
td;R:P~N~~a G E A~lcs0edrRfleSi6

work~igpaper:

i-: I ;I : - ;: :: - : : : : : + : : :: :

-0 : -: ·: :I :-ad; 's*'

· ;·'~~~*¢' ' D' · I:·-

Isl~~~~~

.. ;S;.OFTECHNOLOGY... . : ;:

f;L.~~~~~~~~~~-. ·-I I0 t j fr7 't,0d/$?; - f- d00 0t

,~i-:r! C ?S- 'L ; I - 0SS, f u. 00 r-: ' - S;

" . : ' ' , . ' .' ''- w' .' :. ' " '. '' J' '. ,' 1

, ' ._ ' ' .'', " ' . 'B'' - ', ;' "', "' '__ - ' ." " , . ~'.'','''
' .. ' ., ' :=, .. ;, '.' , ' _. .,'_ ' M -, '

' - ' ' _ ' '! - \ ' -

i ' '' ' '' '- ., ' .

):;'0 d f: E '' -Xff, 0 ' '' 0 '
_ , ' , . . ' , . . .' .' '-,= , .,. ' g

:··.·.·-·:.. :r'-·l-;·· �.:.:

i

s·;
; ·;;.i

i.·.: - -i ·; .;·
; ·:

ii. ·- -·; i ;- .·:� ..· . ·.·I: :
;::': .··.·-.i;·.

·�;·
:i. : . -i

Progressive Equilibration
Algorithms: The Case of Linear

Transaction Costs

A. Eydeland and A. Nagurney

A. Eydeland and A. Nagurney

OR 198-89 June 1989

Progressive Equilibration Algorithms:

The Case of Linear Transaction Costs

Alexander Evdeland

Department of Mathematics and Statistics

University of Massachusetts

Amherst, Massachusetts 01003

and

Anna Nagurney

Department of General Business & Finance

School of Management

University of Massachusetts

Amherst, Massachusetts 01003

for correspondence and/or offprints:

Anna Nagurney

Transportation Systems Division

Room 1-174

MIT

Cambridge, Massachusetts 02139

September, 1988

revised January, 1989

to aear in Computer Science in Economics and

Management

1. Introduction

The main issues in the study of large-scale market equilibrium problems are the de-

velopment of models and the construction of accompanying algorithms for the efficient

computation of the steady-state production. consumption, and trade patterns.

Recently, convergent progressive cyclic equilibration algorithms for the solution of

classical market equilibrium problems with fixed transaction costs were introduced by

Dafermos and Nagurney (1987). These algorithms - supply market (producer) equilibra-

tion, and demand market (consumer) equilibration - are of the relaxation-type, in that

they attempt to equilibrate the whole system by successively equilibrating in a cyclic fash-

ion each supply market or each demand market, until the entire system is equilibrated.

They exploit the problem structure fully, in that each restricted equilibrium problem is

solved ezactly in closed form, rather than iteratively (Nagurney (1987a)). Subsequently,

Nagurney (1988a) considered the case of linear increasing transaction costs, and extended

these equilibration algorithms to this more general problem which, in turn, is isomorphic

to the constrained matrix problem.

In this paper our principal goals are twofold: first, to introduce two new classes of pro-

gressive equilibration algorithms and, second, to provide a thorough theoretical analysis,

including the rate of convergence and computational complexity results, for the entire fam-

ily of progressive equilibration algorithms. The theoretical analysis provides assistance to

both the theoretician and practitioner in selecting the appropriate algorithm for a specific

application. In addition, it can aid other researchers involved in computational compar-

isons to determine whether or not their implementation of these algorithms is, indeed,

"good". The selection of the best "algorithm", hence, need not be programmer, machine,

or language dependent; but, instead, based on a sound theoretical framework.

Each of the two new classes of algorithms differs from the cyclic algorithms in the

manner in which the next market to be equilibrated is selected. The first class uses the

locally optimal market as the next market whereas the second selects that market which

is "good enough" in the sense that the objective function will be improved sufficiently.

At the same time the new progressive equilibration algorithms retain the simplicity of the

cyclic algorithms in that, at each step, the restricted equilibrium subproblem for a given

market is solved exactly in closed form.

1

The models which can be handled by these algorithms fit into the following framework.

A certain commodity is produced by "supply markets" (producers) and is consumed by

"demand markets" (consumers); each supply market has a linear supply function which

depends only upon the supply price at this market. and each demand market has a linear

demand function which depends only on the demand price at this market. The commodity

can be traded between any pair of supply and demand markets at a linear transaction

cost. The problem is to find the supply and demand prices at each supply and demand

market and the commodity shipments between all pairs of supply and demand markets

that determine an equilibrium with the following property: a supply market trades with a

demand market, provided that the sum of the supply price and the transaction cost equals

the demand price. The market equilibrium models which can be solved by progressive

equilibration, hence, need only to have a separable quadratic programming formulation

subject to supply and demand constraints of the transportation-type and nonnegativity

assumptions on the commodity shipments. These include, in particular, virtually the

entire spectrum of classical spatial price equilibrium models, including distinct supply and

demand price models, as well as, the simpler, single-price net import and net export models

(see, e.g., Samuelson (1952), Takayama and Judge (1971), Dafermos and Nagurney (1987),

Nagurney (1987c), and the references, therein.)

This contribution is also applicable to more general multicommodity market equilib-

rium models, since they can be formulated as variational inequality problems and then

solved as sequences of classical models, using the progressive equilibration algorithms at

each step (see, e.g., Florian and Los (1982), Dafermos (1986), Nagurney and Kim (1988)).

In Section 2 we briefly review the classical market equilibrium model with distinct

supply and demand prices. In Section 3 we introduce the two new classes of progressive

equilibration algorithms - equilibration algorithms using locally optimal markets, and those

which are "good enough", and we review the cyclic equilibration algorithms.

In Section 4 we describe theoretical results as to the relative performance of the

algorithms via the introduction of a theoretical algorithm. In Section 5 we then discuss

implementation issues and pro ride suggestions and guidance. In Section 6 we present

computational results to illuminate and illustrate the theoretical analysis. WVe conclude

with a discussion in Section 7.

