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ABSTRACT

Duality theory is considered for optimization problems, called fraction-

al, whose objective function is a ratio of two real valued functions n(x) and

d(x). Results are derived by applying Lagrangian duality to the problem of

maximizing [n(x) - vd(x)], where v is the optimal value of the fractional

problem. This leads to a global saddlepoint theory with a fractional Lag-

rangian function and specializes to a Wolfe type dual under differentiability

assumptions. Sensitivity procedures are presented for the linear fractional

problem together with a primal-dual algorithm for parametric right-hand-side

analysis. A slight variant of Dinkelbach's algorithm for the general frac-

tional problem is also given.



Ir troduc t i on

The problem of maximizing (or minimizing) the ratio of two real valued

functions n(.) and d(@) over a subset F of Rn will be called a fractional

program. When n(x) and d(x) are affine functions and the feasible region

F is a polyhedral set this reduces to the much analyzed linear fractional

program. Our purpose here is to develop saddlepoint duality results for

the fractional problem and to provide sensitivity procedures for the linear

fractional case. We also present a primal-dual procedure for parametric

right-hand-side analysis for the linear fractional problem and introduce an

algorithm for the general fractional problem that is a variant of a proce-

dure developed previously by Dinkelbach [12].

Much previous research on the fractional program has dealt with the

linear fractional case. Two distinct approaches have been taken. The well

known algorithm of Charnes and Cooper [7] transforms the problem into a

linear program by modifying the feasible region. It applies only when the

feasible region is bounded. The other approach solves a sequence of linear

programs (or at least one pivot step of each linear program) over the origi-

nal feasible region F by updating the linear programs objective function.

Algorithms in this category are all related to ideas originally proposed by

Isbell and Marlow [18] and have been proposed by Abadie and Williams [1],

Bitran and Novaes [3], Dorn [13], Gilmore and Gomory [17] and Martos [23].

These algorithms can be viewed as a specialization of the Frank-Wolfe ap-

proach for nonlinear objective functions [15] or Martos' adjacent vertex

programming methods [24].

The second class of algorithms can also be viewed as specializations

of Dinkelbach's [12] algorithm for the general fractional problem, though

they exploit the underlying linearity of the linear fractional model. In
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the next section we review this algorithm and mention a modification that

extends its scope of applicability. For an approach to the fractional pro-

blem that generalizes the Charnes and Cooper algorithm and applies when

n(x) and d(x) are homogeneous of degree one to within a constant see Bradley

and Frey [6].

The saddlepoint duality theory that we develop in section 2 introduces

a new Lagrangian function with multipliers dependent upon the primal varia-

bles. It leads to a dual problem that is again a fractional program. To

our knowledge, these results provide one of the few instances where saddle-

point duality applies to a large class of nonconvex problems, geometric

programming duality [14] being a notable illustration.

When the fractional program has an optimizing feasible solution and

consists of differentiable functions, our Lagrangian result provides a

Wolfe type dual [22] which has been obtained elsewhere [20] for the linear

fractional problem. For another result on linear fractional duality see

[9].

In section 3, sensitivity procedures are developed for variations in

the problem data of a linear fractional program. The results are analogous

to the usual sensitivity procedures of linear programming, but now include

variations in both the numerator and denominator of the objective function

as well as right-hand-sides of the constraints. The next section continues

this study by introducing a primal-dual algorithm for parametric right-

hand-side analysis. This algorithm quite naturally motivates a branch

and bound procedure for the integer programming version of the linear

fractional problem. Proofs and more details for this material appear in

[4].



The fractional model arises naturally for maximizing return per unit

time in dynamic situations or return per unit trip in transportation set-

tings [16]. It also results when minimizing the ratio of return to risk

in financial applications [6].

For a number of reasons, applications of the linear fractional model

have been far less numerous than those of linear programming. The essen-

tial linearity of many models is certainly a contributing factor. In

addition, linear fractional applications are easily disguised as linear

programs when the feasible region is bounded. In this case, the frac-

tional model can be reduced to a linear program through convenient artifacts.

Finally, the fact that no direct sensitivity analysis has been given for the

fractional model may have some bearing on potential applications. In any

event, the model has been applied to study changes in the cost coefficients

of a transportation problem [8], to the cutting stock problem [17], to

Markov decision processes esulting from maintenance and repair problems

[11], [1E9] and to fire programming games [18]. It has also been applied

to a marine transportation problem [16], arises in Chebyshev maximization

problems [5] and arises in primal-dual approaches to decomposition pro-

cedures [2], [21].
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1. Preliminaries

In this paper we consider the problem

v = sup{f(x ) : x F (P)

where F = {x XcRn: g(x) > 0} and n(-), d(.) and the component functions

gi(.), i = 1,...,m are real valued functions defined on Rn. We assume that

d(x) > 0 for all xcX so that the problem is well posed (if d(.) < 0 on X

write f(x) as x) .

