10.2
greenbeb 0.000034 0.000007 43,820 43,820 9.8 9.8
growl5 0.572842 0.968073 209 977 2.6 3.2
grow22 0.572842 0.968073 303 1,443 2.7 3.4
grow7 0.572842 0.968073 102 445 2.3 2.9
israel 0.135433 0.166846 2.22E+06 2.22E+06 7.2 7.2
kb2 0.000201 0.026835 10,914 11,054 7.7 7.7
lotfi 0.000849 0.001590 170,422 170,422 8.3 8.3
maros 0.000000 0.006534 1.76E+06 1.80E+06 oo oo
modszkl 0.016030 0.114866 1.03E+06 1.03E+06 7.8 7.8
perold 0.000000 0.002212 1.56E+06 2.35E+06 oo oo
pilot.ja 0.000000 0.001100 2.36E+07 1.36E+08 oo oo
pilot.we 0.000000 0.044874 5.71E+06 5.71E+06 co oo
pilot4 0.000399 0.002600 696,761 1.03E+06 9.2 9.4
pilotnov 0.000000 0.001146 2.36E+07 1.32E+08 oo oo
recipe 0.063414 0.000000 13,356 15,815 oo oo
sc105 0.778739 0.400452 3,000 3,000 3.9 3.9
sc205 0.778739 0.030068 5,700 5,700 5.3 5.3
sc50a 0.780744 1.000000 1,500 1,500 3.3 3.3
sc50b 0.695364 1.000000 1,500 1,500 3.3 3.3
scagr25 0.021191 0.049075 199,859 199,859 7.0 7.0
scagr7 0.022786 0.049075 61,259 61,259 6.4 6.4
scfxml 0.000010 0.002439 20,426 21,811 9.3 9.3
scfxm2 0.000010 0.002439 38,863 43,630 9.6 9.6
scfxm3 0.000010 0.002439 57,300 65,449 9.8 9.8
scorpion 0.059731 0.995879 123,769 123,769 6.3 6.3
scrs8 0.009005 0.004389 66,362 68,659 7.2 7.2
scsdl 5.037757 1.000000 1,752 1,752 3.2 3.2
scsd6 1.603351 1.000000 2,973 2,973 3.5 3.5
scsd8 0.268363 1.000000 5,549 5,549 4.3 4.3
sctapl 0.032258 1.000000 7,204 15,186 5.3 5.7
sctap2 0.669540 1.000000 27,738 64,662 4.6 5.0
sctap3 0.500000 1.000000 32,697 78,415 4.8 5.2
sharelb 0.000015 0.000751 1.67E+06 1.67E+06 11.0 11.0
share2b 0.001747 0.287893 19,410 23,882 7.0 7.1
shell 0.000263 0.253968 874,800 874,800 9.5 9.5
ship041 0.000386 25.746000 881,005 881,005 9.4 9.4
ship04s 0.000557 25.746000 545,306 545,306 9.0 9.0

19



Table 5: Summary Statistics o
Pre-Processing by CPLEX 7.1.

f Distances to Ill-Posedness for the NETLIB Suite after

PD(d)
0 Finite o Totals

0 1 14 0 15

pp(d) Finite 1 65 2 68
o0 0 0 0 0

Totals 2 79 2 83

Figure 1 presents a histogram of the condition numbers of the post-processed prob-
lems taken from Table 4. The condition number of each problem is represented by the
geometric mean of the upper and lower bound estimates in this histogram. The right-
most column in the figure is used to tally the number of problems for which C(d) = 0o,

and is shown to give a more complete picture of the data. This histogram shows that of
the problems with finite condition number, log C(d) is fairly nicely distributed between
2.6 and 11.0. Of course, when C(d) = 1011, it is increasingly difficult to distinguish
between a finite and non-finite condition number.