2

2. The Market Equilibrium Model with Distinct Supply and Demand Prices

In this Section we briefly review the single commodity market equilibrium model with

distinct supply and demand price functions considered recently in Nagurney (1988a). This

model allows for distinct supply and demand prices at equilibrium at a market and permits

linear, rather than fixed, transaction costs between markets. Hence, the implication is that

the producers' adjustment process is independent from that of the consumers. Single price

market equilibrium models and variants, including the simpler net-import model and the

alternative net-export model are special cases of this model.

In particular, we consider a market equilibrium problem in which a certain commodity

is produced by m supply markets (producers) and is consumed by n demand markets

(consumers). The typical supply market (producer) will be denoted by i, and the typical

demand market (consumer) by j.

We let si denote the nonnegative commodity output produced by supply market i,

and we let dj denote the nonnegative demand for the commodity by demand market j.

The nonnegative shipment from supply market i to j will be denoted by Xij.

The following feasibility conditions must hold:

Si =EXij, i =l,1 . m (1)

dj = ZXiJ, j = 1,...,n (2)

,sI = d = Xij. (3)
i j i j

We associate with each supply market i a nonnegative supply price 7ri and with each

demand market j a nonnegative demand price pj. Each unit of the commodity which is

traded between supply market i and demand market j is surcharged with a unit nonneg-

ative transaction cost cij, which we assume to be a linear function

aij(Xij) = giXij + hij. (4)

We assume also that the quantity supply function si(7ri) is a linear function

si(r) = yrri 4- 0i (5)

3

with inverse

g-i(Si) = Nisi + ,i (6)

where Vi = and ~i = . Also. we assume that the demand function dj(pj) is a linear

function

dj(pj) = j - jpPj (7)

with inverse

,j(dj) = Aj -wjdj (8)

where Aj = L and wj =

Assuming perfect competition, we seek the market equilibrium with the following

property which must hold for all pairs of supply and demand markets. A supply market

trades with a demand market provided that the sum of the supply price and the transaction

cost equals the demand price. Mathematically, this state is characterized by the following

equilibrium conditions which must hold for all supply and demand market pairs (i,j):

=pj ifX >0(9)
ri + ijI > pj, ifXiJ 0 (9)

As is well-known (see Takayama and Judge (1971)), the equilibrium conditions are

equivalent to the solution of a minimization problem in m x n variables, which, in view of

the functions (6), (8), and (4) is a quadratic programming problem:

Min ([Xij])=

Min 1/2ri(Z Xij)2 + i Xij + E 1/2gijt2 + hjXij+
'=1 j i i=l j=l

j=(1/2wj(X'ij)2 - Aj Xij (10)
j=1 i

subject to Xij > O,i = 1,.. .,m;j = 1,...,n, (11)

where the constraints (1) and (2) have been incorporated directly into the objective func-

tion.

Assuming that i, , ,Aj5 and gij,hij are > 0, the problem (10) is a strictly con-

vex programming problem with unique solution [Xij]. This market equilibrium model is

4

isomorphic to the constrained matrix problem in which row and column total estimates,

si and dj and the matrix estimates [Xij] are to be computed (For details, see Nagurney

(1988a)). For the above model, Nagurney (1987b) first proposed iterative equilibration al-

gorithms and then adapted the Dafermos-Nagurney (1987) cyclic equilibration algorithms

in Nagurney (1988a), which had originally been proposed for the model with fixed trans-

action costs, that is, for the case where cij = hij, for all i = 1,..., m; j = 1,..., n.

Models in which a single price at equilibrium for each market in the economy is

expected to prevail are termed single-price models and include both net-import and net-

export models, in which the number of producers must be equal to the number of con-

sumers. These models can also be formulated as quadratic programming problems under

the assumption of linear supply and demand price functions and linear transaction costs

and solved via the algorithms we describe in the next Section. In these models, hence,

the consumers' demand quantity adjustment process is dependent on that of the suppli-

ers. Consumers and producers react to a uniform market price, that at which the supply

price is equal to the demand price in each market. For specialized algorithms for single-

price models, see Asmuth, Eaves, and Peterson (1979), Glassey (1978), Jones, Saigal, and

Schneider (1986), Giider (1987), and Nagurney (1988b).

Generalizations of the above single commodity model include multicommodity mar-

ket equilibrium models for which equivalent optimization formulations no longer exist (see,

e.g., Florian and Los (1982), Dafermos (1986), Nagurney (1987a, b), Nagurney and Kim

(1988)). Such models can then be formulated and solved as variational inequality problems

using variational inequality algorithms. Such algorithms require the efficient solution of the

embedded mathematical programming problem encountered at each step, which, in turn,

can take on the form of problem (10). Hence, the ability to solve large-scale multicom-

modity market equilibrium problems depends on the development of efficient algorithms

for single commodity problems. Applications of multicommodity models include agricul-

tural and energy markets, international trade, and financial markets (see, e.g., Judge and

Takayam (1973) and Nagurney and Kim (1988)).

5

3. Progressive Equilibration Algorithms

In this Section, we describe a family of progressive equilibration algorithms for com-

puting an equilibrium for the market model described in Section 2. The algorithms are

distinguished, firstly, by whether they equilibrate on the demand or on the supply side.

Hence, they are categorized into demand equilibration and supply equilibration algorithms.

Within a category, we present three distinct equilibration algorithms, which differ in the

manner in which each selects the next market to be equilibrated. The first equilibration

algorithm in each category selects that market which is locally optimal; the second - that

market which is "good enough", and the third - simply the next market in the cycle. The

cyclic algorithms were introduced by Dafermos and Nagurney (1987) for the solution of

market equilibrium models with distinct supply and demand price functions and with fixed

unit transaction costs.