The key to our analysis is the simple observation that v > k if and

only if n(x) - kd(x) > 0 for some point xF . Consequently, given any

k = f(x) with xF or merely k = lim f(xj) with xj F, we may determine
j+o.

whether or not k = v by solving the auxiliary optimization problem

v(k) = sup{r(x,k) = n(x) - kd(x) : x Fl. (A)

There are two possible outcomes to (A)

(1) v(k) < 0 so that v = k, or

(2) v(k) > 0 . In solving the auxiliary problem we will identify

a point yeF with f(y) > k, i.e., n(y) - kd(y) > 0

When F is a convex set, n(x) is concave on F, and either (i) d(x)

is convex on F and k O0, or (ii) d(x) is concave on F and k O0, then

r(x,k) will be concave and (A) can be solved by concave programming tech-

niques. In particular if n(-), d(-) and g(-) are also differentiable and

the auxiliary problem satisfies a constraint qualification, it can be solved

via the corresponding Kuhn-Tucker conditions.
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On the other hand, if r(x,k) is a quasi-convex function and F is convex

and bounded, then the auxiliary problem will solve at an extreme point of

F. In particular, taking k = v, the original problem (P) will solve at an

extreme point of F as well.

These conditions are related, but not equivalent, to quasi-convex and

quasi-concave properties for f(.).

We might note that (P) may have local optimum when (A) does not and

conversely as illustrated by the following examples.

Example 1: (P) has a nonoptimal local maximum but (A) does not

(P) v sup{x - = x - 4x

s.t. 1 x < 4 [v = 0]

(A) sup{r(x,v) = x - 4}

s.t. 1 < x < 4

Example 2: (P) does not have a nonoptimal local maximum but (A) has

2
(P) v = sup{f(x) = x- x}

s.t. 1 < x < 4 [v = 4]

(A) sup{r(x,v) = x2 - 4x}

s.t. 1 < x < 4



-6-

Dinkelbach [12] has previously used the auxiliary problem to develop

an algorithm for the fractional program when F is compact. From our obser-

vations above we know that if x F and k = f(xi) satisfy

v(kj) = sup{r(x,kj) = n(x) - kd(x) : x F > 0

then f(xj+l ) > f(xj) for every solution xj+l to this problem. In fact,

if d(.) is continuous then there exist xF and xF with d(x) = min{d(x)

x F and d(x) = max{d(x) : x F. Consequently,

v(kj) : sup{r(x,kj) : x E F} < 6 (6 > O)

implies that

_T- k + T d kj + 6 for all xcF<d(x)

and thus that

v < k. +
J d(x)

Similarly

r(x ,kj) > 6

implies that

f(x+l) n(x > kj + 6 f(xj) + 

d(xjrl) d(xj+ l) d(x

From these inequalities we see that if v < + then starting with any

x0 E F and j = 0 the following algorithm solves the fractional problem

(a) Let kj . f(xj) and solve the auxiliary problem

v(kj) = max{n(x) - kjd(x) : x F)
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nd let j+l be any solution.

(b) (i) If r(x+l ,kj) < 6 then terminate.

(ii) If r(xj+l,kj) > 6 then return to (1) with j

incremented by one.

Since f(xj+l) > f(xj) + 6 for each occurance of step b(ii), the
d(x)

algorithm must terminate in step b(i) after a finite number of applications

of (a). Also at step b(i), v f(xj) + where e = 6 and thus after a
d(x)

finite number of solutions to the auxiliary problem we can obtain an

e-optimal solution.

By slightly modifying this algorithm, we can insure the same conclusion,

but without the compactness assumption on F as long as v < +. In step (a)

we take kj = f(xj) + e and we let 6 = 0. Then we note that step b(ii) will

imply that

f(x j + l) n(x+) >f(xj ) + e
d(xj+ l )

and that step b(i) implies that

n - < f(xj) + E for all xF

and thus

v < f(xJ ) + e

To be implemented we assume that a solution can be found to each

auxiliary problem encountered in step (a).
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2. Duality

Ordinary Lagrangian saddlepoint duality theory is inadequate for

dealing with fractional programs even in the special case of linear

fractional programming. In this section, we introduce a new Lagrangian

function with dual variables depending upon the fractional variables x and

show that this new Lagrangian will lead to a saddlepoint duality theory.

