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Abstract

The goal of this paper is to determine if the results for dynamic job-shop schedul-

ing problems are affected by the assumptions made with regard to the processing time

distributions and the scheduler's knowledge of the processing times. Three dynamic job-

shop scheduling problems (including a two station version of Conway et al.'s [2] nine sta-

tion symmetric shop) are tested under seven different scenarios, one deterministic and six

stochastic, using computer simulation. The deterministic scenario, where the processing

times are exponential and observed by the scheduler, has been considered in many simula-

tion studies, including Conway et al's. The six stochastic scenarios include the case where

the processing times are exponential and only the mean is known to the scheduler, and

five different cases where the machines are subject to unpredictable failures. Two policies

were tested, the shortest expected processing time (SEPT) rule, and a rule derived from a

Brownian analysis of the corresponding queueing network scheduling problem. Although

the SEPT rule performed well in the deterministic scenario, it was easily outperformed

by the Brownian policies in the six stochastic scenarios for all three problems. Thus, the

results from simulation studies of dynamic, deterministic job-shop scheduling problems

do not necessarily carry over to the more realistic setting where there is unpredictable

variability present.
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1. Introduction and Summary

The job-shop scheduling literature can be categorized into static problems that address

a fixed set of jobs and dynamic problems that allow jobs to arrive to the shop in an

ongoing, and usually random, fashion. In this paper we are concerned with dynamic job-

shop scheduling problems, which can be further categorized according to the assumptions

made regarding the processing times. If the processing times are known with certainty by

the scheduler before the processing actually occurs, then the dynamic scheduling problem

will be referred to as deterministic. However, it is sometimes assumed that the scheduler

cannot observe the processing times in advance, but only has knowledge of a probability

distribution for the various processing times, in which case the dynamic scheduling problem

will be referred to as stochastic.

The two main questions faced in dynamic scheduling problems are "how to schedule?"

and "how much improvement will take place?"; that is, ideally one would like to find an

optimal scheduling policy and then assess the increase in performance that this scheduling

policy will achieve relative to the commonly used policy, which is usually taken to be the

first-come first-serve (FCFS) policy. The goal of this paper is to determine whether the

answers to these two questions for a dynamic job-shop scheduling problem depend upon

the assumptions made with regard to the processing time distributions and the scheduler's

1



knowledge of the processing times.

Dynamic scheduling problems, both deterministic and stochastic, can be defined as

scheduling problems for queueing networks, where each machine in the shop is a server

in the network, and each job in the shop corresponds to a customer in the queueing

system. These scheduling problems tend to be very difficult to analyze, except for the

case where there is only a single machine in the shop, and the objective is to minimize

the expected average cycle time of jobs, where a job's cycle time is the amount of time it

spends in the shop. In this case, the answer to the question "how to schedule?" does not

depend very much upon the processing time distributions or the scheduler's knowledge of

the processing times. Ignoring the specific assumptions made regarding processing time

distributions, interarrival times, the discount rate, and preemption, the optimal policy

is the shortest expected remaining processing time rule (or a minor perturbation of this

rule), which gives priority to the job with the shortest expected remaining processing time,

where, in the deterministic case, a job's expected remaining processing time is equal to

the job's actual remaining processing time. If no feedback of jobs and no preemption is

allowed, then this policy reduces to the shortest expected processing time (SEPT) rule.

In this paper, the SEPT policy will always refer to the policy that awards priority at

each machine to the job whose upcoming operation has the shortest expected processing

time, regardless of the processing time distributions and the scheduler's knowledge of the

processing times.

In the network setting, the primary tool of analysis has traditionally been computer

simulation, and the classic study on this topic is contained in Chapter 11 of Conway et

al. [2]. Here, the authors study a nine station symmetric job-shop with Poisson arrivals,

and the processing times at each station are exponential with mean one. The scheduler

has perfect knowledge of a job's route and each of its processing times at the moment of

the job's arrival to the shop, and so this is a deterministic dynamic scheduling problem.

The main conclusion of this often quoted study is that the SEPT policy is very effective at
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minimizing average job cycle time (outperforming FCFS by 53.2%), even when compared

to more sophisticated policies that use dynamic, global information. As a result of this and

related studies, the SEPT rule is still widely regarded as the most effective basic scheduling

policy for reducing cycle time in job-shops (see, for example, Baker [1]). Furthermore, many

simulation studies carried out through the years have considered dynamic, deterministic

(as opposed to stochastic) scheduling problems.