20

Hll log C(d)
Lower Upper Lower Upper

Problem pp (d) PD (d) Bound Bound Bound Bound

ship081 0.000000 22.890000 1.57E+06 1.57E+06 o00 0
ship08s 0.000000 22.890000 816,531 816,531 oo oo
shipl21 0.000124 7.434000 748,238 748,238 9.8 9.8
shipl2s 0.000149 7.434000 340,238 340,238 9.4 9.4
sierra 0.001039 47.190000 6.60E+06 6.61E+06 9.8 9.8
stair 0.003800 0.163162 7,071 7,071 6.3 6.3
standata 0.090909 1.000000 4,931 5,368 4.7 4.8
standgub 0.090909 1.000000 4,931 5,368 4.7 4.8
standmps 0.020000 1.000000 12,831 12,831 5.8 5.8
stocforl 0.002130 0.109062 10,833 29,388 6.7 7.1
stocfor2 0.000811 0.000141 45,458 616,980 8.5 9.6
tuff 0.000025 0.047081 131,554 138,783 9.7 9.7
vtp.base 0.005287 3.698630 17,606 17,606 6.5 6.5
woodip 0.059008 1.442564 2.11E+06 3.25E+06 7.6 7.7
woodw 0.009357 1.000000 5.68E+06 7.26E+06 8.8 8.9



>1
U
CU
a)

aU-)
U_

1 2 3 4 5 6 7 8 9 10 11 12

log C(d)

Figure 1: Histogram of Condition Numbers for the NETLIB Suite After Pre-Processing
Heuristics were Applied (using the geometric mean of the lower and upper bound esti-
mates of C(d))

4.3 Condition Numbers and the Observed Performance of Interior-
Point Methods on the NETLIB Suite

It is part of the folklore of linear optimization that the number of iterations of the
simplex method tends to grow roughly linearly in the number of variables, see [22]
for a survey of studies of simplex method computational performance. This observed
linear growth is (fortunately) in stark contrast to the worst-case iteration bound for
the simplex method, which is exponential in the dimension of the problem, see [9].
Of course, even here one must bear in mind that implemented versions of the simplex
algorithm (on which computational performance is assessed) do not correspond to the
theoretical versions of the simplex algorithm (on which theory and complexity analysis is
developed) in many respects, including the way degeneracy is handled, feasibility checks
are performed, numerical tolerances are used, etc.

In the case of modern IPM algorithms for linear optimization, the number of IPM
iterations needed to solve a linear optimization instance has been observed to be fairly
constant over a huge range of problem sizes; for the NETLIB suite the number of itera-
tions varies between 8 and 48 using CPLEX 7.1 baropt; for other codes the numbers are
a bit different. Extensive computational experience over the past 15 years has shown
that the IPM iterations needed to solve a linear optimization problem instance vary in

21

-^---11111^�-111^1__ _11__111_.



the range between 10-100 iterations. There is some evidence that the number of IPM
iterations grows roughly as log n on a particular class of structured problem instances,
see for example [10].

The observed performance of modern IPM algorithms is fortunately superior to the
worst-case bounds on IPM iterations that arise via theoretical complexity analysis. De-
pending on the complexity model used, one can bound the number of IPM iterations
from above by vOL, where t is the number of inequalities plus the number of variables
with at least one bound in the problem instance:

V := ILI + IGI + ILBI + IUBI - ILB n UBI, (23)

and L is the bit-size of a binary encoding of the problem instance data, see [19] (sub-
traction of the final term of (23) is shown in [5]). The bit-size model was a moti-
vating force for modern polynomial-time LP algorithms, but is viewed today as some-
what outdated in the context of linear and nonlinear optimization. Using instead the
condition-number model for complexity analysis, one can bound the IPM iterations by
O(xVlog(C(d)+ ..- ), where the other terms in the bound are of a more technical nature,
see [21] for details. Similar to the case of the simplex algorithm, the IPM algorithms
that are used in practice are different from the IPM algorithms that are used in the
development of the complexity theory.

A natural question to ask is whether the observed variation in the number of IPM
iterations (albeit already small) can be accounted for by the condition numbers of the
problem instances? The finite condition numbers of the 67 post-processed problems
from the NETLIB suite shown in Table 4 provide a rich set of data that can be used
to explore this question. Here the goal is to assess whether or not condition numbers
are relevant for understanding the practical performance of IPM algorithms (and is not
aimed at validating the complexity theory).

In order to assess any relationship between condition numbers and IPM iterations for
the NETLIB suite, we first solved and recorded the IPM iterations for the 83 problems
from the NETLIB suite. The problems were pre-processed with the linear dependency
check option and solved with CPLEX 7.1 function baropt with default parameters. The
default settings use the standard barrier algorithm, include a starting heuristic that sets
the initial dual solution to zero, and a convergence criteria of a relative complementarity
smaller than 10-8 . The iteration counts are shown in Table 6. Notice that these iteration
counts vary between 8 and 48.