These progressive equilibration algorithms are of the relaxation type, i.e., they at-

tempt to equilibrate the whole system by equilibrating successively each demand market

(consumer), or each supply market (producer). The noteworthy feature of the algorithms

is that, due to the special structure of the problem, the restricted equilibrium for each

demand market (or supply market) can be obtained explicitly in closed form. We first

present the demand market (consumer) equilibration algorithms and then the supply mar-

ket (producer) equilibration algorithms. These algorithms can also be easily adapted to

solve the simpler single-price net-import and net-export models.

The Demand Market (Consumer) Equilibration Algorithms

The first category of algorithms is comprised of progressive demand market (consumer)

equilibration methods; each computes a sequence of feasible shipments [X.1, [X

which converges to an equilibrium by the following procedure:

Step 0: Start with an arbitrary feasible shipment [X°9].

Step t (t = 1,2, ...): Starting from the feasible shipment [Xt-'] (computed at step t-l1),

construct a new feasible shipment [X.i] by modifying X'-, i = , . ., m in such a way that

the equilibrium conditions (9) are satisfied for the particular demand market (consumer)

1, where is selected in a specific manner, depending upon the particular equilibration

algorithm, as follows.

6

Selection of Market

(I).Demand Equilibration Algorithm Using Locally Optimal Markets

Let = max E -1 P2j, where Pij is the i-th element of the projection of xj P

which we define below and where the vector Xj- (Xlj,... ,Xmj) T .

(II). Good Enough Demand Equilibration Algorithm

Let I =j: P 112 > /nCd, where

(x t) -' (Xt-1) (X t) - (Xt-l)

C -old lXI _ X,-1 11 vai(X=l - Xt1)

If, for all j, no such I is found, let I = jlmaxllPx7 112

(III). Cyclic Demand Equilibration Algorithm (Dafermos and Nagurney (1987),

Nagurney (1988a, b))

Let I = (t - 1)(modn) + 1.

Each of the restricted equilibrium problems at Step t is computed exactly. The re-

stricted equilibrium which is computed at each step for each of the three equilibration

algorithms above may be attained in closed form as follows via a procedure we describe

now and developed in Dafermos and Nagurney (1987). We note, however, that there may

be other procedures which can also solve the restricted equilibrium problem exactly.

Let [X'j] denote the given feasible shipment which has to be modified into a new feasi-

ble shipment [Xij] so as to attain equilibration with respect to demand market (consumer)

I. This new feasible shipment [Xij] will be obtained by preserving all shipments to all

demand markets (consumers) other than 1, i.e.,

Xij= Xj, j#l, i=1,...,m (12)

and modifying only X'l,i = 1,...,m, so as to satisfy market equilibrium conditions (9)

for demand market (consumer) I which take for the market equilibrium model described

in Section 2 the following general form:

= -Cdi + A1, if Xil > 0 (13)
Xl + hil > -Z&'d + Al, if Xi = 0,

7

where di satisfies (2). In the case of the market equilibrium model with distinct supply and

demand price functions, where the supply price functions are given by (6), the demand

price functions given by (8), and the transaction cost functions given by (4),

gi = i + il hzi = ri(E X'j) + hi + hi, (14)
Ais

-C = -WI A = Al. (15)

For fixed transaction costs, the above relationships still apply, with the proviso that

the gil's are set equal to zero.

In view of the above, we note that

0 { = Xi + hij +jdj - j, if Xj > 0

Xij l= min{O, iX + hij + jdj - Aj}, if Xj = 0

As noted in the Introduction, these relaxation/equilibration algorithms require that

the restricted equilibrium problem (13) encountered at each step be solved exactly.

We now describe such an exact procedure, developed by Dafermos and Nagurney

(1987), and adapted by Nagurney (1988a) for the market equilibrium model with linear

transaction costs and by Nagurney (1988b) for the net import model. We may, without

loss of generality, rewrite (13) as follows:

qlXll + h 1l = 92 X 2 1 + h 2 = ... = sXsl + hs = PI = I - Cyl

< gs+lX+,l + his+l,l < ... < 9mXmI + ihmli (17)

Xi > , i= l,...,s (18)

-il = 0, i=s+ 1... ,m.

Provided the critical s is known, X', may be calculated through

pi -hil
X'il--^ , i=1,...,s

X/, O' i M.

XiW = O, i = s + ,..., m. (19)

WVe now give a procedure for the calculation of the critical s.

8

(i) Sort the hi's, i = 1,... ,m in nondescending order and relabel the hil's accordingly.

(ii) If A < h, stop; s = 0. Otherwise, set q = 1 and go to (iii).

(iii) Compute

pq = Z C l/A + * (20)
~-1ii1/gi + al

If hq < pi < hq+1,l, then stop; s = q. Otherwise, set q = q + 1, and go to (iii).

The Supply Market (Producer) Equilibration Algorithms

The second category of algorithms consists of progressive supply market (producer)

equilibration methods and is, of course, the "dual" of the demand algorithms; each com-

putes a sequence of feasible shipments [X°], [Xhj],..., which converges to an equilibrium

by the following procedure:

Step 0: Start with an arbitrary feasible pattern l[X°].

Step t(t = 1,2,.. .): Starting from the feasible shipment [X- 1] (computed at step t- 1),

construct a new feasible shipment [X'] by modifying Xki' ,j = 1, .. , n in such a way that

the equilibrium conditions (9) are satisfied for the particular supply market (producer) k,

where k is again selected in a specific manner depending upon the particular equilibration

algorithm.

Selection of market k:

(I). Supply Equilibration Algorithllm Using Locally Optimal Markets

Let k = max z'?l P 2 j, where Pij is the j-th element of the projection of ax,9 P axi i Ej=1 1J J ax, axe,
which is defined below, where now, for convenience, we let Xi = (Xil,... ,Xn) T .

(II). Good Enough Supply Equilibration Algorithm

Let k = i : liP 9 112 > l/mCId, where

Ckol_ 4(X t) - 4(X -)1 (Xt) - (xt- 1)

lkod =-l Xt II - - 11 Ej(X - xt1)

If, for all i, no such k is found, let k = iImaxllP .a1122.

(III). Cyclic Supply Equilibration Algorithm (Dafermos and Nagurney (1987), Na-

gurney (1988b))

Let k = (t - 1)(modm) + 1.