Let us now turn to the modeling issues of processing time distributions and the sched-

uler's knowledge of processing times. Define a job's effective processing time (see Section

7 of Harrison [4]) for a particular operation to be the elapsed time between the start of the

operation's processing and the completion of its processing. This elapsed time consists of

the actual processing time (which may include time for set-up, inspection, and rework),

and any interruptions (such as tool or operator unavailability, machine failure, and pre-

ventive maintenance) that occur before the job completes its processing. (We will assume

that preemption by higher priority jobs is not possible in this paper.)

Thus, an operation's effective processing time may incorporate both predictable and

unpredictable variability, and this variability may stem from either the process (for exam-

ple, the machine or operator) or the job. The primary source of predictable variability

typically stems from the job; some operations for some jobs may inherently take longer

than others, and the scheduler may have some (or even perfect) knowledge of a job's actual

processing time. Other sources of predictable variability originate from the process, and

include preventive maintenance, coffee breaks, and end-of-shift effects. The primary source

of unpredictable variability is usually process interruptions, such as machine failures, tool

breakages, or operator unavailability. A second source of unpredictable variability is the

length of an operation's processing time, which may not be known precisely. A third source

of unpredictable variability is rework, which may be caused by the precision of the process

or the difficulty of the particular operation.

It seems clear that all job-shops experience some amount of unpredictable variability,
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and in most job-shops, the majority of variability is unpredictable. Therefore, the dynamic,

deterministic scheduling problem often addressed in the literature is less realistic than the

dynamic, stochastic scheduling problem.

In this paper, a simulation study involving three dynamic job-shop scheduling prob-

lems (which are actually queueing network scheduling problems) is carried out. Effective

scheduling policies for two of the three problems have been proposed in Harrison and Wein

[5] -[6] by analyzing a Brownian approximation to the queueing network scheduling prob-

lems. Both problems (see Figures 1 and 2) consist of two machine, two product job-shops,

and one is open (it has exogenous arrivals) and one is closed (the total number of jobs in

the shop is held constant; see Solberg [10] for more on the modeling of job-shops as closed

queueing networks). The third problem is a two station version of Conway et al.'s [2] nine

station, symmetric job-shop, and a Brownian analysis of this problem is performed here

in order to develop an effective scheduling policy. These three shops, which are described

and analyzed in sections 3 through 5, will be referred to as the open shop, the closed shop,

and the symmetric shop, respectively.

For each of the three problems, seven different scenarios are considered, where each

scenario makes different assumptions with regard to the processing time distributions and

the scheduler's knowledge of the processing times. These seven scenarios will be described

in detail in Section 2. Two of the seven scenarios assume that the processing times for

a particular operation for a particular type of product is an independent and identically

distributed (iid) exponential random variable. In one of these two scenarios, the sched-

uler knows only the mean of the the exponential random variables, which corresponds to

the simulation studies in Harrison and Wein [5]-[6]. In the other scenario, the scheduler

observes the actual processing time, which corresponds to the Conway et al. [2] simula-

tion study. These two scenarios will be referred to as the EXPONENTIAL case and the

DETERMINISTIC case, respectively.

The other five scenarios all assume that the processing times for a particular operation
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for a particular type of product is a constant known by the scheduler. However, it is

assumed that the server fails after an exponentially distributed amount of busy time,

after which the server requires an exponentially distributed amount of repair time. The

interruption is of a preemptive resume nature, so that when the server is repaired, it

resumes where it left off. The five scenarios vary with respect to the mean length of

the time between failures, the mean length of the repair time, and the relative amount of

unpredictability in the effective processing times. Notice that the effective processing times

in these five cases are stochastic, and so six of the seven scenarios are dynamic, stochastic

scheduling problems.

For all seven scenarios of the three problems, the FCFS policy, the SEPT policy, and

the scheduling policy proposed by the Brownian analysis, which will be referred to as the

BROWNIAN policy, were tested in a simulation experiment. The Brownian analysis can

be applied to all six stochastic scenarios, and, in fact, proposes the same policy in all

six cases. For the DETERMINISTIC scenario, straighforward extensions of these policies

were tested. The objective in all three problems was to minimize the mean cycle time

subject to a given throughput rate. It should be pointed out that in the open problem and

the symmetric problem, the exponential processing times were the same for all operations

performed by a particular server (which is not uncommom in some manufacturing settings,

such as semiconductor wafer fabrication), so that FCFS and SEPT were identical for the

six stochastic scenarios.

