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In the literature on network optimization problems, there is often

an equivalence or near equivalence assumed between the primal-dual and

out-of-kilter network algorithms (see Dantzig [2; Chapter 201, Glover et al [61,

Jewell 110], Simonnard [14]). Although both algorithms make iterative use of the

efficient maximal flow labeling algorithm, the purpose of this note is

to expose a fundamental asymmetry between them. Moreover, the primal-dual

algorithm has the capability, which the out-of-kilter algorithm appears

not to possess, of being directly approximated by subgradient optimization

methods. Thus, it is easy and natural to construct a hybrid network

optimization algorithm consisting of the primal-dual algorithm and the

essentially heuristic subgradient optimization methods. These latter

methods can be used, however, to provide an advanced dual solution for

starting the out-of-kilter algorithm as implemented by Barr, Glover and

Klingman [11, and Glover, Karney and Klingman [61.

Subgradient optimization methods were first used successfully by

Held and Karp in [81 to approximately solve the traveling salesman problem,

and has subsequently been used successfully on assignment problems (Held,

Wolfe and Crowder [91, set partitioning and covering problems (Marsten,

Northup and Shapiro [121), and scheduling problems (Fisher [3]).
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Let G = [N,al denote a directed network with node set

N = {l,...,m} and art set consisting of arcs (i,j) for some

(i,j) ER. For convenience, we will work with a special class of

network optimization problems defined on the network G called

circulation problems. This problem is

z* = min Z c..x..
(i,j)Ea 1' 1'

s.t. Z xij- Z Xki = 0, i=l,...,m, (1)
(i,j) eA (k,i)e

Zij < xij < qij for all (i,j)ea

where ij > 0 for all (i,j)eCt and all the cj, ij' qij coefficients

are assumed to be integer. A wide variety of network optimization

problems can be converted to this form.

Listed below are the primal-dual complementary slackness conditions

for the circulation problem (1). Let uR m be any vector of dual variables.

The dual solution is optimal in the dual to problem (1) and the following

primal solution xij, (i,j)ea is also optimal in (1) if and-only if

Z xij - Z Xki 0, i=l,...,m, (2a)
(i,j)ea 1 (k,i)ea

Ci - ui. + uj < > Xij = ij (2b)"] 1 ] x] q]

cij - u. + u. 0 = i < xij < qij (2c)

Ci.. - + Uj. > 0 P X.. = .ij (2d)

. ~ ~~~~~~~~ ~ ~ .J . . . . ...J 
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The primal-dual algorithm maintains (2b), (2c), (2d) at each iteration

while trying to attain the feasibility condition (2a). The out-of-kilter

algorithm takes the opposite approach and maintains only (2a) and seeks

to attain the others.

The details of the out-of-kilter algorithm are well known (see

Fulkerson [6], Smonnard [15]), and we omit further details except to

mention that the maximal flow labelling algorithm is used iteratively

to monotonically reduce the infeasibilities or lack of complementary

slackness in the arcs (i,j) violating conditions (2.b), (2.c), (2.d).

We give more detail about the primal-dual algorithm for the circulation

problem (1) in order to show how it can be integrated with subgradient

optimization methods.

The primal-dual algorithm starts with any dual solution uRm .

The arc set a is partitioned into three sets relative to u

a-(u) = {(i,j) Calci - ui + uj <01,

ao(u) = {(i,j) lc ij- ui+ uj O1

a+(u) = {(i,j) slcciC - u + u > 0.

The variables xij for (i,j) sa-(u) are set at their upper bounds qij and

the variables x for (i,j) ca+(u) are set at their lower bounds i... The

variables xij, (i,j) eaO(u) are free to vary between upper and lower bounds

and the primal-dual algorithm tries to select them so that the flow equations

(2a) are satisfied in which case an optimal solution to (1) has been found.



To this end, define

bi(u) = E _ qki + + Qki
(k,i)c (u) (k,i)ca (u)

( i, + (u) i j(i,j)Ea (U)

_- z q.i -

(i,j)Ca-(u) i

i=l,... ,m.

The selection of the xij,(i,j) sa°(u) is according to the phase one

network optimization problem

m +
min Z Yi + Yi

i=l1

C x..
(i,j )t (U) 1]

z Xki + Yi - y = bi(u)
(k,i)Eca°(u)

i=l,...,m,

ij -< ij < qij' (ij) ca°(u )

Yi 0, Yi ' 0, i=l,...,m.

Problems of this type can be solved by the maximal flow labeling

algorithm; e.g., see Johnson [101.

As a result of the upper bound substitutions for (i,j) Ea(u) Ua+(u)

and the maximal flow calculation, we have a primal solution x to the

circulation problem which satisfies along with u all of the conditions

(2) except probably (2a). If this solution satisfies the circulation

s.t. (3)
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equations (2a), or equivalently, if the minimal objective function

value in (3) is zero, then it is optimal.

