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ABSTRACT

Given a tree G = (V, E) and a weight function defined on subsets
of its nodes, we consider two associated problems. The first, called the
"rooted subtree problem", is to find a maximum weight subtree, with a
specified root, from a given set of subtrees.

The second problem, called "the subtree packing problem", is to find
a maximum weight packing of node disjoint subtrees chosen from a given
set of subtrees, where the value of each subtree may depend on its root.

We show that the complexity status of both problems is related, and
that the subtree packing problem is polynomial if and only if each rooted
subtree problem is polynomial. In addition we show that the convex hulls
of the feasible solutions to both problems are related: the convex hull
of solutions to the packing problem is given by "pasting together" the
convex hulls of the rooted subtree problems.

We examine in detail the case where the set of feasible subtrees rooted
at node i consists of all subtrees with at most k nodes. For this case we
derive valid inequalities, and specify the convex hull when k < 4.
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1 Introduction

Given a tree G = (V, E) with n = IVI nodes, we consider two closely re-
lated problems. The first, called the "constrained i-rooted subtree prob-
lem", is to find a maximum weight i-rooted subtree (i.e a tree containing
node i): max (ci(z i ) : z i X i ) defined over a set of incidence vectors
X i of feasible i-rooted subtrees (zi is the incidence vector of the nodes
of the chosen subtree). We shall also be interested in the case arising in
applications with auxiliary variables wi when the value function is given
by ci(z i ) = dizi+ max{eiwi : (z i, w i) E Wi}.

The second problem, called "the (constrained) subtree packing prob-
lem", involves a function ci and a feasible set X i for each root node
i E V. The problem is to find a maximum weight packing of node dis-
joint subtrees: max {iEV Ci(zi): (z1,. , n ) E Z} defined over the set
Z = {(z,..., zn )· EiEV Zi 1,z e Xi for i E V}. To correctly model
the fact that we do not need to choose any subtree rooted at node i,
we assume that 0 E Xi and that c(0) = 0. In treating the special case
when each X i consists of all i-rooted subtrees, Barany et al(1986) de-
scribe conv(Z). In a telecommuncations study of capacity expansion for
a local area network, Balakrishnan et al.(1991) formulate a version of this
problem as a constrained subtree packing problem and obtain practical
results by tightening the formulation and using Lagrangian relaxation.
Aghezzaf and Wolsey(1990) have further examined one particular aspect
of their model, the question of how to correctly model a piecewise linear
concave objective function.

In this paper we clarify and generalize these earlier studies by showing
that the polyhedral characterizations of the rooted subtree and subtree
packing problems are closely related. In particular we show in Section 2
that conv(Z) {(zl,..., zn) : iv z i 1, z E conv (Xi) for i E V}.
More generally we show that if ci(z") is derived as above by optimizing
over W, the linear program:

max{Z(diz i + eiwi): z i < 1, (zi,w i) E conv(W i) for i E V}
iEV iEV

solves the tree packing problem.
In Sections 3 and 4 we study a particular set of i-rooted subtrees,

namely those in which Xi represents the set of subtrees containing at
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most k nodes, or more generally of subtrees constrained by a knapsack
constraint over their nodes. This model is also motivated by the study of
Balakrishnan at al. Johnson and Niemy(1983) and Lukes(1974) have de-
scribed efficient algorithms for this problem, and Boyd(1990) has derived
some valid inequalities for a slightly more general model. We study the
polyhedral structure in the case of a cardinality constraint. In Section 3
we derive three families of valid inequalities, and in Section 4 we derive
a complete characterization of conv(X i) when k < 4. We also examine
the close relationship between the polyhedra of cardinality and knapsack
constrained subtrees.

2 Relationship between the two Problems.

To examine the complexity of the rooted subtree problem and the sub-
tree packing problem, we first consider the question of how to describe
conv(Z) when Z = {(zl,...,z') · ZiEv zi < 1, z i E Xi for i E V}. A
description can be obtained based on a result linking subtrees of trees
and chordal graphs. In polyhedral terms, this result takes the following
form:

Theorem 1 : (Golumbic(1980)) Given a family of subtrees of a tree, if
A is the corresponding node-subtree incidence matrix, then the polyhedron
{x: Ax < 1, x > O} is integral.

Theorem 2 : conv(Z)= {(zl,... ,z") :EiEV Z i < 1, Zi E conv (Xi) for
i E V.