Figure 2 shows a scatter plot of the number of IPM iterations taken by CPLEX
7.1 to solve the 83 problems in the NETLIB suite after pre-processing (from Table
6) and Vx log C(d) of the post-processed problems (using the log C(d) estimates from
columns 6 and 7 from Table 4). In the figure, the horizontal lines represent the range for
x log C(d) due to the lower and upper estimates of C(d) from the last two columns of

22



Table 6: IPM Iterations for the NETLIB Suite using CPLEX 7.1 baropt

Problem IPM Iterations Problem IPM Iterations || Problem IPM Iterations
25fv47 22 ganges 13 scrs8 20
80bau3b 30 gfrd-pnc 18 scsdl 10
adlittle 12 greenbea 38 scsd6 11
afiro 9 greenbeb 33 scsd8 9
agg 22 growl5 12 sctapl 13
agg2 18 grow22 12 sctap2 15
agg3 21 grow7 10 sctap3 15
bandm 16 israel 23 sharelb 22
beaconfd 8 kb2 17 share2b 14
blend 11 lotfi 14 shell 16
bnll 25 maros 27 ship041 13
bn12 28 modszkl 23 ship04s 17
bore3d 16 perold 42 ship081 14
brandy 19 pilot.ja 46 ship08s 14
capri 19 pilot.we 48 shipl21 19
cycle 25 pilot4 35 shipl2s 17
czprob 32 pilotnov 19 sierra 16
d2qO6c 28 recipe 9 stair 16
d6cube 22 sc105 10 standata 9
degen2 13 sc205 11 standgub 9
degen3 19 sc50a 10 standmps 13
e226 18 sc50b 9 stocforl 10
etamacro 24 scagr25 14 stocfor2 16
fffff800 30 scagr7 13 tuff 21
finnis 19 scfxml 18 vtp.base 10
fitld 14 scfxm2 20 woodlp 13
fitip 13 scfxm3 20 woodw 21
fit2d 18 scorpion 13

23

II-·_III_�_�.II_1II-_- UI__YIIIII-W�Y·I�^_·l_)l_·



Table 4. Also, similar to Figure 1, problems
in the figure on the far right as a visual aid.

45

40

35
(/3
C
co

30

a)
- 25

20

15

10

0 100 200 300 400 500

1/2 log C(d)

with infinite condition number are shown

600 700

Figure 2: Scatter plot of IPM iterations and v log C(d) for
pre-processing, using CPLEX 7.1

83 NETLIB problems after

Figure 2 shows that as v/ log C(d) increases, so does the number of IPM iterations
needed to solve the problem (with exceptions, of course). Perhaps a more accurate
summary of the figure is that if the number of IPM iterations is large, then the problem
will tend to have a large value of 0logC(d). The converse of this statement is not
supported by the scatter plot: if a problem has a large value of V/ log C(d), one cannot
state in general that the problem will take a large number of IPM iterations to solve.

In order to be a bit more definitive, we ran a simple linear regression with the IPM
iterations of the post-processed problem as the dependent variable and V/ log C(d) as
the independent variable, for the 67 NETLIB problems which have a finite condition
number after pre-processing. For the purposes of the regression computation we used
the geometric mean of the lower and upper estimates of the condition number from the
last two columns of Table 4. The resulting linear regression equation is:

IPM Iterations = 10.8195 + 0.0265/ log C(d) ,

with R2 = 0.4267. This indicates that over 42% of the variation in IPM iteration counts
among the NETLIB suite problems is accounted for by xV logC(d). A plot of this
regression line is shown in Figure 3, where once again the 16 problems that were ill-
conditioned are shown in the figure on the far right as a visual aid. Both coefficients of

24

*

+ * *

* ** ~~~~r *~~~

* }* * *~~~~~~f *~~ ~ ~~~~~~~ -

* ~ ~~~ * 

* ',,**-* ***
* * ** *~ ** *~ * *** * 

* 411 * * 

* ** *

·~~ II ~ Y_~Y__ II____ C III1I_~~·YL-- ·-l-I~·~-_I1~.. ._ _------- --- __ _



this simple linear regression are
statistics shown in Table 7.