9

The restricted market equilibrium which is computed at each step of each of the above

three algorithms again should be computed exactly. Although alternative exact procedures

may be available, we present only one, which was developed by Dafermos and Nagurney

(1987).

Let [Xj] denote the given feasible shipment which has to be modified into a new fea-

sible shipment [Xij] so as to attain equilibration with respect to supply market (producer)

k. The new feasible shipment [Xij] will be obtained by preserving all shipments to all

supply markets (producers) other than k; i.e.,

Xij = Xj, i k, j = 1,...,n (21)

and modifying only Xj,j = 1,...,n, so as to satisfy conditions (9) for supply market

(producer) k which for the model described in Section 2 take now the general form

k·sk + ¢k { -jXkj + hkj, if Xkj > 0
> -gjXkj + hkj, if Xkj = 0

j=l,...,n.

where Sk satisfies (1).

In the case of the market equilibrium model with distinct supply and demand prices

with the supply price functions given by (6), the demand price functions given by (8), and

the transaction cost functions given by (1)

k k O k=w k (23)

-9j = -wj - gkj hk;j = -Wj(XIj) + Aj - hkj. (24)
ifk

In view of the above, we note that

_P _ = isi + i + giXij - h, if Xij > (25).
Pr___ 2) ~ ifX >0 (25).

PXii = min{0, isi + Vj + 7i ij - ij}, if Xij = 0

We now describe a procedure for the exact solution of (22). We may without loss of

generality, rewrite (22) as

glXkl + hkl = Y2 Xk2 + hk2 = ... = s'Xks' + hks' = -rk = -kXk - 'k

10

< ,,s 1+lks,+l + hk,s'+1 < ... < .OXk, + hk, (26)

where

Xkj > 0; j = ,...,s (27)

Xkj = 0; j = s'+ ,...,n.

Having introduced the necessary notation, we now state the procedure for the determina-

tion of the critical s'.

In particular, the steps are:

(i) Sort the -hkj's, j = 1,..., n in nondescending order and relabel the hkj's accordingly.

(ii) If -Ok < -hkj, stop; s' = 0. Otherwise, set q = 1 and go to (iii).

(iii) Compute

q q 1 -1 kj/ j + k (28)

if -hkq < Ir < -hk,q+, then stop; s' = q. Otherwise, set q = q + 1 and go to (iii).

Xkj may then be calculated as follows:

X i _k j , t (29)

9j

X j = O, = s + ,...,n.

We now prove convergence of the demand market (consumer) equilibration algorithms.

Convergence of the supply market (producer) equilibration algorithms can be shown using

similar arguments.

Convergence of the Demand Market (Consumer) Equilibration Algorithms

The algorithms have the following features:

(a) The sequence [Xj], [XJ], [Xj],.. . contains convergent subsequences since all

shipments [Xij] remain in a bounded set of Rm".

(b) RPecall that the equilibrium conditions (9) are equivalent to the solution of the

convex programming problem:

Min ([X'il) =

11

Min j~ A 7ri(x)dx + j -(~z)dz-A ,j(y)dy (30)
ii 3

subject to Xij > 0, = 1...,m; j = 1,...,n. (31)

As is then familiar and easy to verify, starting from the feasible shipment [Xt'-] and
determining the feasible shipment [Xitj] by modifying X - 1 , i = 1,.. , m in such a way that

the equilibrium conditions (9) are satisfied for the particular demand market (consumer)

I, is equivalent to finding a minimum of (10) over a restricted feasible set, i.e.

Min ([X) =

Min (x)d + dz - (y)dy (32)il() z(y)dy

subject to X'l O, i 1,. . m. (33)

Hence, it follows that ([X t]) < ([XTj 1).
(c) If throughout a cycle of n subsequent iterations remains constant, then equilib-

rium conditions (9) are satisfied for all supply markets and all demand markets.

Consequently, it follows from standard theory (see, e.g., Zangwill (1969)) that ev-
ery convergent subsequence of the sequence { [X°j], [Xtl I } converges to a solution of

equilibrium conditions (9).

12

4. The Theoretical Algorithm

In this Section we provide a theoretical analysis of the progressive equilibration al-

gorithms in the strictly convex case. In order to address the analysis, we first prove the

convergence of the following theoretical algorithm, which is demand-based. Similar ar-

guments follow for its supply counterpart. We discuss the rate of convergence and the

complexity. We then relate this theoretical algorithm to algorithms I, II, and II of Sec-

tion 3. Without any loss of generality, we consider the problem with distinct supply and

demand prices, with objective function given by (10).

Algorithm:

Given X. For t = 0, , 2,. .. , and I E { 1, . . ., n}

ylt+= m i (X t ... Y... X t) (34a)

Xt+l = max{6t+', t+l} if -t+l 0,Xt+l = 0, if Yt+' =0 (34b)

Xjt+ =Xj, j l. (34c)

(The monotone decreasing to zero sequence of numbers Et , t = 0, 1,..., will be determined

later.)

I= max IIpm(a (t)) 112 (34d)

where the vector a = (a ,... a'o)T and pm is a projection onto the positive orthantaxj axi '' X.

RW, where

Pm ((x t)) E Rm

axj

0, if .t > 0
_PM(anD (X) = g if Xij = O and a < (35)

m ij a(iiXt I axij -

0 if Xij = 0 and a > 0.

We begin by first proving the following auxiliary lemma:

Lemma 1: If X* > 0 is the point of minimum of the function 4(X) in R"n then

(z)- (S(X*) < 1P mn(,(Z))112 (36)
Amin

where Z E Rmn; Amin is the smallest eigenvalue of the constant matrix D 2 = { xa9x }
' O~~~~~~~~~~~~~~~~~~~~Xij OXu';

13

Proof: By convexity

(Z) - (X*) < V47(Z)(Z - X). (37)

We notice now that

V(Z)(Z - X*) < Pm n(V\(Z))(Z - X*). (38)

Indeed, if Zij > 0 or Zij = 0 and (Z) < O0 then by definition (35)

aj (z)(zj ,-ij) = P(t j (Z))(zij - X*).