When the minimal objective function value in (3) is greater than zero,

then by necessity we have an optimal solution vO to the dual of (3)

which satisfies the following conditions

Xij = qij for (i,j) ea°(u) and v - vi < 

Xij = i.. for (i,j) ca°(u) and v - v. > 0
z3 1] J 1

.ij < Xij < qij for (i,j) a°O(u) and vj - v. = 0

The m-vector v serves as a direction of change of the dual solution u.

Specifically, u is replaced by u + *v where 0* is the largest positive

value of consistent with

> 0 if (i,j) Ea+(u)

cij - (ui + vi) + (uj + ev) if (i,) 
< if (i,j) a-(u)

If e* = +, the circulation problem has no feasible solution.

Suppose 0* < + and consider the above analysis at the new

dual solution u + *v. By construction, the solution xij, (i,j) a,

given by (4) plus xij qij for (i,j) ca-(u), xij = ij for (i,j)ect(u),

satisfies the conditions (2), except (2a), at u + *v. To see why this

is so, consider x defined in (4a). Since cij - u. + u. = 0, we have1 ]

(4a)

(4b)
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cij - (ui + vi) + (uj + vj) = (vj - vi) < 0 for all 0> 0 implying

(i,j) ca-(u + 0*v) and xij = qij is the correct setting at u + e*v.

The same argument shows (i,j) a+(u + 0*v) for xij defined in (4b)

and (i,j) a°(u + *v) for xij defined in (4c). Similarly, 0* > 0

is chosen small enough that, except for one arc, (i,j) ca-(u) implies

(i,j) ea-(u + 0*v) and (i,j) c + (u) implies (i,j) ca+(u + 0*v). The

exceptional arc, say (s,t) ec(u) is chosen such that Cst - (Us + 0*VS) +

(Ut + *vt) = 0. Thus, xst = qst is a correct setting at u + 0*v since

the variable prices out zero.

The analysis at u + 0*v proceeds by exploiting the variable Xst

since now it is free to vary in the range st < Xst < qt' In terms

of the phase one arc network optimization problem (3), the variable X st

is added, it prices out negatively, and the minimization of the artificial

variables continues. It can be shown that the maximal flow labeling

algorithm can continue from its previous termination by the addition of

the arc (s,t). The entire process described above is repeated. The

primal-dual algorithm converges because there is a monotone decrease

(barring degeneracy) in the phase one objective function value.

Subgradient optimization can also be initiated at any dual solution

usR. A complementary primal solution xij, (i,j) a, is selected

according to (2.b), (2.c), (2.d) without recourse to problem (3). This

solution is used to calculate the direction of change v of the dual solution

u by

-q..

+ E Y, ki E +
(k,i)ea+(u) (i,j)a (u) 1

+ z Xk z x..
(k,i)ca°(u) (ij) Ea° (u) 13

i=l,.. m.
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If v = 0, then the given solution xij, (i,j)Ea, satisfies (2a) and is

optimal a fortiori In the usual case when v 0, a step is taken to

the new dual solution u + tv where the positive scalar t must satisfy

certain conditions.

Specifically, let

k4l k k
u = u + t v, k=l,2,...,

k
be the sequence of dual solutions and let xij, (i,j)ca, be the corresponding

sequence of primal solution determined by uk and the conditions (2b), (2c), (2d),

if the positive scalars tk are chosen such that tk + and tk = + , then
k=l

it can be shown ((Poljak [13]) that (cij - u.) x converges
(i,j) ' 'ij

to the minimal objective function value z* of the circulation problem (1).

k k k
Finite convergence of (cij - uk + u) x to any value z < z

(i,j)Eca 1ij

can be achieved if for all k

(z~ - C + k k

tk = Xk (i,j)ca 1] 3 ] j 
k k

I IvkI12

where JIvkI denotes Euclidean normand < k < 2 for > 0 (Poljak [14]).

The subgradient optimization approach to solving the circulation

problem (1) requires less work at each dual solution u than the primal-dual

because it does not require a reoptimization of the maximal flow problem (3)

to obtain a new primal solution and direction of change v,and it does not

require the calculation of 0* to obtain the new dual solution u + * v. It

does require some sorting of the arcs at each dual solution to determine the

sets a-(u), a°(u) and a+(u), but the primal-dual requires some sorting to
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compute 0*. The out-of-kilter algorithm requires less sorting of the arcs

because it can work with any out-of-kilter arc at each iteration, rather

than requiring the most out-of-kilter arc although the latter arc is

the most desirable to work on.

The implementation of subgradient optimization requires artistry which

we will not go into here but refer the reader to [5, 8, 9, 12]. Note

that at each dual solution u, the algorithm has the option of taking a

subgradient optimization step or a primal-dual step, depending on recent

performance of the two methods on the problem.
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