45

40

C)
C
0
co

EL.ma

35

30

25

20

10

10

significant at the 95% confidence level, see the regression

0 100 200 300 400 500

1/2 log C(d)

600 700

Figure 3: Linear regression of IPM iterations and v- log C(d) for 67 NETLIB problems
with finite condition number after pre-processing, using CPLEX 7.1 (using the geometric
mean of the lower and upper bound estimates of C(d))

Table 7: Statistics for the Linear Regression of IPM iterations and V/; log C(d).
I Coefficient Value t-statistic 95% Confidence Interval

3o 10.8195 10.7044 [ 8.8009, 12.8381 ]
f1 0.0265 6.9556 [ 0.0189 , 0.0341 ]

The presence of zv in complexity bounds for interior-point methods seems to be a
fixture of the theory of self-concordant barrier functions, see [12], despite the belief that
such dependence is not borne out in practice. The above regression analysis indicates
that v/ logC(d) does explain 42% of variation in IPM iteration counts among the
NETLIB suite of linear optimization problems. Nevertheless, one can also ask whether
the condition number alone (without the factor) can account for the variation in
IPM iteration counts among the NETLIB suite problems? Figure 4 shows a scatter
plot of the number of IPM iterations taken by CPLEX 7.1 to solve the 83 problems in
the NETLIB suite after pre-processing and log C(d) of the post-processed problems (the
horizontal lines refer to the range of the lower and upper estimates of C(d) from the

25

* *

* * /l * *
* "E+ ~ *

** *
* * *

* * * *
* *** *

* * *
* * * * *

* *
* A* *

** +~~~~~~~~~~~~~~~~~~

-**** *
, * * *



Table 8: Statistics for the Linear Regression of IPM iterations and log C(d).
Coefficient Value t-statistic 95% Confidence Interval

/ 00 4.1389 2.1999 [ 0.3814 , 7.8963 ]
p1 1.7591 6.9427 [ 1.2531, 2.2652 ]

last two columns of Table 4; also, problems with infinite condition number are shown
in the figure on the far right as a visual aid). We also ran a simple linear regression of
IPM iterations as the dependent variable and log C(d) as the independent variable. The
resulting linear regression equation is:

IPM Iterations = 4.1389 + 1.7591 log C(d) ,

with R2 = 0.4258. A plot of this regression is shown in Figure 5, and Table 8 shows
the regression statistics. It turns out that this regression model is comparable to the
linear regression with xVlogC(d). Both regression models are significant at the 95%
confidence level and account for just over 42% of the variance in the iterations of the
NETLIB suite. These results indicate that logC(d) and xvlogC(d) are essentially
equally good at explaining the variation in IPM iteration counts among the NETLIB
suite of linear optimization instances.

50

45

40

35

C

:,~ 3O

,
- 25

20

15

10

2 4 6 8 10 12

log C(d)

Figure 4: Scatter plot of IPM iterations and logC(d) for
pre-processing, using CPLEX 7.1