If Zij = and a (Z) > 0, then

a (z)(0 - x*) < = p n((Z))(Zij - Xi).

Thus, inequality (38) holds. Combining it with (37), we obtain via the Cauchy-Schwarz

inequality

a(z) - 4>(X*) < IIPmn"(V(Z))|lZ - x*1ll. (39)

Now, we use the relations

V4(Z)(Z-X*) > V (Z)(Z-*)-V74(X*)(Z-X*) =< (Z-X*),D2 4(Z-X*) > (40)

> AmjnjlZ - *112

and (38) to obtain the estimate

-m nIPmn(VI(Z))ll > llZ- X*lI.
Amin

This estimate, combined with (39), yields the desired inequality (36).

We now can evaluate the rate of convergence of the algorithm.

Theorem 1:

If 5 t = t'- E where e is a small number, 0 < e < 1, then

C 1
,I(X t) - 4,(X*) < t = 1... (41a)

14

where C is a constant.

Moreover, if the set I* of indices (i,j) such that Xi; = 0, a-- = is empty,

(41b)

(Observe that in the case (41b) the algorithm is identical to Demand Algorithm I

described in Section 3. This is known as the strict complementarity case.)

Proof:

At the point Xt we introduce the vector

71 = _pm((x))/ IIP (all,(x))IIaxr

By (34a)

(42)

for all such that 0 < r < t . (Note that this feasible range of r follows from (34b) and

from the fact that IltIll = 1.) From (42), (34b), (34c), it follows that

(43)

where Ama: is the maximum eigenvalue of D 2 4.

Hence, using Taylor's expansion

((X t +l) <__ (X t) + TVD(X t)1jj + rT2Amax + mt+12 ,,

= (X t) - 711 pM(~(X))II + (2 + 6t+1 2)Ama.
ax+

By (34d), IIP"((X t))Il < I Pmn(V(X'))Il. Therefore, by (44) and (36),

q(Xt+1) < 4(X t) - A X/n (X) - () + (72 + t+12)X.

Let lpt = (4(X t)- (X'). Then (45) implies

/t+l < -t + (T 2 + t+1 2)m

15

(45)

(46)

4)(xt -(x*) C- n

11)(X't... n '.. t)<4~x .. I + r77,... I XI

4)(t+i, ., X+l,. xt+) <I m/t .. ,X 7 ,q,.., X +A..b1+·. 1 1 '' n 1 1 n~n · ~·a

(44)

Introducing a = x- and 3 = min(2A '), and substituting 7 = 5t3/T into

(46) we obtain

t+1 < P1t(_ c- al) + 6t2Ama. (47)

2

(In (47) we used the fact that 5t > 65'+,/3X/ 7 < 1 and > p 2AmaX,,,.) By the

standard argument one can show that if 6 = d, where d = mn{K ,and is the

condition number of D 2 4, then
t+ < C1 Int (48)

- t

with C' depending on AminAmax, and n. For obvious pratical purposes, to avoid the

estimates of the condition number K, we suggest to use a sequence E
t = Tll e > 0. This

choice yields the following estimate for t+l

t+l < C 1 (48a)

with C depending only on Amin, Amax, and n. This estimate is only slightly worse than

(48) but substantially easier to work with. Thus, (41a) is proved. In order to prove (41b)

we notice that if I* is empty, starting from some T > 0, all Xt = Yt. Hence, without

changing anything, we can set 6' = 0 for t = T. Then for t > T (46) immediately implies

(41b) if r = oAm '

In particular, if, indeed, the set I* is empty, then

= (X t) - 4(X*) < (X(X 0) - e(X*))e4Aman.

Hence, if for some fixed e > 0, we use as the stopping criterion jt < e, we obtain the

following estimate for the number of iterations t:

t[-4A ma I]n (49)
Amin n

If, on the other hand, JIXt - X*11 is used as the stopping criterion, we have that:

t = [A 1,(A 0)]n. (50)
Amin Amin P

Observe that, irregardless of the stopping criterion, the number of iterations is pro-

portional to n, i.e.,

t = Cn,

16

where C varies depending upon the criterion.

Moreover, we can infer from both (49) and (50), that as e gets smaller, the number of

iterations grows additively, rather than multiplicatively.

We now utilize this result to analyze the total number of operations required by the

algorithm.

Once a stopping criterion is chosen we can construct the total number of operations

required by the algorithm (by operations we mean elementary arithmetical operations,

assuming that they take equal time to be performed in the computer.)

The total number of operations per iteration consists of:

(1). The number of operations for the choice of I in (34) (partially, these computations

can be used for the stopping criterion based on (13)):

NT1 = 9mn + 3m + n,

where

7mn (operations)

for computing all a.` (provided that all , Aj and Cj from (14)) are stored in advance),

2mn(operations)

for computing Ij 1 2,

n (operations)

for computing max xjj12 (where we assume the previous si's and dj's have been stored.),

and

3m operations

to update di and the si's.

(2). The number of operations necessary for sorting all hil's, i = 1,... ,m,

N2 = mlnm

(see Press, et al. (1986))

(3). Computing p' takes

N3 = n operations

17

(4). Computing x, i = 1, ... , m in the worst case requires

N 4 = 2m operations.

Thus, the total number of operations for one iteration of the above Demand Algorithm is:

ND = 9mn + mlnm + 8n + 5m,

or for large n and m

ND = 9nm.

Since the number of iterations required to satisfy a given stopping criterion is Cn (see

(49) and (50)), the overall number of iterations for the demand algorithm is:

ND = Cln2 m, C1 = 9C (51).

It is clear that by analogous argument, one can obtain an estimate for the supply

algorithm:

NS = Clm2 n, C1 = 9C. (52)

The estimates (51) and (52) give one an opportunity to choose between different

implementations of the algorithm:

Guidance:

Choose demand algorithm if m > n and supply algorithm, if m < n.

Of course, n or m should be sufficiently large so that the second order terms in (51)

and (52) become insignificant. The above suggestions hold if one is "cautious", that is,

if one wishes to select the implementation as if the worst case behavior will predominate.