Proof. If Ai is the 0- 1 matrix whose columns are the points in X i, the
polyhedron {(x 1l,...,X ) : EiEv Aiz < 1,xi > 0 for i E V} is integral
by Theorem 1, and since each subtree rooted at i contains node i, we
can write this set as: {(x,... ,x n ) : iEV Aixi < 1 1x i < 1, x i > 0 for
i E V}. Now let z i = Aix i. The set Q= {(zl,...,zn) : ZievAix <

1, i = Aixi, 1xi < 1,x i > 0 for i E V} is integral since z i is integral
when x i is integral. But conv(X i ) = zi: zi = Ax i, l x i_ < 1,xi > O}
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by definition. Thus Q = {(z1 ,..., n") : iev zi < 1,zi E conv (Xi) for
i E V} is integral.

This theorem shows that we can use any convex hull representation
of the sets Xi to describe the convex hull of the tree packing polyhe-
dron Z; we are not restricted to using the subtree-tree incidence matrix
representation. Some special cases obtained earlier in the literature can
now be derived very simply. The following result for the rooted subtree
problem when all subtrees are feasible is easy to verify.

Proposition 3 : (Groeftin et al.(1982)) If X is the set of incidence
vectors of all subtrees rooted at node r, conv(X) = {z E R zr <

1, Zj < Zp(j,r) for j E V \ {r}}, where p(j, r) is the predecessor of j on the
path from j to the root r.

As a corollary of this result and Theorem 2, we have:

Proposition 4 : (Barany et al. (1986)) When, for all i E V, Xi is the
set of incidence vectors of all i-rooted subtrees , conv(Z) = {(zl ,... z ) E

R+ ,7 i~v zi < V lzii 1 z iz•(3<) for i,j E V.}

More generally, suppose that the objective function ci(z i ) is nonlinear,
and the value of an i-rooted subtree is given by:

ci(zi) = diz i + max,i{eiwi : (zi,wi ) E W i } (1)

with proji(Wi) = X i a set of subtrees rooted at i. If T i is a rooted
subtree of G with incidence vector zi , we shall write c(Ti) = c(z). The
formulation (1) permits us to consider problem situations in which our
underlying model contains variables w i in addition to the node variables
z i. In the telecommunications model considered by Balakrishnan et al.,
these variables represent investment in added arc (cable) capacity.

Theorem 5 : If W = {(z 1,w 1,.. z n : i 1Z ( ,i) 
W' for i E V, then conv(W) = {(zlwl,.z ) i <
1, (zi, w i ) E conv(W i) for i E V}.
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Proof. Consider an arbitrary partial ordering of the underlying tree
graph G = (V, E), defined by choosing a root node r and setting u ~ v if
and only if u lies on the path from v to the root. So r -< v for all v E V.
Given the ordering, let R(v) = {u: v -< u} denote the subtree induced
by v and its successors, S(v) denote the set of immediate successors of
v, S(T) be the immediate successors of subtree T and r(T) denote the
root of subtree T with respect to the ordering.

We let H(v) denote the optimal value of the packing problem en-
tirely restricted to subtrees in R(v): H(v) = max{ziev(diz i + eiwi ) :
ZiEv zi < 1, (z i, w i) E W i for i E R(v), z = 0 if i V R(v) or j R(v)}.
Thus the optimal value of the complete packing problem is H(r).

Now we consider the linear program:

LP = max{ (d zi --e w i ) zi < 1, (z i, w i) E conv(W i ) for i E V}. (LP)
iEV iEV

Dualizing the packing constraints with multipliers 7r, we obtain the upper
bound

v(r) = Evi(r) + E Tj
iEV jEV

where vi(ir) = max{(di - 7r)z i + eiwi : (zi,w i) E conv(Wi)}. Now let
T i be the optimal i-rooted subtree for the ith subproblem, so vi(7r) =
ci(Ti) - EjeTi 7rj, and let r i be the root of Ti with respect to the partial
ordering.

Since H is the optimal value function

H(r') > c(T) + E H(j).
jES(Ti )

Taking rj = H(j) - keS(j) H(k), we see that

vi(7r) = c(T i) - 7rj = ci(Ti) - (H(r) - y H(j)) < 0.
jETi jES(Ti)

Note that EjeV 7r = H(r), as the term H(v) appears twice in the sum
with opposite signs for all nodes v other than the root r. Combining
these observations, we see that LP < V(T) = EieV Vi(ir) + EjEV 7rj <

0 + H(r). Thus the linear program has an upper bound of H(r), which
is the optimal value of the subtree packing problem. Since the linear
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program is a relaxation of this problem, its value is also an upper bound
on H(r), and consequently the linear program solves the subtree packing
problem. The claim follows. ·

It follows from Theorems 2 and 5, respectively, that the separation
problems for conv(Z) and conv(W) are polynomial if and only if the
separation problems for conv(X i) and conv(W i) are polynomial for each
i E V.

Theorem 6 : The linear optimization problems over Z and W, respec-
tively, are polynomial if and only if the linear optimization problems over
each X i and W i are polynomial.