The results of the simulation study were very conclusive. For the DETERMINISTIC

scenario, the SEPT rule was very effective and easily outperformed FCFS. The difference

in performance between SEPT and the BROWNIAN policy was small for two of the three

problems, although SEPT was superior in all three problems. However, in the other six sce-

narios, the BROWNIAN rule easily outperformed SPT and FCFS. In the closed problem,

where SEPT and FCFS resulted in different policies, neither policy consistently dominated

the other. Furthermore, the percentage improvement from scheduling relative to FCFS was
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often twice as large in the DETERMINISTIC scenario as in the other six cases. Also, the

percentage improvement in performance of the Brownian policy (relative to FCFS) was

quite stable over the six stochastic scenarios, after adjusting for the customer population

in the closed problem. Thus, the answers to our two questions "how to schedule?" and

"how much improvement will take place?" depend greatly on the scheduler's knowledge

of the processing times. However, if unpredictable variability is incorporated, the answers

are quite robust with respect to the specific processing time distributions.

The implications of this experiment are clear. Results from simulation studies of dy-

namic, deterministic scheduling problems do not necessarily carry over to the more realistic

setting where there is unpredictable variability present. In particular, policies performing

well in the deterministic setting may not perform particularly well in a stochastic setting,

and the reported improvements caused by scheduling in deterministic studies probably

greatly overestimate the improvements that would result in the more realistic stochastic

setting. On the other hand, it appears that stochastic scheduling problems offer essen-

tially the same results, regardless of the various distributional assumptions made on the

processing times. This study also raises concern about the applicability of the determistic

scheduling literature and the expert systems scheduling literature, neither of which explic-

itly deal with unpredictable variability, for scheduling actual job-shops.

Thus, we urge researchers who use computer simulation models to incorporate unpre-

dictable variability in their models. This variability will allow the model to more accurately

reflect the operations of a job-shop, and will prevent researchers from developing conclu-

sions that do not apply to the actual scheduling problem.

2. The Different Scenarios

As mentioned earlier, the underlying job-shop in each of the three problems can be

represented as a multiclass queueing network. Each shop has two machines that produces

a variety of products and each product has its own deterministic route, or sequence of
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operations. In keeping with traditional queueing network terminology (see Kelly [7], for

example), we will define a different customer class for each operation of each product. For

example, in Figure 1, Product A has one stage on its route and product B has two stages,

so that this problem has three customer classes in total. Each customer class is served by a

particular machine and has its own effective processing time distribution. For k = 1, ... , K,

the mean effective processing time for class k customers will be denoted by rmk and the

mean processing time will be denoted by ink.

For a given class k, the mean effecive processing time fmk, which includes interruptions

during service, will be the same for all seven scenarios of a given problem. Therefore, the

average load on the shop will not differ by scenario. For the DETERMINISTIC and

EXPONENTIAL cases, the effective processing time distributions are exponential, and

mnk = mk. The only difference between the two cases is that the scheduler observes the

actual processing time in the DETERMINISTIC case, but has knowledge of only rnk in

the EXPONENTIAL case.

In the other five cases, the processing times mk will be a known constant, but there

will be machine failures and repairs. For simplicity, we assume that, for a given scenario

of a given problem, the two machines have identical failure and repair rates. Let the busy

time between failures for each machine be iid exponential random variables with mean

r-1, and let the repair times be iid exponential random variables with mean c. Then

= ink(l +rc). (1)

Let a be defined by

1
1 + rc' (2)

so that

mk
a ' · (3)

irk

Thus a measures the fraction of the mean effective processing time that is known with

certainty. If the machines never fail, then a = 1, and the scheduler has perfect knowledge of
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the effective processing times. As the failure rate and expected repair time go to infinity, a

tends to zero, and the scheduler's knowledge of the actual processing times is overwhelmed

by the failures and repairs.