We begin with an illustration.

Example 3: v = sup 1 : x - 1 > 0} = where X = {x R : x > O}
xeX

The usual Lagrangian dual is inf sup{X 1 + u(x - 1)} = 1 with the
u>O xX x + 1

infimum being attained at u = O. Replacing the dual variables u with

U 1 u 1
x + 1 however, gives a dual value inf sup{ + 1 x 1 2

u>O xX
by selecting u = This new dual value now agrees with the primal

1
value v =-

With this example as motivation we define the "fractional Lagragian"

L(x,u) by

L(x,u) = f(x) + ( g(x)= n d (x)

and the fractional (saddlepoint) dual problem as

w = inf sup[L(x,u)] . (D)
u>O xcX

We call the original problem

v = sup{f(x) : g(x) > O} where f(x) = - (P)
xex d;

the primal problem.
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Observe that the supremum problem in the dual which we write as

D(u) = sup[L(x,u)]
xEX

is itself a fractional program for each fixed value of u. Also note that

we are not making any differentiability or even continuity assumptions.

Our results will be obtained by utilizing the auxiliary problem with

k = v. That is, we consider the auxiliary problem

r = sup{[n(x) - vd(x)] : g(x) O} (Al)
xX

Observe that in this case r = 0.

First we note by standard arguments that:

Lemma 1: v = sup inf[L(x,u)]. Furthermore, for any xF, inf[L(x,u)] = f(x)
xEX u>O u>O

Proof: If xX and xF, then some component gi(x) of g(x) is negative.

Letting ui - +oo, the infimum will be -X. Consequently, points xX with

xtF are inoperative in the sup inf and

sup inf[L(x,u)] = sup inf[L(x,u)] (i)
xcX u>O xeF uO

If xcF, g(x)->O for any u > O since g(x) > 0 and d(x) > O. Thus the

infimum takes u = 0 if g9(x) > 0 so that

u = x) 0 and inf[L(x,u)] = f(x) (ii)
u-O

Combining (i) and (ii) we have:

sup inf[L(x,u)] = sup f(x) = v
xcX uO xcF a -i

Note that this result holds when F = with the convention v = -oo in this case.
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Lemma 2 (weak duality): Assume xF and uRm, u > O. Then f(x) D(u).

Consequently, v < w

Proof: D(u) sup[f(x) f(x) + ug() f()
xEX d(i)

taking the infimum of the left hand side over all uRm and the supremum

of the right hand side over all xF gives v < w . .....

Next we show that in most instances the fractional problem (P) inherits

strong duality from the auxiliary problem (Al). That is, in general when

ordinary Lagrangian duality holds for the auxiliary problem (Al) strong

duality holds for the fractional Lagrangian dual of (P).

Remark: The following theorem requires that there is a dual variable u

solving the Lagrangian dual of (Al).

Theorem 1: Suppose that F 0, v < + and that

sup[n(x) - vd(x)] = min sup[n(x) - vd(x) + ug(x)]
xeF uO xX

then

v = min sup[f(x) + u ] w .
uoO XX

Proof: From our previous observations about the auxiliary problem,

sup[n(x) - vd(x)] = 0
xEF

Thus by hypothesis there is a u > 0 satisfying

sup[n(x) - vd(x) + ug(x)] = 0 so that
xEX

n(x) - vd(x) + ug(x) < 0 for all xcX
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since d(x) > 0 for xeX, dividing by d(x) preserves the inequality

n-- + u -t·-- < v for all xX.

Thus

w = inf sup[L(x,u)] sup[L(x,u)] < v
u>O xX xX

But, weak duality states that w > v and consequently w = v .

The existence of a dual variable u solving the Lagrangian dual to the

auxiliary problem is guaranteed, for example, if the auxiliary problem is

concave and satisfies the Slater condition [22], or is a linear program, or

more generally a concave quadratic programming program (remember that in

Theorem 1 we require v < + so that r = 0).