Algorithmically this means that a cutting plane algorithm to solve
the tree packing problem consists just of a cutting plane algorithm for
each rooted subtree problem.

Theorem 5 and its proof suggest a natural column generation algo-
rithm for solving the packing problem, which by Theorem 5 is equivalent
to solving the linear program (LP). The subproblems in this algorithmic
approach are again:

vi(7r) = max{(di - r)z' + ew') : (z', wi) E W'}

and the restricted master program consists of a 0 - 1 packing problem:
max cx : Ax < 1, x O} whose columns are the incidence vectors
of subtrees. By Theorem 1 this linear program has an integer optimal
solution with each x = 0 or 1. Therefore its solution is a set of disjoint
subtrees. We can solve it using a dynamic programming recursion

H(v) =max{maxTv{c(Tv) + S H(v)}, E H(j)}
jES(TV) jES(v)

with Tv restricted to subtrees that have root v in the ordering (V, _) and
that correspond to a column of A. After using this dynamic program
to solve for H(r), the algorithm sends the dual variables 7rj = H(j) -

EkES(j) H(k) to the subproblems, which in turn return subtrees T i for
each i E V if vi(7r) > 0. To resolve the Master problem, we then update
the H(v) values using the same recursion.
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3 Valid Inequalities for the Cardinality Con-
strained Problem

Given a rooted directed tree G (V, A) with root 1 E V, node weights
c E RIVI, and a nonnegative integer k, the cardinality constrained sub-
problem can be formulated as the following integer program (Ik):

max E cjxj (2)
jEV

Xp(j) > xj for j E V (3)

E xj < k (4)
jEv

x E {0, 1} for j E V. (5)

In this formulation p(j) denotes the predecessor of j, and by convention
X0 = Xp(l) 1. We refer to any subtree F of G as rooted if F contains
the root. For any u, v E V, we let Path(u, v) denote the path in G
connecting nodes u and v.

Observe that there is a simple polynomial dynamic programming al-
gorithm to solve problem (Ik), which is a slight variant of the recursion
we described in the last section. See also Johnson and Niemi(1983) and
Lukes(1974). Let (X s T) denote the set of feasible solutions of (Ik). In
this section we describe several families of valid inequalities for (XST).
First we assume that no node is at a distance k or more from the root,
and thus conv(X skT) is full-dimensional. The following observations con-
cerning the inequalities defining (X ST ) are easy to verify.

The inequality (4) is dominated by EjEv xj < kxl.
The inequality x; > 0 is dominated unless j is a leaf, and the inequal-

ity xj < 1 is dominated unless j = 1.

Tree Cover Inequalities

Definition 1 : A set C C V is a tree cover if the subgraph induced by
C is a subtree rooted at 1, and ICI = k + 1.

Proposition 7 : The tree cover inequality

E: (Xp(j) - xj) > 1 (6)
jEC
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is valid for Xk T .

Proof. If EjEc(xp(j) - xj) = 0, then the fact that xp(l) = 1 implies that
xj = 1 for all j E C. As C1 = k + 1, this point is infeasible. Therefore
all feasible points satisfy the inequality.

A useful alternative way to write the inequality is:

E (1- ISc(j)l)xy < 0 (7)
jEC

where Sc(j) is the set of successors of node j in C.
The next question we consider is when the cover inequality (6) defines

a facet of conv(XST). We need some notation. For j E V \ C, dc(j) is
the distance of j from C as measured by the number of arcs in the path
connecting node j to C.

Proposition 8 : The tree cover inequality (6) defines a facet of conv(Xks T)
if and only if, for all v E V \ C, some subtree of C hanging off the path
from node v to the root contains at least dc(v) + 1 nodes.

Proof. First suppose that there is no such subtree for some v E V \ C.
If the inequality defines a facet, there exists a tight point with xv, = 1.
Whenever ,EEc(xp() - xj) = 1, exactly one node t E C satisfies the
condition Xp(t) = 1 and xt =0. Since xv, = 1,xj = 1 for every node

on Path(l, v). This path includes at least dc(v) nodes not in C. Node
t necessarily lies in some subtree of C hanging off Path(l, v). Thus at
most dc(j) nodes of C have x = 0. Such a point has cardinality at least

ICI + dc(j) - dc(j) > ICI and is thus infeasible. Thus all tight points
satisfy x, = 0, and the inequality does not define a facet.

Conversely suppose that for each v E V\C, there exists a subtree with
dc(v) + 1 or more nodes. It is easy to verify that the inequality defines a
facet for the tree restricted to C. Sequential lifting ( see Nemhauser and
Wolsey(1988)) of each node v E V \ C then gives a lifted coefficient of 0,
and proves the claim. ·

Example 1. Consider the graph shown in Figure 1 with node 1 as the
root and suppose k = 4.
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Tree cover for k=4.