83 NETLIB problems after

26

~~~~~~~

_ **

* *_ *~~~~~~~~~~~~~

* *
* iwaF

_ i ~ *+ ***~~~~~~~~

* * *
** **** *I *

* *

** * -* * *
~Y ** *

* **~~~ *** ** *

* ~ ~~~~ ~ **

_ * * ** * *

** ** *
*

l

I I I I I I

50

45

40

35

0
30

Q)
25

20

15

10

2 4 6 8 10 12

log C(d)

Figure 5: Linear regression of IPM iterations and logC(d) for 67 NETLIB problems
with finite condition number after pre-processing, using CPLEX 7.1 (using the geometric
mean of the lower and upper bound estimates of C(d))

We also computed the sample correlation coefficients of the IPM iterations from Table
6 with the following dimensional measures for the 67 finitely-conditioned problems in
the NETLIB suite: log m, log n, log 0, and V/O. The resulting sample correlations are
shown in Table 9. Observe from Table 9 that IPM iterations are better correlated with
log C(d) than with any of the other measures. The closest other measure is log m, for
which R = 0.520, and so a linear regression of IPM iterations as a function of log m would
yield R2 = (0.520)2 = 0.270, which is decidedly less than R 2 = 0.4258 for log C(d).

Note from Table 9 that log C(d) and logm themselves are somewhat correlated,
having a correlation coefficient of 0.431. We have no immediate explanation for this
observed correlation, and this may be the subject of future study. Also, note from Table
9 that both log 0 and 1V by themselves are significantly less correlated with the IPM
iterations than log C(d).

4.4 Controlled Perturbations of Problems in the NETLIB Suite

One potential drawback of the analysis in Subsection 4.3 is that in making comparisons
of problem instances with different condition numbers one necessarily fails to keep the
problem instance size or structure invariant. Herein, we attempt to circumvent this

27

i i *, *** * *

*

* *
*

,** * *o *
* ~~* O ** **

* * * * *** ~ * *
* ** * *

* * * * + *
** *

* * *
_* * * *

s* * * *

Table 9: Sample correlations for 67 NETLIB problems (using the geometric mean of the
lower and upper bound estimates of C(d))

IPM iterations log C(d) log n log m log 1 V
IPM iterations 1.000

log C(d) 0.653 1.000
log n 0.453 0.262 1.000

log m 0.520 0.431 0.732 1.000
log0 0.467 0.267 0.989 0.770 1.000

_v/__ 0.421 0.158 0.919 0.585 0.929 1.000

drawback by performing controlled perturbations of linear optimization problems which
allows one to keep the problem size and structure intact.

Consider a problem instance d = (A, b, c) and the computation of the primal and
dual distances to ill-posedness pp(d) and pD(d). It is fairly straightforward to show
that if (i*,j*, A*, (s+)*, (s-)*, v*) is an optimal solution of (21), then the rank-1 data
perturbation:

Ad (/A, Ab, Ac) (-j*ei* (AtA* + (s+)*- (s-)*)t , -j*e i (bt* - v*) , 0) (24)

is a minimum-norm perturbation for which pp(d + Ad) = 0 (where ei* denotes the (i*)th
unit vector in R m). That is, liAdlj = pp(d) and the data instance d := d + Ad is primal
ill-posed.

The simple construction shown in (24) allows one to construct a controlled pertur-
bation of the data instance d. Consider the family of data instances d := d + aAd for
a E [0, 1]. Then if pD(d) > pp(d) > 0 it follows that p(d,) = (1 - a)p(d) for oa E [0,1],
and we can bound the condition number of d, as follows:

C (d)_ lid + aAdl > ld - ap(d)
(1 - a)p(d) - (1 - a)p(d) '

where the numerator satisfies Ildl -aop(d) > 0 for a E [0, 1]. In the case when Ildil > p(d)
(satisfied by all problem instances in the NETLIB suite) we can create a family of data
instances for which C(d,) -- oo as a - 1 by varying a in the range [0, 1], all the while
keeping the problem dimensions, the structure of the cone Cy, and the ground-set P
invariant.

To illustrate, consider the problem scagr25 from the NETLIB suite, and let d denote
the data for this problem instance after pre-processing. According to Table 4, pD(d) =

28

0.049075 > 0.021191 = pp(d) > . Now let Ad be the perturbation of this data instance
according to (24). If we solve the resulting perturbed problem instances d, for select
values of E [0, 1] and record the number of IPM iterations, we obtain the results
portrayed in Figure 6. As the figure shows, the number of IPM iterations grows as the
perturbed problem instance becomes more ill-conditioned.

40

35

30
C)

cr
. 25

a)
- 20

15

10

5

0.2 0.4 0.6 0.8 1

Figure 6: The number of IPM iterations needed to solve the perturbed
problem instance scagr25, as a function of the perturbation scalar a.

post-processed

The pattern of growth in IPM iterations as the perturbed problem becomes more
ill-conditioned is not shared by all problem instances in the NETLIB suite. Figure 7
shows the plot of IPM iterations for problem e226, as the perturbed problem instance
becomes more ill-conditioned. For this problem instance the growth in IPM iterations
is not monotone.