However, the algorithm can behave as mn, in which case the supply and demand imple-

mentations are essentially equivalent in the nm terms. There, however, the mlnm terms

can dominate , in which the opposite rule would hold.

In order to emphasize the significance of the above analysis, we now highlight two

critical points. First, observe from (50), that as gets smaller, decreasing e by a factor

results in an additive change (increase) in the number of iterations t. Second, the algorithm

is of the order 3/2, in that if m = n = NA (as is often assumed in spatial price models), and

if the number of variables is doubled, then the total number of operations (and CPU time)

18

increases by only a factor of 23/2 ' 3. Specifically, if m n, then ND = O(V3/2) M C1V3/ 2

where V is the total # of unknowns: V = nm - n2. Hence, the total time is equal to:

ND ~ Cln3 = C1 V3 / 2.

Although we have conducted our analysis in the framework of the above theoretical

algorithm, the discussion is relevant to Demand Equilibration Algorithms I, II, and III. For

example, in the case that strict complementarity holds at the equilibrium solution, then

the theoretical algorithm is identical to I. Algorithm II, in this case, has the features of I,

in that one chooses an "optimal" direction, and switches to Algorithm I towards the end

of the scheme. The infrequent use of the computation of (34d), on the other hand, results

in a # of operations/iteration of order m, rather than mn. Algorithm II is, hence, better

than n2 m; between nm and n2 m. In the limit, its behavior is like that of I. Algorithm III

also takes m operations per iteration. However, the estimate of the number of iterations

(49) no longer holds.

In summary, for algorithms I and II, the number of iterations grows linearly as the

number of supply markets m increases, for a fixed number of demand markets n. We will

show in Section 6 that ,empirically, this result also holds for the cyclic algorithm III. The

number of operations per iteration for both II and III also grows linearly, theoretically.

We will provide numerical evidence supporting the theory in Section 6.

Our recommendations for practical use are as follows: to begin with Algorithm III

because of its simplicity and ease of implementation. If satisfactory performance is obtained

for the particular application, then one can stop here. If better performance is desired,

with only minor expansion and modification of the code for III, the good enough algorithm

II can be implemented to select the next demand market I to be equilibrated in a more

strategic fashion. If a cautious approach is then desired, then the implementation with

the St constructs as described in this Section can be incorporated. We emphasize that the

theoretical algorithm constructed in this Section is useful for qualitative analysis only and

should not be used in practice.

In the subsequent Section we present implementation suggestions to ensure that one

obtains a good implementation of III and/or I.

19

5. Implementation Considerations

As cannot be over-emphasized, a good implementation is crucial to realizing the po-

tential efficiency of any algorithm. Towards this end we present in this Section detailed

comments on the effective implementation of progressive equilibration algorithms, so that

the theoretical qualities of performance are encountered in practice. Again, we continue

our discussion, without loss of generality, in the framework of the demand equilibration

algorithms.

Recall that demand equilibration algorithms I, II, and III, at each iteration must

solve a restricted equilibrium problem of the form (13) exactly. We first, hence, address

the implementation of the exact procedure described in (20).

At each iteration, the hi's, i = 1,..., m (cf.(14)) should be computed and stored in an

array. An appropriate sorting procedure should be implemented. Given that the market

equilibrium problems we consider here are large-scale, where the number of supply markets

and the number of demand markets exceed 100 units, the recommended sorting procedure

is heapsort (for details, see Press, et al. (1986)). In order to efficiently implement the

computation of p' (cf. (20)), the number of unnecessary additions and divisions should

be minimized. We recommend that two variables be used to accumulate the value of

the numerator and denominator, respectively, at each q. All the supplies and demands

at all markets should be stored in two distinct arrays. At each iteration of the demand

algorithms we further recommend that another array be used to store the supply at each

supply market i minus the shipment from i to the demand market I to be equilibrated. In

this manner, the new supplies can be easily recomputed following the exact procedure in

m operations.

In order to complete the implementation of the cyclic algorithm III, a clever implemen-

tation of a convergence criterion should be incorporated. In particular, we recommend that,

before equilibration of, say, demand market I is to take place, the criterion 17ri + cil - pi < e,

if Xit > O0; or 7ri + cil - pi > -e, if Xii = 0; should be verified for all i = 1,..., m. This

can be incorporated within the hit computation loop. If is indeed equilibrated then one

jumps past the exact procedure where a counter is accumulated. If the market has not yet

reached equilibrium, the counter is set equal to zero. If the counter is equal to the number

of demand markets n, then III can be considered terminated.

20

The implementation of the Good Enough Demand Equilibration Algorithm II requires

that 1 be chosen so that a large enough decrease of the objective function is attained at each

iteration. We now describe how the computation of Clo1 d can be accomplished with the

minimum number of computations. Recall that Clold - For convenience,
IIXI-X, I11

we let ,new - 4(Xt), old (- D(X t-1); Sold - l/2gi(s-l)2 + Ei hist- (before

equilibration of 1), and Snew,, i 1/2gi(st)2 + i his (after equilibration of I at t). Then

OI)new = 4 'old - Sold + Snew - (1/2gil((X-1)2 _ (Xtt) 2))
i

- hila(Xt - Xt) - 1/2m((dl - ')2 - (dl) 2)) + ql(dt- - d).

For algorithm II so as not to introduce any inconsistencies, the following convergence

criterion is appropriate: Pll 9. I 2 < e. Similarly, for I: E'm= pi2 < e is appropriate.

In terms of computer memory requirements, the implementation of algorithm III for

the model with distinct supply and demand price functions,requires on the order of mn + n

storage elements, that is, the storage is in the dimension of the number of variables.

Algorithm II requires only slightly more storage. As is well-known, iterative algorithms

tend to be conservative in terms of storage (as opposed to direct algorithms).

21

6. Illustrative Numerical Results

In this Section we provide numerical results vis a vi's the performance of progres-

sive equilibration algorithms. The computational experience is presented to highlight and

illuminate the theoretical contributions in Sections 3 and 4.