Figure 1.

Taking {1, 2, 3, 5, 7} as the tree cover, Proposition 7 shows that

X1 > X5 + X7

is a valid inequality. From Proposition 8 the inequality does not define
a facet, because, taking j = 13, no subtree of C off the path {1, 2, 5, 13}
contains three or more nodes. However, the inequality defines a facet of
X4ST {xj = o for j C}.

Now sequential lifting of the variables x 12, x 6, X13, X8, x 4 in that order
shows that

X1 > x 5 + X7 + 0O12 + 0x6 + 1X13 + OX8 + 0x 4

defines a facet of X4S T n {x = 0 for j = 9, 10, 11}.
Next simultaneous lifting of x 9, xlo, xll shows that

1 1 1
X1 > X5 + 7 + l3+ + 2X10 + 2x

defines a facet of X S T.

Leaf Inequalities
The second class of inequalities we call leaf inequalities. Given a

rooted subtree F with node set V(F), we let L(F) denote the leaves of
F, and for S C V we let C(S), the closure of S, be the set of nodes on
any path from j E S to the root.
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Proposition 9 : If, for some q, IC(S)I = k + 1 for all S C L(F) with

ISI = q, then the inequality

xU < (q- 1)xl (8)
uEL(F)

is valid for X T .

Proof. The condition shows that if the inequality is violated, the point
is infeasible in X s T.

Proposition 10 : The inequality (8) defines a facet of X s T n {x xj =
0 for j E V \ V(F)} if and only if

n{ScL(F):lS1=q1l}C(S) = {1}.

Proof. If v E n{scL(F):jsl=q-1}C(S) - {1}, then all tight points sat-
isfy x1 = x,, and the inequality is not facet-defining. Conversely sup-
pose thatl{scL(F):llS=q-1}C(S) = {1}, and that all tight points satisfy
EjEV(F) 7rjxj < 7ro at equality. As x = 0 is tight, 7ro = 0. Consider
j E V(F) \ (L(F) U {1}). From the condition, there exists Sj c L(F)
with Il = q - 1 and j C(Sj). Take i E L(F) \ Sj with j on the path
from 1 to i. As C(Sj U {i})l = k + 1, the points C(Sj) U Path(1,j)
and C(Sj) U Path(l,p(j)) are feasible and tight. Thus irj = 0 for
j E V(F)\ (L(F)U{1}).

Now consider i,j E L(F). Choose Sj c L(F) - {j} with i E Si
and ISjl q - 1. As C(Sj) U Path(l,j) \ {j} C C(Sj U {j}) and
C(Sj) U Path(,j) \ {i} C C(Sj U {j}), both are tight feasible solutions
and thus 7rj = 7ri = 7r* for all i,j E L(F). Finally considering any point
S C L(F) with ISI = q - 1, we have that 71r1 + r*(q - 1) = 0, and the
claim follows. ·

Example 2. Consider the graph shown in Figure 2 with k=4 and q=3.
If F is induced by nodes {1, 2,..., 5}, we see from Proposition 9 that the
leaf inequality:

X3 + X4 +X 5 < 2X1

is valid. From Proposition 10 it does not define a facet for the tree induced
by V(F) as C(45) n C(34) n C(35) = {1,2}, and all tight points satisfy
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L(F)={3,4,5} are the leaves of F.

Figure 2.

x1 = x 2. Lifting in variables 6, 7, 8, 9 in that order gives a facet-defining
inequality for X4ST:

X3 + X4 + X5 + X6 < 2x 1

while the order 7, 6, 8, 9 gives the facet-defining inequality

X3 + X4 + X5 + X7 + X 8 + X9 < 2X1.

Depth Inequalities

The third class of inequalities we call depth inequalities. Let F be a
rooted subtree of G with p < k nodes. Let Q(F) = {u V \ V(F):
IPath(1, u) U V(F)I = k + 1}, and TV denote the subtree rooted at v.

Proposition 11 : The inequality

E x+ E E < (p-) (9)
uEV(F)\{1} vEQ(F) UEV(TV)

is valid for XST

Proof. Let y be any incidence vector that violates the depth inequality
(9), and for any set S of nodes, let y(S) EUEs YU. Let V Q = {j E

UVEQ(F)V(T ) : yj = 1} be the set of variables set to one in the second
term of (9). Since y violates (9) and Y = 1,

y(V(F)) + y(V Q ) > p = [V(F)I
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D Nodes of Q(F)

O Nodes of F

Depth inequality with k=4.