Formally these results are recorded as:

Corollary 1.1: Suppose that v < + , that n(x) - vd(x) and g(x) are concave

functions, that X is a convex set and that there is xX with g(x) > 0 ,

i = l,...,m (the Slater condition). Then:

v = min sup[f(x) + W] = w
uO xX

Corollary 1.2: Assume that the fractional objective is the ratio of two

affine functions, n(x) = co + cx and d(x) = do + dx, that g(x) = b - Ax

and that X = {xRn: x > and do + dx >0} with F . Then:

Co + (c - uA)x + ub
v = min sup do 

u~0 xeX do +.dx
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We can also obtain a complementary slackness condition for fractional

duality in the same manner used to develop complementary slackness for

ordinary Lagrangian duality.

Theorem 2: Suppose that j, solves the primal problem (P), that u solves the dual

problem (D) and that w = v. Then v = sup[L(x,u)] = L(xiu). Moreover,
xeX

5ug(x) = 0

Proof: L(x,u) = f() + x) < sup[L(x,u)] w = v =f().
d(x) xeX

Since > , g(x) > 0 and d(x) > 0 this implies that g(i) = 0 and conse-

quently that L(x,u) = f(i) v .

This result immediately provides a Wolfe type duality theorem for the

fractional program.

Corollary 2.1: Suppose that x solves the primal problem (P), that u solves

the dual problem (D) and that w = v . Then if n(x), d(x) and g(x) are

differentiable at and X is open (e.g., if X = {xeRn: d(x) > 01 and d(-)

is continuous) then

Vf(x) + .uL Vg( x) = O
d(x)

ug(i) .

(Here Vf(.) and Vg(-) denote the gradients of f and g.)

Proof: By the previous theorem

L(x,u) = sup[L(i,5)] .
XEX

Since X is open this implies that

VXL(x,u) _ Vf() + lV(x) - (xVd(x 0
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Using ug(x) = 0 from theorem 1, this reduces to the desired result.

Another duality result can be given when Lagrangian duality holds for

the auxiliary problem, but without optimizing dual variables, as long as

d(x) is bounded away from zero on X.

Theorem 3: Suppose that F 0 , that v < + - and that

sup[n(x) - vd(x)] =-inf sup[n(x) - vd(x) + ug(x)]
xtEF u> xX

If there is a 6 > 0 such that d(x) > 6 for all xX, then

v inf sup[4-+ u dx] w.
u>O X [ · X

Proof: As in Theorem l, sup[n(x) - vd(x)] = 0 and thus by hypothesis given
xeF

c > 0 there is a uc > 0 satisfying

sup[n(x) - vd(x) + ug(x)] < C
xsX

since d(x) > 6 > 0 for all xEX this implies that

nx + ue v + < v + 
d (<_+)<6 for all xX

But > 0 is arbitrary and consequently

w = inf sup n x + u I< v
u>O xEX dxT

Coupled with weak duality w v, this provides the desired result.

Remark: If v = + , then weak duality states that w = + so that each of

the previous results apply in this case as well.



I a)
o 4. .C
0. (0 3e -C

. 4) C
0

a) U) .*°
3 4.)

4. s 0 (t

U) 4A
LI U )

C) a) (E to 

4.) (0 4.)
C X

-

2= 4.) 0 0 tor.. - -

Xa 1., - I'"

O O tO

4 e -

4- 4 5aC 02) 4 . 20 0 (

t o
4.) O

X q0,1 c-
o "3

o . X > 

'~ tlJ_ >, 3.ii

0 ,-E o

.o t~ XU, 4-0* a)

t-o F-*0 0- o. 4-(a (rXI >- 0

4i 4 -

4. 0

4a) () x

-- = '-
4- (0 Ua) C

(0 4.) 

43

a) a

o v C C C

V} 0 >-0 (0 0a

4.)a) U)*
a ) s ) ~

C =

4. u) *~

) % -

; 4 ) a)

r }

V

+ 

J_ _XA x

4-O
C 

.- =
II

4-

oCoa)
4.J
(o

E

xI-
0

4.)
0
C

Uf)
a)
0
-o

U)

0.
E
(0

a)

(A

FI-

o

o

*,4.)

c-o4.)~

.9-(0

Q
Q.-

O

0o

(a$..

-(0

4._

C)-r-e--0.

(0

4.)

(0
c-

C1"

x

II

.

x

.-

x

C

a)

(0
u
C

o0

x
V

I

x4.0C3,

~0Ca)
(n(A

-

U,
a)
S..

CD

0
.0
(a

U)
-A-

a)

E
I.
I.,

_-

O

O

9-

x
I

o o
A II

r -
x x

4- 4-

LF -

x

-
,,,

Vl

CXx

o
^1
Al

-
x

w

cJ
X

v

x
-I

O

0

C

9-

x
I

o 0O) C:)

A II

9- 9-
x x

4- 4-I X*9- .9-

tt-.