In the remaining five scenarios, a will take on the values of .5, .7, and .9, which denote

low reliability, medium reliability, and high reliability machines, respectively. Since tnk is

held constant for all the scenarios, it follows from (3) that we must allow the mean process-

ing time mk to vary by scenario. The mean repair time c will also vary by scenario. For a

given problem, let m = K-l kl m k denote the average of the mean effective processing

times over the various classes (not weighted by their relative usages). The parameter c

will take on the values of .5m, 3m, and 18m, which represent machines with short failures,

medium failures, and long failures, respectively. Given a and c for a particular scenario,

the failure rate r is chosen to satisfy definition (2).

The five scenarios will be (a = .5, c = 3m), (a = .7, c = 3m), (a = .9, c = 3m), (a =

.7, c = .5m), and (a = .7, c = 18m). For the remainder of this paper, these cases will be

abbreviated by UNRELIABLE, MEDIUM, RELIABLE, SHORT FAILURES, and LONG

FAILURES, respectively.

3. The Open Shop

This simple problem is pictured in Figure 1, where product A jobs visit station 1

and then exit, and product B jobs visit station 1, proceed to station 2, and then exit.

Customers of each product arrive to station 1 according to independent Poisson processes

with rates AA = 1 and AB = .9. The mean effective processing times ?thk,k = 1,2,3, are

given in Figure 1. In the six stochastic scenarios, the only real scheduling decision is to

decide whether to serve product A jobs or product B jobs at station 1. For these scenarios,

we will assume that FCFS is used at station 2 for both scheduling policies displayed in

Table I.

For the six stochastic scenarios, the queueing network scheduling problem was ana-
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Figure 1. The open shop.

lyzed in Harrison and Wein [5]. The proposed scheduling policy awards priority to product

A jobs unless there are c or fewer jobs in queue and in service at machine 2. In the latter

case, priority is given to product B jobs in order to avoid idleness at machine 2. The

most effective value of the parameter c was chosen via computer simulation. This policy,

which is referred to as the BROWNIAN policy in Table I, was used for the six stochastic

scenarios.

The scheduling problem, however, is fundamentally different under the DETERMIN-

ISTIC scenario. In particular, there would be an infinite number of customer classes (rather

than just three) in this case, because a different customer class would be needed for each

possible realization of the actual effective processing times. Rather than attempt to solve

the resulting Brownian control problem in this case, a straightforward extension of the

stochastic BROWNIAN policy was used. For the DETERMINISTIC case, the BROWN-

9
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IAN policy used SEPT at station 2, ranked product A jobs and product B jobs according

to SEPT at station 1, and then served product A jobs, unless the amount of remaining

work in service and in queue at machine 2 was less than a parameter c, in which case type

B jobs would be given priority.

The mean cycle times and 95% confidence intervals for the SEPT policy and the

BROWNIAN policy are recorded in Table I for all seven scenarios. Notice that the mean

cycle time for the FCFS policy can be inferred from this table. For the six stochastic

scenarios, FCFS and SEPT are identical. Furthermore, FCFS is the same under the

DETERMINISTIC and EXPONENTIAL cases, since the processing times are not used to

make the scheduling decisions.

SCENARIO SEPT BROWNIAN

DETERMINISTIC 4.90 (±.19) 5.67 (±.28)

EXPONENTIAL 13.8 (±.75) 12.2 (±.71)

UNRELIABLE 30.1 (±1.95) 27.3 (±1.84)

MEDIUM 21.6 (±1.42) 19.5 (±1.48)

RELIABLE 12.0 (.75) 10.8 (.71)

SHORT FAILURES 9.43 (.54) 8.47 (±.53)

LONG FAILURES 70.1 (±5.45) 62.1 (±5.00)

TABLE I. Mean cycle times for the open shop.

For the six stochastic scenarios, the BROWNIAN policy outperformed the SEPT

policy. Since the confidence intervals of the two policies overlap in these six cases, a

Bonferroni t-test was performed (see Miller [9], for example) to determine if the difference

between the two policies was statistically significant. Results showed that the BROWNIAN

policy was significantly better than the SEPT policy at a 95% level for all six stochastic

scenarios. As in Harrison and Wein [5], the percentage improvements are quite modest,
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on the order of 10%. This seems to be inherent in the scheduling problem, since a lower

bound for any scheduling policy on the total number of jobs in the system was derived

(assuming exponential and unobserved processing times) in Harrison and Wein [5], and

the difference in performance between this bound and the BROWNIAN policy was quite

small. The improvement of the BROWNIAN policy over SEPT appears to be relatively

stable over the six stochastic scenarios.