Figure 3.

and so

y(V(F)) + y(V Q \ {v}) > IV(F)I for all v E Q(F).

Since y(V(F)) < V(F)j, some v E Q(F) satisfies Yv = 1 and by defini-
tion of Q(F)

Ipath(l,v) \ V(F)I + IV(F) I = k + 1.

Note that the last two expressions, Yv = 1, and the fact that path(1, v) \
V(F), V(F) and VQ \ {v} are disjoint implies that

y(V) > y(path(1, v) \ V(F)) + [y(V(F)) + y(VQ \ {v}]
> Ipath(1,v) \ V(F)I + IV(F)l = k + 1.

and so the point y is infeasible. Therefore, the inequality (9) cuts off no
feasible point, and so it is valid. ·

Example 3. Consider the tree of Figure 3 and take k = 4. By Propo-
sition 11, if V(F) = {1,3, 6} and Q(F) = {4, 5, 10, 11, 12} we obtain the
subtree inequality (9):

X3 + X6 + X4 + X5 + X8 + X9 + X1 0 + X1 1 + X1 2 < 2 1 .

In the next section we derive all facet-defining inequalities for small
values of k. This analysis permits us to see the relative importance of the
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Node numbering for small master polytopes.

Figure 4.

three families of valid inequalities. It turns out that for k = 2 and k = 3,
all such inequalities are lifted tree cover inequalities, and for k = 4 only
one inequality is not a lifted tree cover inequality. The latter inequality
can be described either as a lifted leaf inequality or as a lifted depth
inequality.

4 Small Master Polytopes

Here we derive a complete characterization of conv(Xk T) for k = 2, 3 and
4. For notational simplicity we number the nodes as shown in Figure 4.

Theorem 12 : conv(XST)is described by the inequalities:

X1 < 1

xlj > Oforallj

X1 > Exj

Proof. The feasible integer points give X2S T , and the system is of the
form Ax < b, 0 < x < 1 with A totally unimodular. ·
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For the cases k = 3 and 4, we consider the optimization problem:
z = max{cx : x E X kST and let M(c) denote the set of optimal solutions.

Theorem 13 : conv(Xas T) is described by the inequalities:

Xi < 1

x 1j > x1ljk forallj
k

Xljk > 0Oforallj, k

xl > xlj + E EXlj'k for all j
'l j k

2x 1 > EXlj + EEXljk
j j k

Proof. We suppose c O0. If z > O, M(c) C {x: xl = 1}. If z = 0 (so
cl < 0), we consider three cases. Namely we find the deepest node u in
G such that c < 0, but all nodes v below u have c, > 0.
Case 1. u = ljk. As Cljk < O, M(c) { : Xljk 0}.

Case 2. u = lj. As clj < 0 and Cljk > 0 for all k,M(c) C {x: xlj =
Ek Xl j k}.
Case 3. u = 1. Here there are two subcases.

Case 3a: There exists a j such that cl + clj = O0. If clj, > 0 for any
j' $ j, c1 + clj + clj, > 0 and so z > 0, a contradiction. But clj, > 0 by
hypothesis, so clj, = 0 for all j' i j. Thus cl < 0 and cl + clj, < 0 for
j' - j, and thus M(c) C {x : xl = lj + Eyj, ZEk Xl'k}

Case 3b: cl + cij < 0 for all j. Thus all optimal solutions have
cardinality 0 or 3 and M(c) C {x : 2l = Ej xl; + Ej Ek Xljk})

We have shown that for any objective function c 0 one of the
proposed constraints is tight (i.e. satisfied at equality by all the optimal
solutions). Thus the set of inequalities contains all the facet-defining
inequalities. .

Theorem 14 : conv(X4s T) is described by the inequalities:
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X1

Xljkl

Xljk

< 1

> O for all j, k, l

> E xljkl for all j, k

Xlj Xljk + E E Xljk ' l for all j, k
k'$k 

2xlj Z Xljk + Xljkl for all j
k k I

2xl > 2 E ljk+ 2 E ZXljk'l
3EJ jJ1i k'l k 

+ E (Xlj k
+ ZXljkl)

jJ k 1

for all J1 q, all k

X1 + E Xlj > E E Xljk + Xlj + E E E Xljkl

jEJ jEJ1 k j4j' k 1

for all J1 0, j' J1

x1 > xzj + E X1lj'kl for all j
j ij k I

2xl1 - x1 , + xlj + j z(Xlj'kl + Xlj
" kl)

k 

d + E (ljk + E Xljkl)for all j',j",j' j"
j j',j" k I

3X1 > E Xlj + E E Xlj
k

+ E E Xlj
k

j j k j k

2x1 > Xlj1 + Xlj'k' + E Z Xljk + E E EXljkl
j j' k j j' kI

+ E E Xlj,kl for all j', k'
khk' I

Proof. All but the first and last inequalities in the above list are lifted
tree cover inequalities. The corresponding tree covers for the last five
such inequalities are shown in order in Figure 5. The last inequality can
be viewed either as a lifted leaf or a lifted depth inequality. We leave it
to the reader to check validity.
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Five tree covers for the Master Polytope with =4

Figure 5.
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Case 1. If z > 0, then M(c) C {x: xl = 1}.
Otherwise z = 0. Now as before we choose u as low as possible in the

tree such that c, < 0 and c, > 0 for all its descendants. By renumbering,
we can assume that u is any node at its depth in the tree.