~X r

e

CVI

VIXx

0

Al
-

x

cj
w
C
c'

x
-

LA'

CO

0

C Iu

cJ

x

9-

.x

"I

At
x

*icK

to

4

o 4

CcU) Exa) a)5. 4.

e-4)

"o 5-
C 0
to 4-

o
a) (n

0 E

( 0t

x..) L4- ao

F .: E E

9-- o
x a0~~~~

4Jo 0o E4- O)

4-~(0 Q *. .

0
0 C,,J Ii

i

1 1 1*_ x

x00(a: : >, II

r
= '

4-~ C-~

. r- CAO3 :3

4-a) 0J
Sn 

O cn4.. - )

.9 C3. -:5.. $ *lr

- .(: (/3

- ao o 4. 3-

0

O N>O -r-

.I=4.

. C X(0 *- 0)

(0 +

5 S QX
(0 40) (

C II
S. .C 0

.J 0 .

S.- U) r

(0 *_ *

O.. *, o~~~~~~~~~~~~~~ .

(0 0)

>,
I-

4

a)

a 4) U)r.=,,Q 0-0
E U
- S^

>4-) (0) - a)

0-

- 0O (0_ P. Oa0 s >4.) a

¢- 0.Io (a
J --

0 C S - 4..-4o tO

(aC *->rpj0 a)S- OOS $O ::

O 4

cm ^-- - ..0 C) 0to ¢--

S- to)4 C 4( 4S-o - C I

:., - C :)C (n )(J ,

S.. S- ) ,to 0

S-U)a) u3 *. ,-.0 C

U) St.. -
4-ILo: o ~ 5= a)
U) 4.- E53 to o3(.U)a).>) 0 C)

4 o-
o 4) 05a)S.O) 0) *9 a

. 4 

s: q) -

a)

-I.
0

|

I

!.



-15-

3. Sensitivity Analysis for the Linear Fractional Program

Linear Fractional Algorithm

The linear fractional model assumes that f(x) is the ratio of two affine

functions n(x) = c + cx and d(x) = do + dx, that g(x) = Ax - b and that

X = {xcRn: x > 0}. (We assume that d + dx > 0 for xF and may include the
0

redundant condition do + dx > 0 in X if we like, i.e., replace X with

X n {xcRn: d + dx >01, to conform with the basic assumptions that we have

previously imposed upon X.) In this case, the auxiliary problem becomes

v(k) = sup{r(x,k) = (c - kdo) + (c - kd)x} (A2)
xF

where F = {xRn: x > O and Ax = b}

Since this is a linear program much of the usual linear programming sensi-

tivity analysis can be extended to this more general setting. In this section

we outline this analysis. For notational convenience, we assume in this sec-

tion that the linear constraints are specified in equality form.

Let us first review the linear fractional algorithm [1]. It is initiated

with any feasible point xeF, determined possibly by phase I of the simplex

method. Setting k = f(x), the auxiliary problem (A2) is solved. There are

two possible outcomes:

(a) It has an optimal solution x'. From our preliminary observations

concerning the auxiliary problem, if v(k) < 0 then v = k. Other-

wise r(x',k) > 0 and f(x') > k, (A2) is re-solved with k = f(x')

and the appropriate case (a) or (b) is applied again.

(b) It is unbounded, so by linear programming theory F has an extreme

ray r with (c - kd)r > 0 . For any xF,

C + CX + cr
f(x + Xr) d + dx + dr
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If dr = O, then cr > 0 and f(x + Xr) + +w as + + so that

v = +. If dr O, then f(x + Xr) r > k . (A2) is re-solved
dr

with k = dr and the appropriate case (a) or (b) is applied again.
dr

After solving (A2) a finite number of times, v will be determined by

either case (a) or (b). This convergence is a direct consequence of the fact

that the extreme points and extreme rays of F are finite in number.

For a relaxation of the condition do + dx > 0 for all xeF and more de-

tails about this algorithm see [1], [3], [4], [18], [23]. Also, (A2) need

not be solved to completion, but merely until a point x is generated with

r(x,k) > O. If k = f(x') and (A2) is initiated with the basis corresponding

to x', then assuming nondegeneracy, x will be generated after a single intera-

tion of the simplex method. For details see [23].