For the DETERMINISTIC case, the SEPT policy and the BROWNIAN policy re-

duced the mean cycle time by more than 100% relative to the FCFS policy, and the SEPT

policy outperformed the BROWNIAN policy. Thus, there is a significant difference be-

tween the DETERMINISTIC scenario and the six stochastic scenarios, in terms of the

most effective scheduling policy and the improvements gained from scheduling.

4. The Closed Shop

In this section, we consider a scheduling problem for the closed shop pictured in Figure

2. Again there are two products, A and B, and A has two stages on its route and B has four

stages. The six customer classes will be indexed by k = 1,...,6 and referred to as classes

Al, A2, B1, B2, B3, and B4. The mean effective processing times ffk, k = 1, ... , 6 are given

in Figure 2. A closed network has a constant number of jobs, N, populating the shop, so

that a new job enters whenever a job exits the shop. The entering jobs are deterministically

chosen in the order ABABAB... so that a 50-50 product mix is maintained.

The scheduling problem is to decide how to dynamically award priority among classes

A1, B1, and B3 at station 1, and classes A2, B2, and B4 at station 2. Harrison and Wein

[6] analyzed this scheduling problem and proposed the following static policy. Let Mik be

the expected remaining effective processing time at station i for a class k customer before

that customer exits the shop, and rank each class by the index Mfk - M2k, which equals

Mlk-M2k=(3 -1 -3 -11 -5 -7) for k = 1,...,6, (4)
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Figure 2. The closed shop.

in this example. At station 1, the policy gives priority to the smaller values of this index,

and at station 2 gives priority to the larger values of this index. Thus, priorities (from

highest to lowest) are in the order (B3, B1, Al) at station 1 and (A2, B4, B2) at station 2.

This policy is referred to as the BROWNIAN policy in Table II. For the DETERMINISTIC

scenario, the index in (4) contains the actual remaining effective processing times for each

customer.

Since the mean effective processing times differ among the classes served at the same

machine, the SEPT and FCFS policies differ for all seven scenarios. For the six stochastic

scenarios, the SEPT policy awards priority in the order (B3, Al,B1) at station 1 and

(A2, B2, B4) at station 2.

The population level N for each policy was chosen so that a specified average through-

put rate of .127 customers per unit of time was achieved, which corresponds to a machine

utilization of 88.9%. The mean cycle time of customers was then compared at this con-

stant throughput rate. There were two reasons to use this comparison, rather than to hold

the population level constant for all policies. The first reason is to maintain consistency

with the two open shops, where the mean throughput rate is exogenously specified by the

arrival rates, and the mean cycle times are then compared. Secondly, manufacturing sys-
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tems using closed loop input (i.e., keeping the population level constant) will attempt to

produce at the rate at which the products are demanded, and will choose the population

level N accordingly. Thus, the percentage improvements reported in this way more accu-

rately reflect what would be achieved in practice. Because of the discrete nature of the

parameter N, there were a few polices that could not achieve the target throughput rate

precisely. In these cases, we have reported linear interpolations of the various performance

measures so that the average throughput rate would be .127.

SCENARIO FCFS SEPT BROWNIAN

DETERMINISTIC 78.7 (±.46) 39.2 (±.23) 41.9 (±.25)

EXPONENTIAL 78.7 (±.46) 74.6 (±.48) 53.2 (±.33)

UNRELIABLE 157 (±1.06) 172 (±1.1) 110 (±.74)

MEDIUM 86.1 (±.56) 94.1 (+.63) 66.9 (±.40)

RELIABLE 29.3 (±.14) 25.0 (±.12) 25.4 (±.14)

SHORT FAILURES 31.5 (±.09) 29.4 (+.10) 28.4 (±.10)

LONG FAILURES 391 (:9.23) 465 (±10.0) 290 (±5.4)

TABLE II. Mean cycle times for the closed shop.