Case 2. u = (1111). M(c) C {x: llll = 0}.

Case 3. u = (111). c1111 > 0. As c111 < 0, M(c) C {x: x111 = Exl111t}.

u = (11). We consider first the case when cl = 0, and then consider
four cases with cl < 0.

Case 4. cll < 0, c = 0. By optimality (i.e., since z = 0), clj < 0 for
all j f7 1. Now consider an optimal solution with xl, = 1. By optimality

lk = 1 for at least one k. Also if xlj = 1 in such a solution for j 1,
necessarily clj = 0 and Ejl Ek Xljk = 0. Thus every optimal solution
with xll = 1 is optimal in the subtree rooted at (11) for k = 3. If
xll = 0 in any optimal solution, then all of its successors have value zero
as well. Therefore from case 3 of Proposition 13, M(c) C {x: xll =
Xllk + Ek'•k ElXllk'l} for some k, or M(c) C {x : 2xll = -kXllk +
Ek l X1llkl}.

Case 5. cll < 0, cl < 0,cl + cll + clll = 0. By optimality clj < 0
for every j 1, so cl + EjesClj < 0 for any set S. Let J1 = {j :
cl +clj +cljl = 0} 7 q, and J 2 = {j: cl +clj +Cljk < O for all k}. Again
by optimality Cljk < 0 for all j E J1 and k y 1, so Cl +clj +Cljk < 0 for all
j E J1, k 7 1. Thus M(c) C {x: 2x1 = 2 EiJl (Xljl + 'kl EI Xljkl) +

EjEJ 2 Ek(Xljk + El Xljkl) -

Since cll < 0, note that if xll = 1, then by optimality x1lj = 1 for
some j. Case 5 includes all situations with xll = 1 and the solution is
of cardinality 3. We next consider situations in which cll < 0, cl < 0
and the problem has at least two solutions of the form (1, 11, lj, Ilk) and
(1, , lj, 1k').

Case 6. cll < 0, cl < 0, cl +c 1 1 Cllk < 0 for all k, cl +cII +lll +c1 2 = 0
and cl + cll + Cl1 2 + C12 = 0. Let J1 = {j: cj < 0} 7 b. We claim that
M(c) C {x : xl + jE J X1lj = X1 2 + EjE J Ek Xljk + Ej$2 Ek 1 Xljkl}. -
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First we observe that E 1 Xlj < 1, as otherwise the solution can be
improved by reducing some xlj to zero. We next show that if j ¢ J1 U
{2}, then clj < c12. Suppose the contrary, so cl3 = c 12 with 3 J1
(C13 > c12 is not possible, since otherwise z > 0). Since by hypothesis
{1, 11, 112, 12} is an optimal solution (with cost z 0), the cost of the
solution {1, 11, 111, 112} must be no more than zero and so c1ll < c 12.
Since the value of the solution 1, 12, 13} must be no more than zero
as well, comparing this solution with the solution {1, 11,111, 12} implies
that C13 = c12 < cll + c1 ll. Together these inequalities give c1ll < C12 <
cll + clll, so cll > 0, a contradiction.
a) Suppose Ej, Xlj 1 with xlj, = 1.

i) If 1 2 = 0,1, lj', lj'k} cannot be optimal as c12 > 0. Also
{1, j', 1j'k, 1j"} cannot be optimal with j" ¢ J1 U (2) as Clj < c 12.
Thus EJ1 Ek(Xljk + 1 Xljkl) = 2.

ii) If X12 = 1, necessarily Ek Xljk = 1 as clj, < 0, and therefore the
solution is of the form {1, ij', 12, lj'k'}.
b) Suppose j1 Xlj = -0.

i) If x12 = 1, the equality in the definition of M(c) holds.
ii) If X1 2 = 0, we need to show that EjJu{2} Ek El Xljkl 1. The

points {1, lj, lj'} and {1, lj, ljk} with j,j' ¢ J1 U {2} cannot be optimal
as c12 > 0. The points {1, Ij, lj, lj'k} and {1, 1j, lj', Ilj"} with j, j',j" ¢
J1 U {2} cannot be optimal as clj < c12 . Finally, consider points of
the form {1, lj, ljk, ljk'} with j J1 U {2}. If this point is optimal,
Cljk > C12 and Cljk' > c12 . Also as {1, lj, ljk, 12} defines a feasible
subtree, c1 + Cl, + cljk + C12 < C1 + C11 + c111 + c12, so C1j + Cljk <
Cl + cll11. As clj > 0 and Cll < 0, this gives clll > Cljk > C12 . But now

C1 + Cll + Clll + C11 2 > 0, a contradiction as {1, 11, 111, 12} is feasible
and z = 0.