All of the subsequent numerical experiments were conducted on a mainframe - the

IBM 4381-14 at the Cornell National Supercomputer Facility. The progressive equilibra-

tion algorithms were coded in FORTRAN and the CPU times are reported exclusive of

input/output.

The data for the large-scale market equilibrium examples was generated as described

in Nagurney (1987b). For completeness, we now describe the data generation. The number

of demand markets n and the number of supply markets m in any given experiment were

fixed accordingly. All of the examples were generated randomly and uniformly over the

ranges as follows. For all the examples the supply price, demand price, and transaction cost

function slopes and intercepts (cf.(6), (8), and (4)) were whole numbers within the following

ranges: ir, E [3,10],4'i E [10,25], -wo e [-1,-5],Aj E [150,650], gij E [1, 15], hij E [10,25];

i 1,...,m;= 1,...,m;j = 1,...,n.

The initial commodity shipment X' was identical for all (i,j) pairs in a given example;

where X (+ 1)/m. Hence, all of the X ° values were positive. For these experiments

for purposes of consistency across all algorithms, the convergence criterion utilized was the

one suggested in Section 5 for Algorithm III, in particular, I7ri + cil - pil < 1, if Xil > 0;

7ri + cl - pi > -1, if Xil = 0, for all i and 1. (Note, however, that for practical use the

suggestions in Section 5 regarding the appropriate criterion for an individual algorithm,

should be adhered to.)

In the first set of experiments, reported in Table 1 and Figure 1, we fixed the number

of demand markets at 100, and varied the number of supply markets from 100 to 300, in

increments of 100. In Table 1 we report both the CPU time and the number of iterations

t, for each of the demand progressive equilibration algorithms I, II, and III. Observe that

I required the fewest number of iterations and III the greatest number, with II lying

somewhere in between. However, as also predicted by the theory, I required the most CPU

time and II the least. Note also that for all the algorithms, although there were many

iterations t, each iteration was very inexpensive computationally. In Figure 1, we then

09

proceeded to plot the total CPU time in seconds reported in Table 1 for the examples.

Empirically the behavior of the original progressive equilibration algorithm III was similar

to that of II and I in that the CPU time grew linearly as the number of supply markets

was increased.

In the second set of tests, results of which are tabulated in Table 2 and depicted

graphically in Figures 2 and 3, we fixed the number of demand markets at 500 and varied

the number of supply markets from 100 to 400, again in increments of 100, and we studied

the performance of demand algorithms II and III (which are for practical use). As can

be seen from Figure 2, the CPU time again increased linearly, as the number of supply

markets was increased. In Figure 3, we then plotted the CPU time per iteration for the

same examples as in Figure 2 for both algorithms II and III. Note that the CPU time per

iteration is a measure of the number of operations per iteration. For algorithm III, the

numerical data illustrated the theoretical results which predicted a linear relationship. For

algorithm II, the numerical data also supported the theoretical prediction which stated

that the number of operations per iteration would vary between m and nm.

In the final set of experiments, reported in Figures 4 and 5, we compared the relative

performance of Demand Algorithm III and Supply Algorithm III. In Figure 4, we fixed

the number of demand markets at 500 and varied the number of supply markets from 100

to 500, whereas in Figure 5, we fixed the number of supply markets at 500 and varied the

number of demand markets from 100 to 500 in increments of 100. Observe that in Figure

4, the demand equilibration algorithm outperformed the supply equilibration algorithm,

whereas in Figure 5 the opposite relative performance (as expected) was exhibited. Note,

also, that in the case m = n = 500, the relative performance was essentially equivalent.

Here the relative efficiencies can be explained by the effect that the sorting component

takes, which, recall, because of the use of heapsort, is klnk, with k representing the number

of variables sorted.

In summary, the numerical results reported here have been presented with the inten-

tion of providing insight into the qualitative results. The results are for large-scale market

equilibrium problems and the examples computed in this Section are the largest of this

kind reported. For numerical experience on the simpler, special case net import model for

problems with as many as 800 markets, see Nagurney (1988b). For the use of equilibration

23

algorithms embedded in variational inequality decomposition algorithms for multicommod-

ity problems and implemented on serial and parallel computers, see Nagurney and Kim

(1988).

7. Summary and Discussion

In this paper we considered the solution of large-scale market equilibrium problems

which can be formulated as quadratic programming problems in quantity variables. Such

market equilibrium problems include virtually the entire spectrum of classical spatial price

equilibrium problems and are encountered when more general multicommodity market

equilibrium problems are solved iteratively (see, e. g., Nagurney and Kim (1988)). Indeed,

the overall efficiency of, for example, variational inequality algorithms applied to compute

the solution of multicommodity market problems depends critically on the algorithm used

for the solution of the single commodity problems encountered at each step. Hence, the

development of efficient algorithms for single commodity problems has a direct effect on

the ability to compute efficiently multicommodity market equilibria.

We introduced two new classes of progressive equilibration algorithms - locally optimal

and good enough algorithms, which differ from the cyclic algorithms in the strategic manner

in which the next market to be equilibrated is selected. A theoretical framework for the

entire family of progressive equilibration algorithms was then developed in the case of

linear increasing transaction costs. The theory provided the rate of convergence, as well

as, the complexity of the algorithms. Although the original cyclic algorithms had been

supported by extensive computational experience, a rigorous theoretical framework had

been lacking. Moreover, the theory serves as a background for implementations of such

algorithms for both researchers and practitioners. Indeed, these algorithms are intuitive

and straightforward to implement and their behavior is now explained.

Finally, suggestions for implementation and numerical results to illustrate and high-

light the theory were provided. As expected from the theory, the new "good-enough"

algorithm was found to be the most efficient computationally, and especially well-suited

for large-scale problems. As a consequence, the "best" algorithm need no longer be pro-

grammer, machine, or computer dependent, but, rather, based on a sound theoretical

framework.

24

Acknowledgements

The authors are indebted to the referees for their careful reading of the paper and

their helpful suggestions which added substantially to the presentation of this work.