From the algorithm, we see that the linear fractional problem solves

either at an extreme point or extreme ray of the feasible region. The sensi-

tivity analysis will indicate when the solution remains optimal. First let

us set some notation. Suppose that A = [B,AN] where B is a feasible basis and

that x, c and d are partitioned conformally as (xB ,xN), (cBc N) and (dB,dN).

Then xB - NxN where b = Blb, N B-lA N and f(x) can be written in terms

of xN as

c + B xN) + + B( N) + N
f(x) _= o

d I dB( -NxN) +dxN dN + dNxN

where

-N = B-E N =d N N BN dB
+co d +d c c aN d d

We also let
d(x) = inf d(x) d(x) = sup d(x) -61 = inf -fi -62 = sup d(x)

xeF xcF xcF Xj xeF Xj

1 if i j

diJ = 0 if i j
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The simplex multipliers corresponding to the basis B for (A2) are

= (cB kdB)B l = n k d where n = cBB-1 and d = d B-1 . Note

that this data for N -N and n is precisely that carried by the simplex

method with objective function c + cx and similarly , and d is the

data carried with objective function do + dx.

Sensitivity Analysis

The nature of the linear fractional algorithm suggests extensions

of the usual linear programming sensitivity analysis to this more general

setting. Suppose that the fractional problem solves at an extreme point
x ° = B oN
x = (x° ,x° ) of the feasible region and that B is the corresponding basis

of A. This extreme point remains optimal as long as the coefficients of the

nonbasic variables in the final canonical form of the auxiliary linear

programming problem remain nonpositive. The coefficients are given by

-N = -N _ f(xo)N where f(x) = cBBlb
do + dBB b

Thus it is required that tN + AtN < 0 with

-N = AN - f(xo)AdN - [Af(xo)]aN - f(x)Aad (1)

Table 1 summarizes the results of altering the initial data c, do c,

dB cN, dN and b by translations parametrized by the variable 6. Observe

that except for case 6, the interval of variation of 6, for which the basis

remains optimal, are specified by linear inequalities in 6. These results

are derived by substitution in (1) and the usual arguments of linear program-

ming sensitivity analysis.

If a fractional problem solves at an extreme ray r the analysis changes

somewhat. If v f = +X then cr > O, dr = 0 and the solution remains
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+o- as long as these conditions are maintained. When v = f < + the final

auxiliary problem is

= v(f) = sup{(c o - fdo) + (c - fd)x} (A2)
xcF

Let x be the optimal extreme point solution to this problem and let

B be the corresponding basis, B will be optimal whenever it is feasible and

tN = N fdaN = (cN -_ dN) - iAN < (2)

The optimal value to (A2) determined by this solution will be nonpositive if

=v(f) = (Co - fd0) + (c - fd)x° = (c - fdo) + b < 0 (3)

Consequently, the ray r remains optimal whenever (2) and (3) are satisfied

after the data change. The reader should note that the optimal basis B to

(A2) can change, yet maintaining < 0 and r optimal, Considering only (2)

and (3) provides conservative bounds for f to remain optimal. These can be

read directly from the final LP tableau to (A2). When the optimal basis

B changes, the sensitivity analysis can be continued by pivoting to determine

the new optimal basis.

Table 2 summarized the results when the problem "solves" at an extreme

ray with value f < + . The changes that involve a variation in d(x) = do + dx

include also the condition d(x) > 0 in an appropriate form, i.e., for

-d(x) < 6 < -d(x) or 62 < 6 < 61 the problem becomes unbounded due to the

creation of feasible points x x2 such that d(xl) > 0 and d(x2) < 0

In the last case of table 2 the condition do + dx > 0 can be controlled by

solving simultaneously the problem

s(6) = min d(x)
xeF(6)
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where F(6) is the set {xcRn: x 0 Ax < b + 6ep} and ep is the unit p vector.

When f = + cases 11) and 13) of Table 2 present special characteristics.

Case 11 and 13: When j is such that r = 0 in either case,

ar = dr + 6r. = 0 and the problem remains unbounded. However, if

r.j O, dr O for any 6 0 so that the extreme ray does not continue

to give f = + . In this instance, it can be shown that the problem

remains unbounded for 62 < 6 < 61 = 0 and a new optimal solution can

be found for 6 > 0 by solving the following problem

max[c - cr (d + 6ej)x: xcF]. (4)
6r 3

We omit the details and refer the reader to [3].
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4. A Primal-Dual Parametric Algorithm

Once a linear fractional problem has been solved, parametric right-

hand-side variations can be investigated by a primal-dual algorithm. The

linear fractional algorithm terminates by solving the linear program (v < +o )

max[(co - kdo) + (c - kd)x:x > and Ax < b] (A2)

with k = v, the optimal solution to the problem.