Of the 67 post-processed problems in the NETLIB suite with finite condition number,
56 of these problems satisfy pD(d) > pp(d) > 0 and Ildll > p(d), and so are amenable
to analysis via the construction described above. For a given problem instance in the
NETLIB suite, let kc denote the number of IPM iterations needed to solve the perturbed
post-processed problem instance d,. Then

Ak := k - ko

is the difference between the IPM iterations needed to solve the un-perturbed problem
instance and the fully-perturbed problem instance. Table 10 shows some summary statis-
tics of the distribution of Ak for the 56 problems in the NETLIB suite that are readily

29

**

q *
**~~ **Ir

*

*

* * * * *
* *

*
*

40

35

30

co
' 25

a)

15

10

N
0 0.2 0.4 0.6 0.8 1

a

Figure 7: The number of IPM iterations needed to solve the perturbed post-processed
problem instance e226, as a function of the perturbation scalar Oc.

amenable to this analysis. As the table shows, the fully perturbed problem instance has
a larger IPM iteration count in 68% (38 out of 56) of the problem instances. Curiously,
the number of IPM iterations is actually less (but by at most three iterations) for the
fully-perturbed problem instance in 18% (10 out of 56) problem instances amenable to
this analysis. A rough summary of the results in Table 10 is that the number of IPM
iterations for the fully perturbed problem increases dramatically (more than 10 itera-
tions) on 30% of the problem instances, increases modestly (1-10 iterations) on 38% of
the problem instances, and remains the same or decreases slightly on 32% of problem
instances.

5 Summary Conclusions

The purpose of this paper has been to gain some computational experience and to test
the practical relevance of condition numbers for linear optimization on problem instances
that one might encounter in practice. We used the NETLIB suite of linear optimization
problems as a test bed for condition number computation and analysis, and we computed
condition numbers for 83 NETLIB suite problem instances both prior to and after the
instance was pre-processed using CPLEX 7.1. This computation was done using the
ground-set model format of convex optimization, where the ground-set was defined by

30

i * **

*

II ***

Table 10: The distribution of the change in IPM iterations needed to solve the un-
perturbed problem instance and the fully-perturbed problem instance, for 56 post-
processed problems in the NETLIB suite.

Change in IPM Iterations Number of
(Ak) Problem Instances

-3 to -1 10
0 8

1 to 5 12
6 to 10 9

11 or more 17

Total 56

the lower and upper bound constraints on the variables.

A summary of our computational findings is as follows:

1. 72% of the original problem instances in the NETLIB suite are ill-conditioned.

2. 70% of the original problem instances in the NETLIB suite are primal ill-posed,
i.e., arbitrarily small data perturbations will render the primal problem infeasible.

3. After pre-processing of the problem instances by CPLEX 7.1, only 19% of problem
instances are ill-posed.

4. log C(d) of the 67 post-processed problems with finite condition number is fairly
nicely distributed in the range from 2.6 - 11.0.

5. The number of IPM iterations needed to solve linear optimization problem in-
stances is related to the condition numbers of the post-processed problem in-
stances. If the number of IPM iterations is large for a given problem instance,
then the problem will tend to have a large post-processed condition number. How-
ever, the converse of this statement is not supported by computational experience:
if the post-processed problem instance has a large condition number, one cannot
assert that the problem instance will need a large number of IPM iterations to
solve.

6. A simple linear regression model of IPM iterations as the dependent variable and
VV log C(d) as the independent variable yields a positive linear relationship be-
tween IPM iterations and logC(d), significant at the 95% confidence level,
with R 2 = 0.4267. This means that 42% of the variation in IPM iterations among
the NETLIB suite problems is accounted for by V log C(d).

31

7. A simple linear regression model of IPM iterations as the dependent variable and
log C(d) as the independent variable yields a very similar result, also significant
at the 95% confidence level, and with R2 = 0.4258. These results indicate that
log C(d) and v log C(d) are essentially equally good at explaining the variation
in IPM iteration counts among the NETLIB suite of linear optimization instances.

8. The number of IPM iterations correlates better with logC(d) than with log n,
logm, log 9, or V9.

9. Curiously, log C(d) is somewhat correlated with log m, having a sample correlation
of 0.431. This observation bears further scrutiny.