The simulation results for the three policies are recorded in Table II. For the EX-

PONENTIAL, UNRELIABLE, MEDIUM, and LONG FAILURES scenarios, the BROW-

NIAN policy easily outperformed the SEPT policy, reducing the mean cycle time by an

average of 32.8%. This is in striking contrast to the DETERMINISTIC, RELIABLE, and

SHORT FAILURES scenarios, where the difference between the two policies is small, and

SEPT is actually more effective in two of these cases. The FCFS policy was outperformed

by the Brownian policy in all seven scenarios, but showed significant improvements over

SEPT in three of the seven scenarios.
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Although the throughput rates were held constant for all seven scenarios, the popu-

lation level required to achieve this rate varied considerably. In particular, the population

level was very low (in the three to five range) for the three cases where the BROWNIAN

policy did not easily outperform the SEPT policy. The low population levels can be par-

tially explained by the variability in effective processing times for our various scenarios.

Let ck be the squared coefficient of variation (variance divided by the square of the mean)

of the effective processing time for class k customers. Then for the five scenarios that have

machine interruptions,
2crc2

C2k =- , (5)
mk

and the three cases mentioned earlier had the lowest squared coefficients of variation.

SCENARIO THROUGHPUT SEPT BROWNIAN

DETERMINISTIC .140 70.6 (.45) 70.9 (±.46)

RELIABLE .138 101 (±.41) 72.2 (+.33)

SHORT FAILURES .141 156 (±.90) 71.0 (±.17)

TABLE III. Mean cycle times for the closed shop at different throughput rates.

The BROWNIAN policy was derived by Harrison and Wein [6] under the condition

that the population level was relatively large. It is not clear from Table II whether the

relative ineffectiveness of the BROWNIAN policy in the RELIABLE and SHORT FAIL-

URES scenarios is due to low squared coefficients of variation or to a low population level.

Thus, these two cases and the DETERMINISTIC case were tested again, this time with

the desired throughput rate set at a higher level. The results are shown in Table III, and

it can be seen that for the two stochastic cases the BROWNIAN rule easily outperformed

SEPT, while the two policies were virtually indistinguishable under the DETERMINISTIC

case.
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In summary, for the six stochastic scenarios, the BROWNIAN policy easily outper-

formed the SEPT and FCFS policies at moderate and high population levels, and the

SEPT policy outperformed FCFS at lower population levels, but performed worse than

FCFS at higher population levels. For the DETERMINISTIC case, SEPT slightly outper-

formed the BROWNIAN policy at lower population levels, and the two perform similarly

at higher population levels.

5. The Symmetric Shop

In this section, we consider a two station version of the nine station symmetric job shop

studied in Chapter 11 of Conway et al. [2]. Customers arrive according to independent

Poisson processes at rate A to each station. When a job completes service at a station,

it visits the other station with probability one-half and exits the shop with probability

one-half, independent of all previous history. For ease in developing the simulation results,

we did not allow a customer to have more than six stages on its route. As in Conway et al.

[2], a job's entire route is chosen at the time of its arrival to the shop, and is made known to

the scheduler. The mean effective processing times for each stage of each customer's route

is one. The corresponding arrival rate A to each station was chosen to be 32/35, so that

the resulting traffic intensity at each station was .9, as in Conway et al. [2]. As mentioned

earlier, the DETERMINISTIC scenario, where all processing times are exponential and

known to the scheduler, corresponds to the assumptions made in Conway et al. [2].

Since the shop satisfies the balanced heavy loading conditions set forth in Harrison [4],

we will analyze the Brownian approximation to the queueing network scheduling problem

for the stochastic scenarios. As in the previous two problems, the proposed policy only

depends on the effective processing time distributions through their mean, and thus is

identical for all six stochastic scenarios.

As before, let Mik be the expected remaining effective processing time for a class

k customer at station i before that customer exits the shop. Since the mean effective
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processing times are all one, Mik also equals the remaining number of visits to station i

by a customer of class k. Since no immediate feedback is allowed and customers are not

allowed to have more than six stages on their route, then it follows that there are K = 12

customer classes and the workload profile matrix M = (Mik) is given by

1= 0 1 1 2 1 2 2 3 2 3 3)
M= 01 1 1 1 2 2 2 2 3 3 3 (6)

The two classes that correspond to columns three and four of this matrix each have one

service remaining at each station, but one class is currently at station 1 and the other class

is at station 2. For now, we will not need to distinguish between these two classes, or other

similar pairs of classes.