Suppose that g is a fixed vector and that the right-hand-side of the

equality constraints is parameterized by a scalar O as b + 0g. For each

fixed value of , the optimal solution can be found by first applying the

dual simplex algorithm to (A2) with b replaced by b + Og, obtaining a feasi-

ble solution x . This solution can then be used as a starting point for an

application of the linear fractional algorithm. This approach ignores the

dependency of k on x when solving for x by the dual simplex algorithm.

In constrast, a primal-dual algorithm can be developed extending ideas

of the self-parametric algorithm of linear programming [10] by using both

primal and dual simplex pivots to maintain an optimal basis as the parameter 

is varied. Suppose that is an optimal extreme point to the fractional

problem at 0 = 0 and that B is the corresponding basis. Tis basis remains

optimal as long as it is both

primal feasible, i.e., 6 + 0 (b + B-lb, B'lg) (5)

and dual feasible, i.e., t N - f(x(o))N < 0

f(x + cB + cB
where f (x(E)B) = 0 d dB

d + d5 + d g
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For the previous analysis to be valid, we require, in addition, that do + dx

remains positive on the feasible region. This may require solving

min[d + dx]s.t. Ax < b + g, x > 0 . Below we always assume that this

condition is met.

Using the notation and techniques of the previous section, tN as a

function of is easily seen to be

ONn erg ; dN -(6)
d(x) + dg

and the dual feasible condition tN < 0 becomes

E[wdg{N -gdN] < -Nd(x) (7)

As long as conditions (5) and (7) hold, the basic feasible solution

given by (5) is optimal for the parameterized problem. To study the solution

behavior for 0> O, is increased until at = equality occurs in either

(5) or (7) and any further increase in causes one of these inequalities

to be violated. Thus, either some basic variable reaches zero or some nonbasic

objective coefficient reaches zero. We make the nondegeneracy assumption

that exactly one primal or dual condition in (5) or (7) is constraining at

O = 0e and distinguish two cases:

Case : The ith basic variable reaches zero, i.e., bi + gi = 0 and

gi < O. The new value for {N is computed by (6) and then a usual

dual simplex pivot is made in row i (if every constraint coefficient

in row i is nonnegative, linear programming duality theory [10] shows

that the problem is infeasible for > 00 and the procedure terminates).

Since the ith basic variable is zero at 0, this pivot simply re-expresses

the extreme point given by (5) at 0 = 00 in terms of a new basis. Conse-

quently, k - f(x(0o)) does not vary during the pivot,
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Case 2(a): The jth reduced cost tjreaches zero. A primal simplex

pivot is made in column j (the unbounded situation is considered below).

Since tN 0 and < 0 for i j at 0 = e0, after this pivot the

resulting basis will be optimal.

By our nondegeneracy assumption, the new basis Bo determined after the

pivot in either case will be optimal for in some interval l8o ,el] 1 > 0o .

Expressing b + Og for > 00 as (b + eog) + ( - o)g , the parametric

analysis given above can be repeated with (b + 09g) replacing b. The proce-

dure will continue in this fashion by increasing 0 and successively reapply-

ing cases 1 and 2. Since both conditions (5) and (7) are linear in , a

given basis will be optimal (i.e., both primal and dual feasible) for some

interval of . Evoking nondegeneracy, this implies that no basis will repeat

as increases and establishes finite convergence of the method.

To complete the analysis, let us see how to proceed-in case 2 if:

Case 2(b): Every constraint coefficient in column j is nonpositive,

so that no primal pivot can be made. Then an extreme ray r is identi-

fied which for 0 satisfies

f(x(o ) + Xr) +r f(x(O )) as approaches + Xdr X

Thus at = 0 the extreme ray r becomes optimal and k Since k

does not depend upon , (A2) is now solved by the dual simplex algorithm

as a linear program with a parametric right-hand-side. A lemma below

will show that the ray r remains optimal as is increased as long as

the problem remains feasible.
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Having completed the analysis if the problem solves at an extreme

point at O = 0, let us now suppose that the extreme ray r is optimal at

0 = O. The dual simplex procedure of case 2(a) is applied until at e = o,

the objective value reaches zero and further increase of O causes it to be-

come positive. In this case the optimal basis at e = e° corresponds to

an extreme point satisfying f(x(0)) >r for = eo and we revert to cases

1 and 2 above with this extreme point to continue the analysis for > 

A final point to note here is that the optimal value of the linear

fractional problem as a function of O is quasi-concave. Formally,

C +CX
Lemma: Let v(e) = sup : x > 0 and Ax < b + Og} and suppose

that v(O) < + (or equivalently that v(Oj < + for all ). Then v(e) is

quasi-concave on {0 : x ' 0 and Ax < b + Og is feasible) . That is, for

any given scalar k, { : v(O) > k is a convex set.