For the remaining cases with cl < 0 and Cll < 0, there is no optimal
solution with 11ll = 1 of cardinality 3, and there is at most one optimal
solution with xll = 1 of the form {1, 11, ilk, lj}.

Case 7. ll < O, cl1 < O,C1 + C11 +Cllk < O for all k, C1 + C11 + Cllk + Clj <

O for all j, k. There is no optimal solution with xll = 1 of the form
{1, 11, 111, lj}. As Cll < 0, and there is no optimal solution with xll = 1
of cardinality 3, M(c) C {x: 2xll = Ek(Xllk + 1 X11kl)}.
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Case 8. cll < 0, c1 < 0, c +c11+Cllk < 0 for all k, C1 +Cll +C1lll 12 = 0

and cl + cH + cl11j + C1 2 < 0 for all j y4 1. There is exactly one optimal
solution with xll = 1 of the form {1, 11, 111, 12}. Then clj < c 12 for
j 1,2 and Cllk < cll1 for k 1.

If x11 = 1, then as cll < O,Ekxllk > 1. If x111 = 0, the points
{1, 11, l1k}, {1, 11, lk, lj} and {1, 11, lk, 11k'} for j -/ 2, k, k' -1 1 can-
not be optimal as clj < c12 and Cllk < clll. Thus if Xllk = 1 for some
k -/ 1 then Xllkl - 1 for some 1, and therefore M(c) C {x : ll =

x1 1 1 ± Eke1 El X11kl}.

Finally we have u = {1}, so cl < O0 and Clj,Cljk and Cljkl > 0.

Case 9. cl + cll = O0. Then clj = O for all j 1 and and Cljk = O all
j, k. Thus M(c) C { : xl = Xll + EjZl Ek 1I X1jkl}.

Case 10. l+c 1+llC1 2 = O with C11, C1 2 > O0. Then clj = 0 forj - 1,2 and
cllk = c12k - 0 for all k. Points such as (1, 11, llk), (1, 11, 13), (1, 11, 13, 14)
and (1, 13,13k) are not optimal as either 12 can be added, or 13 can be
replaced by 12. Thus M(c) C {x: 2x = x + 12 + Ek El(Xllkl +

X12kl) + Ej 1, 2 Ek Xljk + Ej1i, 2 Ek 1 Xljkl }.

Case 11. c + cll + c1ll = O with c and cll > O0. Then clj = O0 for
j 1, cllk = O for k 1 and Clll = O for all 1. Now if a point is optimal
with xll = 1 and x111 = 0, necessarily Ejil k Xljk + Ekl El Xllkl = 1 
Now since cll > 0, points (1, lj, lj'), (1, j, lj', lj") and (1, lj, ljk) are
not optimal and thus M(c) C {x: 2x = xl + x111 + Ejol Ek Xljk +

Ekl E1 Xlikl + Ej l Ek E1 Xljkl}.

Case 12. cl + cll + clll = 0 with cll = 0. The argument here is
as in case 5, with M(c) C {x: 2x = 2l 2 Ejel (ljl + Ekl1 E Xljkl) +

EjEJ2 Ek(Xljk + El Xljkl)} ·

Case 13. The previous cases include all situations when the solutions
with x1i = 1 have cardinality 1 to 3 (i.e., in Case 9, xl = xil = 1 can be
a solution). All that remains is the case where all solutions are of cardi-
nality 0 or 4. M(c) C {x: 3xi = E, 1j + Ej Ek Xljk + Ej Ek El X1jkl}.

U
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Figure 6.

Knapsack Constrained Trees

We now briefly consider what happens when the cardinality constraint
is replaced by a knapsack constraint: Ejv ajxj < k with aj E Z \
{O}, aj < k. It is easiest to demonstrate this extension by example.

Example 4. The weights aj are shown adjacent to the nodes j E V
in Figure 6a. The problem reduces to the cardinality constrained case
if we transform to the graph shown in Figure 6b with the additional
constraints x 2 = x 2 1, 4 = 41 -= 4 2 and x 7 = x 71.