10. In controlled perturbations of problem instances to ill-conditioned perturbed in-
stances, the number of IPM iterations of the ill-posed perturbed instances are
larger than for the original instance in about 68% of the problems studied, signif-
icantly larger in about half of these. However in the other 32% of the problems
studied there was no change or even a slight decrease in IPM iterations.

References

[1] F. Cucker and J. Pefia. A primal-dual algorithm for solving polyhedral conic systems
with a finite-precision machine. Technical report, GSIA, Carnegie Mellon University,
2001.

[2] M. Epelman and R. M. Freund. A new condition measure, preconditioners, and
relations between different measures of conditioning for conic linear systems. SIAM
Journal on Optimization, 12(3):627-655, 2002.

[3] S. Filipowski. On the complexity of solving sparse symmetric linear programs spec-
ified with approximate data. Mathematics of Operations Research, 22(4):769-792,
1997.

[4] S. Filipowski. On the complexity of solving feasible linear programs specified with
approximate data. SIAM Journal on Optimization, 9(4):1010-1040, 1999.

[5] R. Freund and M. Todd. Barrier functions and interior-point algorithms for linear
programming with zero-, one-, or two-sided bounds on the variables. Mathematics
of Operations Research, 20(2):415-440, 1995.

[6] R. M. Freund and J. R. Vera. Condition-based complexity of convex optimization
in conic linear form via the ellipsoid algorithm. SIAM Journal on Optimization,
10(1):155-176, 1999.

32

__·I ·�· I_�-

[7] R. M. Freund and J. R. Vera. On the complexity of computing estimates of condition
measures of a conic linear system. Technical Report, Operations Research Center,
MIT, August 1999.

[8] R. M. Freund and J. R. Vera. Some characterizations and properties of the "distance
to ill-posedness" and the condition measure of a conic linear system. Mathematical
Programming, 86(2):225-260, 1999.

[9] V. Klee and G. Minty. How good is the simplex algorithm? In O. Shisha, editor,
Inequalities, pages 159-175. Academic Press, New York, 1972.

[10] I. Lustig, R. Marsten, and D. Shanno. The primal dual interior point method on the
cray supercomputer. In T. F. Coleman and Y. Li, editors, Large-Scale Numerical
Optimization, Papers from the Workshop held at Cornell University, Ithaca, NY,
October 1989, volume 46 of SIAM Proceedings in Applied Mathematics, pages 70-80.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1990.

[11] I. Lustig, R. Marsten, and D. Shanno. Interior point methods: computational state
of the art. ORSA Journal on Computing, 6:1-14, 1994.

[12] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming, volume 13 of SIAM Studies in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, 1993.

[13] NETLIB linear programming library. http://www.netlib.org/lp/.

[14] M. A. Nunez and R. M. Freund. Condition measures and properties of the central
trajectory of a linear program. Mathematical Programming, 83(1):1-28, 1998.

[15] M. A. Nunez and R. M. Freund. Condition-measure bounds on the behavior of
the central trajectory of a semi-definite program. SIAM Journal on Optimization,
11(3):818-836, 2001.

[16] F. Ord6iiez. On the Explanatory Value of Condition Numbers for Convex Optimiza-
tion: Theoretical Issues and Computational Experience. PhD thesis, Massachusetts
Institute of Technology, 2002. In preparation.

[17] J. Pefia. Computing the distance to infeasibility: theoretical and practical issues.
Technical report, Center for Applied Mathematics, Cornell University, 1998.

[18] J. Pefia and J. Renegar. Computing approximate solutions for convex conic systems
of constraints. Mathematical Programming, 87(3):351-383, 2000.

[19] J. Renegar. A polynomial-time algorithm, based on Newnton's method, for linear
programming. Mathematical Programming, 40(1):59-93, 1988.

33

�_IIIII^I___I1YI___11_1�1·--�1111�� _I_ _·-

[20] J. Renegar. Some perturbation theory for linear programming. Mathematical Pro-
gramming, 65(1):73-91, 1994.

[21] J. Renegar. Linear programming, complexity theory, and elementary functional
analysis. Mathematical Programming, 70(3):279-351, 1995.

[22] R. Shamir. The efficiency of the simplex method: a survey. Management Science,
33(3):301-334, 1987.

[23] J. R. Vera. Ill-posedness and the computation of solutions to linear programs with
approximate data. Technical Report, Cornell University, May 1992.

[24] J. R. Vera. Ill-Posedness in Mathematical Programming and Problem Solving with
Approximate Data. PhD thesis, Cornell University, 1992.

[25] J. R. Vera. Ill-posedness and the complexity of deciding existence of solutions to
linear programs. SIAM Journal on Optimization, 6(3):549-569, 1996.

[26] J. R. Vera. On the complexity of linear programming under finite precision arith-
metic. Mathematical Programming, 80(1):91-123, 1998.

34