Proof: Let F(O) = {xsRn: x 0 and Ax < b + Og} and suppose that

X c F(01 ), X2 F( 2)

C + CX1 C + cx 2

with 0 > k and 0 k
do + dxl d + dx2

1 2
If 0 < a < 1 and 0 = ac + ( - )02 then

c + c[ax + (1 - )x2]

°0~c~axl -1-c1x2 > k and cax + (1 - )x2 F() .
do + d[ax1 + (1 - a)x ]

But this implies the desired conclusion, for if v(01 ) > k and v(02) k

then for any >O, x1 and x2 can be found for k = k - . Thus

v(o) k - for any c>O, i.e., v(e) > k, and {e : v(o) > k is a convex set. '
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Remarks: (1) This lemma is valid for multiparameter variations, That is,

the same proof applies if 0 is a vector, and g a given matrix so
1 2 k 1 k

that 0E = 01g9 + 29 + .. + k9 for vectors g ,...9 . In

fact, the result is also valid in infinite dimensional spaces.

(2) The lemma also shows that the extreme ray maximizing - is

optimal for all 0 in some intervals (-Xo], [,- ) (possibly

0= - and or 01 +o) as long as the problem remains feasible.

This is a direct result of v(o) > r and quasi-concavity of v().dr

Corollary: Suppose g > O. Then v(O) is nondecreasing in its argument and

if an extreme ray r is optimal for some there is a 00 > -~ such that r is

optimal for Oc(- X,0o).

Proof: F(0)cF(Ol) for 01 > so v(01) > v(e). The last conclusion

is a consequence of the theorem, !

Of course if g < 0 a similar result can be stated. These results include,

as a special case, variations in only one component of the right-hand-side.

Examnple: The following example illustrates many of the above results. For

simplicity, we present only the problem geometry, omitting the detailed

pivoting calculations.

max{f(x) = 1 - X + 5
2

subject to -x1 + x2 > 0 - 20

1 + X2 > 4

x > 1 + 20

X 1>, X2 > 0

___111__11_111_1^__1I
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The feasible region is indicated for = 0,1,2 and 2.5 by respectively the bold

faced region, solid region, dashed region and hatched region on figure 1. As

shown in [4], the region where f(x) = k is given by a hyperplane [in this

case a line in (xl,x2) space] and as k varies this hyperplane rotates about

the point where n(x) = d(x) = 0 .

For O = 0, the solution is at point (a):and the basis is determined by

equality of the first two constraints, As O increases (or for O < 0) this

basis remains optimal until at point (b) increasing O above 1 causes it to be

infeasible. A dual simplex pivot is made to replace the third constraints-

surplus variable in the basis with the surplus variable of the second constraint.

The new basis remains optimal until at point (c) with = 2 the extreme

ray r = (0,1) becomes optimal. This ray is optimal for 2 < 0 < 2.5. For

O > 2.5, the problem is infeasible.

By using the tight constraints for < 2 to solve for x and x2 in

terms of and noting that cr = 0 for r = (0,1), the optimal objectivedr

value v(O) is plotted in figure 2, It is quasi-concave,

One immediate application of this primal-dual algorithm is for branch

and bound when integrality conditions are imposed upon the variables of a

linear fractional model. If, for example, xj is restricted to be an integer

and solving problem P without the integrality conditions gives x. basic at
J

value 3.5, two new problems P1 and P2 are constructed by adding, respectively,

the constraints x < 3 and x > 4 . Taking P1 for example, we can suppose

that the problem was initially formulated with the (m + )St constraint

x; + sm+l = 3 + O . Eliminating the basic variable from this constraint

gives an updated equation with right-hand-side equal to (-.5 + O). For

o > .5 the optimal basis to P together with s forms an optimal basis to the

parameterized problem and the parametric algorithm can be applied to decrease
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O to 0 and solve the modified problem. A similar procedure is applied to P2

and other modified problems generated by the branching rules. In every

other way, the branch and bound procedure is the same as that for (mixed)

integer linear programs and all the usual fathoming tests can be applied.
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