The first author's reasearch was supported by NSF Grant: DMS - 8602316.

The second author's research was supported in part by NSF Grant: SES-8702831

and in part by NSF Grant: RII-8800361 under the sponsorship of the NSF VPW pro-

gram, while the author was visiting MIT. The cordiality and hospitality of the Center for

Transportation Studies and the Operations Research Center are warmly appreciated.

This research was conducted on the Cornell National Supercomputer Facility, a re-

source of the Center for Theory and Simulation in Science and Engineering at Cornell

University, which is funded in part by the National Science Foundation, New York State,

and IBM Corporation.

25

References

Asmuth, R., Eaves, B. C., and Peterson, E. L., 1979, "Computing Economic Equilibria on

Affine Networks with Lemke's Algorithm," Mathematics of Operations Research4: 209-214.

Dafermos, S., 1986, "Isomorphic Multiclass Spatial Price and Multimodal Traffic Network

Equilibrium Models," Regional Science and Urban Economics 16: 197-209.

Dafermos, S. and Nagurney, A., 1987," Supply and Demand Equilibration Algorithms for

a Class of Market Equilibrium Problems," forthcoming in Transportation Science.

Florian, M. and Los, M., 1982, "A New Look at Static Spatial Price Equilibrium Models,"

Regional Science and Urban Economics 12: 579-597.

Glassey, C. R., 1978,"A Quadratic Network Optimization Model for Equilibrium Single

Commodity Trade Flows," Mathematical Programming 14: 98-107.

Giider, F., 1987,"Pairwise Reactive SOR Algorithm for Quadratic Programming of Net

Import Spatial Equilibrium Models" , forthcoming in Mathematical Programming.

Jones, P. C., Saigal, R., and Schneider, M. H., 1986, "A Variable Dimension Homotopy

on Networks for Computing Linear Spatial Equilibria," Discrete Applied Mathematics 13:

131-156.

Judge, G. G., and T. Takayama, 1973, Studies in

and Time, North-Holland Publishing Co.

Nagurney, A., 1987a, " An Algorithm for the Classical

Operations Research Letters 6, no. 2: 93-98.

Nagurney, A., 1987b, "Computational Comparisons

ods," Journal of Regional Science 27: 55-76 .

Economic Planning over Space

Spatial Price Equilibrium Problem,"

of Spatial Price Equilibrium Meth-

Nagurney, A., 1987c,"Competitive Equilibrium Problems, Variational Inequalities, and

Regional Science, " Journal of Regional Science, 27: 503-514 .

Nagurney, A., 1988a, "An Algorithm for the Solution of a Quadratic Programming Prob-

lem with Application to Constrained Matrix and Spatial Price Equilibrium Problems,"

26

Environment Planning A, in press.

Nagurney, A., 1988b, "mport and Export Equilibration Algorithms for the Solution of the

Net Import Model," Journal of Cost Analysis,", in press.

Nagurney, A. and Aronson, J., 1988, "A General Dynamic Spatial Price Equilibrium Model:

Formulation, Solution, and Computational Results, " Journal of Computational and Ap-

plied Mathematics, 359-377 .

Nagurney, A. and Kim, D. S., 1988, "Parallel and Serial Variational Inequality Decompo-

sition Algorithms for Multicommodity Market Equilibrium Problems," The International

Journal of Supercomputer Applications, in press.

Press, W. H., Flannery, B. H., Teukolsky, S. A., and Vetterling, W. T., 1986, Numerical

Recipes, Cambridge University Press.

Samuelson, P. A., 1952, "Spatial Price Equilibrium and Linear Programming,"American

Economic Review 42: 283-303.

Takayama, T. and Judge, G. G., 1971, Spatial and Temporal Price and Allocation

Models, North-Holland, Amsterdam.

Zangwill, W. I., 1969, Nonlinear Programming - A Unified Approach, Prentice Hall.

27

Table 1. Computational Experience for the Demand Equilibration
Algorithms I, II, and III

of demand markets n fixed at 100

CPU time in seconds(# of iterations t)

of supply
markets I II III

100 35.46(294) 5.58(543) 7.61(1044)

200 111.55(458) 19.87(797) 24.93(1833)

300 224.46(613) 43.85(1029) 49.96(2552)

Table 2: Computational Experience for Demand Equilibration
Algorithms II and III

of demand markets n fixed at 500

CPU time in seconds(# of iterations t)(CPU time/t)

of supply
markets m II III

100 23.99(1764)(.0136) 45.73(3450)(.0133)

200 62.21(2075)(.0300) 126.25(4646)(.0272)

300 101.25(2111)(.0480) 211.63(5713)(.0370)

400 172.27(2082)(.0827) 263.32(5466)(.04817)

0 0 0 0 0
0 to 0 to

cm cm - -

0

l

C O

a-

omm

cmEco

E

a _Iroe

0
OD

o

'4-cQ

o

0

4
±F
m
1

m

aD0'0

0
E
nn0

ILrr

o0-

CO

' 0-

_ 0L. t0 M.. O

o0

am0

Q*

0

0 CO

0.--

,i=

00 0 0fni

cu

0 0 0 0 0 0 ,
o0 0 0 10 0 to

%0 cmI cm Ym r

o o o o
· · ·

I0
0-

Co

a)

0 0

0c

L.o

0)

L

L

0

4-
L

0

iT
0

4-
L

Q4

E
-4

0U
0 -

I II__ �I__I___�X___·�ll I___IIYLI__·IIIII_1-·-11- �I._�------.�-- �---

CL
IM5

C

E

C)0 Q) 0Ia

EE0 '-a C

oLoa a

..

v
0 0 0 0 0 0 -

0 0 0 0 0
row'a 0'c ,'

0
0

0

0

O.01*

Zo c oo

o,
0o

(_�I_______�_

0

O.

an

CO

a)
Eo o-0lLco con o

00. 0C'L c0

0
0

0

CO

0
0

0 -2

0

0
00 DO

0I

0 0 0 0 0 0 "r'

0 0 0 0 0
w It to C If-