The standard knapsack problem can also be viewed as a very special
case of the cardinality constrained subtree problem.

Example 5. The knapsack problem

X1 + X2 + 2X3 + 3X 4 < 3, j E {0, 1}, j = 1,...,4

19
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Knapsack problems as cardinality problems.

Figure 7.

can be modelled using the tree shown in Figure 7, the cardinality con-
straint

Xo + X1 + X2 + X3 + X 3 1 + X4 + X 4 1 + X4 2 < 4,x E {0, 1}

and the additional constraints o = 1, X3 -= 31, x 4 -= 41 = x 42.
As the inequalities xp(j) > xj are faces of XT, the master poly-

tope for X S T gives the convex hull of any knapsack constraint with right
hand side k-1. This close tie between the knapsack and cardinality con-
strained problems suggests that the polyhedral structure of conv(XkT)
is unlikely to have a simple form, an observation that the inequalities of
the previous section somewhat confirm.

5 Conclusions

The results in Section 2 provide a rare example of a situation where given
integral polyhedra {pi}, and linking constraints Ei Aixi < b, the inter-
section {x : i Aix i < b, E pi for all i} is integral. It is natural to
look for other examples of this phenomena. In addition the discussion at
the end of the section suggests that the results may have computational
as well as theoretical value. A next step would be to test empirically the
decomposition approach we have suggested. Furthermore, as the sub-
tree packing problem has close ties with "location problems on trees" for
which there is an abundant literature (e.g., see Mirchandani and Fran-
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cis(1990), this suggests examining the implications of Theorems 2 and 5
in this area.

It is perhaps surprising that the polyhedral structure of the cardinal-
ity constrained subtree problem examined in Sections 3 and 4 appears
complicated. However the close ties to knapsack polyhedra provide some
justification for the belief that the intersection of an integral polyhedron
and a cardinality constraint will typically be nontrivial. Aghezzaf(1992)
studies other examples of such intersections. In particular he considers
a variant of the subtree packing problem in which the number p of sub-
trees is limited. Here again the polyhedral structure appears to be very
complicated, although the problem remains polynomially solvable, and
has an extended formulation based on dynamic programming. Ward et
al.(1987) provide a complete description when p = 2.

Finally, the question of finding good separation heuristics for the lifted
tree cover inequalities and the two other families of inequalities is still
under investigation.

Acknowledgement. We are indebted to E.L. Johnson and G.L. Nemhauser
for suggesting the viewpoint taken in the proof of Theorem 2.

21

_ �1___1�_



References

Aghezzaf, E.H.(1992), Optimal Constrained Rooted Subtrees and Par-
titioning Problems on Tree Graphs, Thesis in preparation, Faculte des
Sciences, Universite Catholique de Louvain.

Aghezzaf, E.H., and L.A. Wolsey (1990), Modeling Piecewise Linear Con-
cave Costs in a Tree Partitioning Problem, Core, Universite Catholique
de Louvain.

Balakrishnan, A., T.L. Magnanti and R.T. Wong (1991), A Decompo-
sition Algorithm for Expanding Local Access Telecommunications Net-
works, Report OR 244-91, MIT.

Barany, I., J. Edmonds and L.A. Wolsey (1986), Packing and Covering
a Tree by Subtrees, Combinatorica 6, 245-257.

Boyd, E.A. (1990), Polyhedral Results for the Precedence Constrained
Knapsack Problem, Proceedings of IPCO1, Waterloo University Press.

Golumbic, M.C.(1980), Algorithmic Graph Theory and Perfect Graphs,
Academic Press.

Groeflin, H., T.M. Liebling and A. Prodon (1982), Optimal subtrees and
extensions, Annals of Discrete Mathematics 16, 121-127.

Johnson, D.S. and K.A. Niemy (1983), On knapsacks, partitions and a
new dynamic programming technique for trees, Mathematics of Opera-
tions Research 8, 1-14.

Lukes, J.A. (1974), Efficient algorithm for the partitioning of trees, IBM
Journal of Research and Development 18, 217-224.

Mirchandani P.B. and R.L. Francis (1990), Discrete Location Theory,
Wiley.

22

_ _ �--^1_�111111.11 _ Il-C· ·C I^- Il DI·_ll_�_�._



Nemhauser, G.L., and L.A. Wolsey (1988), Integer and Combinatorial
Optimization, Wiley.

Ward, J.E., R.T. Wong, P. Lemke and A. Oudjit (1987), Properties of
the fTree K-Median Linear Programming Relaxation, Research Report
CC-878-29, Institute for Interdisciplinary Engineering Studies, Purdue
University.

23

--- --.-~l___Y IIII~. ~ ~ -·I 