Let Qk(t), k = 1, ..., 12, be the number of class k jobs in the network at time t. Also,

let Ii(t), i = 1,2, be the cumulative amount of idle time at station i in the interval [0, t].

Introducing a system parameter n, let us define the scaled queue length process Z = (Zk)

by

k(t) = Qk(nt) t > O and k = 1,..., 12, (7)

and the scaled cumulative idleness process U = (Ui) by

1(nt)
Ui(t) - i , t > O and i= 1,2. (8)

The approximating Brownian control problem is formulated by letting the parameter

n - coo, and we will retain the notation Z and U for the two limiting scaled processes.

Harrison [4] has argued that the queueing network scheduling problem described above is

well approximated by a Brownian network control problem whose workload formulation is

to choose RCLL (right continuous with left limits) processes Z and U to

minimize lim sup ±E [j E Zk(t)dt (9)

k=l
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U is nondecreasing with U(O) = 0, (11)

Z(t) > 0 for all t >0, and (12)

Z and U are nonanticipating with respect to X, (13)

where X is a twelve-dimensional Brownian motion with drift vector 0 and covariance matrix

A, and B = (B 1, B 2) is a two-dimensional Brownian motion with drift M8 and covariance

matrix MEMT. It will turn out that the solution (Z,U) will be nonanticipating with

respect to B, and the proposed scheduling policy is independent of the various drift and

covariance values. Notice that the objective is to minimize the long run expected average

number of customers in the system, which will also minimize the long run expected average

cycle time of customers by Little's formula [8].

A solution to this problem will be found that minimizes the objective (9) for all times

t with probability one. Readers are referred to Yang [11] for necessary and sufficient

conditions under which stochastic control problems like (9)-(13) possess such pathwise

solutions.

For now, suppose we are given a cumulative idleness process (U 1, U2) that satisfies

constraints (11) and (13). The right side of constraint (10), which we denote by

bi(t) = Bi(t) + Ui(t), for i = 1, 2 and t > 0, (14)

would be known, and assume for now that bl and b2 are nonnegative processes.

Now consider the following linear program (LP) that is imbedded in (9)-(13) at each

time t:

12

min Z Zk (t) (15)
Z() k=l

12

subject to Mi kZk(t) = bi(t), for i = 1,2, (16)
k=l

Zk(t) > O, for k = 1, ..., 12. (17)
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Define the dual variables 7rl(t) and r2(t) and consider the dual to this LP, which is

max bl(t)7rl(t) + b2 (t)lr2 (t) (18)
7i (t)r2(i)

subject to Mlk7rl(t)+ M 2kr 2 (t) < 1, for k = 1,...,12. (19)

The solution to this dual LP is 7r*(t) = (1/3,0) if bi(t) > b2 (t), and r*(t) = (0, 1/3) if

bh(t) < b2(t). If bl(t) = b2(t), then any nonnegative 7r* such that r*(t) + 7r*(t) = 1/3 is

optimal.

Recall that the dual variable 7r (t) represents the increase in the value of the objective

function (15) per unit of increase in the right side value of constraint (16). Since 7r*(t) is

nonnegative for all nonnegative values of (bl (t), b2 (t)), it follows (see Yang [11] for details)

that the workload formulation (9)-(13) can be solved by finding the processes U1 and U2

that minimize the processes bl and b2, respectively, and then solving the linear program

(15)-(17) for Z*(t) at each point in time t.

It is well known (see Harrison [3]) that the processes defined by

U*(t) =- inf Bi(s) (20)
0<s<t

minimize the value of Ui(t) for all times t with probability one, for i = 1, 2, subject to the

constraints (10)-(13). Furthermore, the resulting processes {Bi(t) + U*(t), t > 0}, i = 1, 2,

are nonnegative.

Define the dynamic reduced costs Ek(t) by

ck(t) = 1 - 7r*(t)Mlk - 7r(t)M2k for k = 1,...,12, t > 0. (21)

The value ck(t) can be interpreted as the increase in the objective function of the LP

(15)-(17) per unit of increase in the right side value of the nonnegativity constraint (17).

Thus, the higher the value of Ck(t), the more expensive it is to hold class k customers in

queue at time t. A natural sequencing policy to consider is to always serve the customer
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class that has the largest dynamic reduced cost. Before we describe this policy, define the

workload process
12

Wi(t)= E MikQk(t), i= 1,2, and t > 0 (22)
k=1

to equal the expected remaining amount of effective work anywhere in the shop for station

i at time t. By (10), (14), and (22), it follows that the dual objective coefficients bi(t)

correspond to the scaled workload process Wi(nt)/x/ii. Thus, the policy based on dynamic

reduced costs is to give priority to classes with smaller values of Mlk when W 1 (t) > W 2 (t),

and to classes with smaller values of M2k when W (t) < W 2(t).

However, as can be seen from (6), this policy results in many ties. In order to break

the ties, we suggest the following tie-breaking procedure. If Wi(t) > W 2(t), then break

ties by giving priority to larger values of M2k at station 1 and smaller values of M2k at

station 2. If Wi(t) < W 2 (t), then break ties by giving priority to smaller values of Mlk

at station 1 and larger values of Mlk at station 2. The reasoning behind this procedure

is that station 2 may be threatened with idleness when W 1(t) > W 2 (t), and therefore

station 1 should attempt to feed station 2 some work by breaking ties with larger values of

M2k. Station 2, however, cannot immediately feed itself any work, so it should break ties

with smaller values of M2k, so as to serve a job who is closest to exiting the shop. This

policy, which uses the dynamic reduced costs and the tie-breaking rule, is referred to as

the BROWNIAN policy in Table IV. For the deterministic case, the elements Mik contain

the actual remaining effective processing times.

As can be seen in Table IV, there is a striking contrast between the DETERMINISTIC

scenario and the six stochastic scenarios. The BROWNIAN policy easily and consistently

outperformed the SEPT policy in all six stochastic scenarios. The percentage reduction in

mean cycle time ranged from 24.5% to 32.2%, and averaged 28.6%. In the DETERMINIS-

TIC scenario, on the other hand, the SEPT policy outperformed the BROWNIAN policy

by 27.2% and outperformed FCFS by 56.9%. This latter improvement is not far from the

53.2% reduction (from FCFS to SEPT) in mean cycle time observed by Conway et al. [2]
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in the nine station symmetric shop.

SCENARIO SEPT BROWNIAN

DETERMINISTIC 8.88 (.44) 12.2 (.37)

EXPONENTIAL 20.6 (1.84) 14.0 (1.04)

UNRELIABLE 38.8 (±2.97) 28.4 (±1.84)

MEDIUM 25.7 (±1.73) 19.4 (±1.19)

RELIABLE 15.9 (±.84) 11.3 (.40)

SHORT FAILURES 13.2 (±.62) 9.59 (±.39)

LONG FAILURES 88.3 (±8.38) 59.9 (±4.90)

TABLE IV. Mean cycle times for the symmetric shop.

Thus, although SEPT performs extremely well in the DETERMINISTIC scenario, it

is no where near optimal in a stochastic setting. Furthermore, the percentage improve-

ments claimed by scheduling in a deterministic setting are twice the size of the observed

improvements in a stochastic setting.

In closing, we should comment on why SEPT performs so well in the DETERMIN-

ISTIC scenario. The exponential distribution, which will have some operations with ex-

tremely small effective processing times and a few operations with very large effective

processing times, allows the SEPT policy to clearly differentiate between jobs. There is

a basic tradeoff in scheduling open job-shops between the short term goal of reducing the

number of customers in the system, and the longer term goal of avoiding machine idle-

ness; the problem studied in Section 3 is perhaps the simplest problem that illustrates

this tradeoff. Under the SEPT policy, jobs that are given priority will very quickly finish

their current operation, and will either exit the shop, in which case the short term goal is

achieved, or will move to another machine, in which case the longer term goal is achieved.

In a closed shop, the only goal is to avoid machine idleness, and thus SEPT also addresses
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this objective under the DETERMINISTIC scenario.

However, as soon as unpredictable variability is introduced, these arguments break

down. In a stochastic scenario, SEPT is not as effective at reducing the number of cus-

tomers in the system as the shortest expected remaining processing time rule, and is not

as effective at avoiding machine idleness as the BROWNIAN policy in Section 4. Further-

more, in contrast to the dynamic BROWNIAN policies presented in Sections 3 and 5, the

SEPT policy is incapable of addressing the tradeoff between these two goals in the open

shop setting.
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