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A Two Priority M/G/1 Queue with Feedback

by

J. Keilson
GTE Laboratories Incorporated and Mass. Inst. of Tech.

and

L. D. Servi
GTE Laboratories Incorporated

ABSTRACT

An M/G/1 queueing system with two priority classes of traffic and Bernoulli feedback for the low
priority class is studied. For the low priority customers, the distributions of the ergodic time to
completion, the first pass time, and the number in the system are found in the transform domain and
the first moments are displayed. The distributed Poisson approximation introduced previously by the
authors is then employed to analyze systems with a preempt-resume high priority clocked schedule
and low priority traffic with feedback.
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1. Introduction

The following system which we will refer to as thefeedback system is studied: a) the system
consists of two classes of traffic, C 1 and C 2, each having Poisson arrivals and i.i.d. service times;

b) the C 1 customers have preempt-resume priority over C2; c) upon completion of service of any

C2 task, that task feeds back with probability 0 to the end of the C 2queue to again await service.

This system contains as special cases: i) the M/G/1 system, ii) a two class M/G/1 system with

prempt-resume priority as considered, for example, by Keilson and Sumita [9], and iii) an M/G/1

system with feedback considered, for example, by Takacs [11] and Disney [1],[2]. The elements

of priority and feedback interact in the feedback system and compound the effort required for its

analysis. Many of the formulae obtained, however, can be given a structurally simple and
informative form.

The study was motivated by concern for the performance of a telecommunications switch with

priority and feedback features. The distributed Poisson approximation introduced in Keilson and

Servi [7] and the results obtained for our feedback system permit exact analysis of a system
which is a fair approximation to one such telecommunications switch.

In Section 2, notation is first introduced. Next, using analysis of a system without feedback,
the p.g.f. of the number of C2 customers in the system in thefeedback system is found as well as
the mean time in the system for the C2 customers. Using an approach related to that of Keilson and

Kooharian [6] the equations for the state-space motion are found in Section 3 and solved in Section
4. In Section 5 this analysis is used to find the transform of the joint distribution of the duration of

the first pass time in the system and the number in the system at the end of the first pass time. This

leads to the Laplace transform of the first pass time and its expected value. In Section 6 the

transform is found of the joint distribution of the sojourn time of the low priority customers and the

number in the system at the epochs at which low priority customers leave the system. In Section 7

the busy period is examined. Finally, in Section 8 the analysis of Section 2 is applied to preempt-
resume clocked schedules with feedback of low priority customers using the distributed Poisson

approximation introduced analysis in [7]. The results are then validated numerically.

2.Notation. The mean time in system for low priority customers.

The following notation will be helpful for reference. Each row describes an M/G/1 system
whose Poisson input stream is the class listed in the first column.
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Class arrival rate
service
time

service time
c.d.f LST

C1

utilization

P1

ergodic
waiting time

W1

T2 AT2(X) Oa2(s)

T 2EFF AT2EFF(X) 0CT2EFF(S)

T12 AT12(X) arl 2(S)

Ts ATS(X) aTS(S)

P2
P2EFF=P2(1-)-'

P12=P1+P2
PS=P1+P2(1-O) - 1

TABLE 2.1

The subscript 12 designates the priorityless system of C1 and C 2 customers with no

feedback. The corresponding service time transform is given by

(2.1)
aT12(S)= 1 aT1(s ) + 1+2 aT2(S) 

The subscript 2EFF designates a class without feedback whose effective service time is a
compound geometric mixture of multiple convolutions of AT2(X) with itself. The corresponding

service time transform is given by
O0

aT2EFF(S) = (1-0) e 0iai+T2 (S)
i=O

(1-O)aT2(S)

1-0aT2(s)

This may be thought of as arising from the class of customers C2 feeding back to the head of the

line with probability 0.

The subscript S designates the priorityless superposition of the classes C 1 and C2FF. The

corresponding service time transform is given by

aTS(S) = 12 aT(S) + 0-T2EFF(S).
+Equivalently, from (2.2),

Equivalently, from (2.2),

aTS(S) =
%laTl(s)(1-0aT2(s)) + 2(1-0)aT2(S)

(X + 2)(1-OaT 2(S))
(2.3)
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This should be contrasted with the feedback system of focal interest where the C 2 customers

return to the back of the line with probability 0 and C1 has preempt-resume priority over C 2.

The following representative notation will also be employed.

N(t) the number of C 2 customers in the system at time t.
TSYS the ergodic time in system for C 2 customers in the feedback

system.
0 the probability of feedback for C 2 customers.
TBP1 the busy period for C 1 customers in the absence of C 2 .

FBPl (S) E[exp(-sTBPl)] , the busy period transform for C 1 customers.
4PK12(S) E[exp(-sW 12)], the waiting time Pollaczek-Khinchin transform

for the priorityless C 12 system.

OPKS(S) E[exp(-sWs)], the waiting time Pollaczek-Khinchin transform
for the priorityless C s system.

An upper case asterisk will always designate forward recurrence time, e.g.

, (s) 1 - T12(s) and a* (s) 1 - aTS(S) (2.4)
a E[T12( E[Ts]s

With this notation

4 PK12(S) = P12 and PKS() 1 S (2.5)
1- P12aTl 2 (s) 1 - PSaTs(s)

Case 1: The priority system with no feedback (0 = 0)

The priority system with no feedback has been treated by Keilson and Sumita [9] and the

distribution of the low priority customer delay is exhibited there. A much simpler derivation of

this distribution is given next which sets the stage for the more difficult feedback case.

The arrival of a tagged C 2 customer in steady state finds an ergodic backlog distribution equal

to that of a priorityless system of C 1 and C 2 traffic having arrival rates X1 and X2 and service
times c.d.f. of AT(X) and AT2(X). From TABLE 2.1 the L-S transform of this backlog is

OPK12(S). All subsequent C2 customers have no effect on the delay time of the tagged C 2

customer. However subsequent C 1 arrivals modify the delay time as interruptions of rate XI with

each interruption time equal to that of TBP1, the C 1 busy period. It follows at once that the C 2
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waiting time distribution has an Laplace transform given by pK12( + X -lCOBPl(s)) [4], [5].

Using similiar reasoning the time in the system has a Laplace Transform

~¥12( S) = PK12( + X1 -Xl(OBPI(s)) T2(S + X1 -l(YBP1 (S)) . (2.6)

Case 2: The feedback system.

The process N(t) is insensitive to a certain variant on the underlying order of service

discipline. This insensitivity enables one to employ Little's Law [10] to evaluate the expectation
E[Tsys] directly.

Theorem 2.1:
a) The system is stable when Ps = P1 + P2 (1- 0 )-1 < 1 and the idle state probability

at ergodicity, E(oo), is given by 1 - PS.

b) The probability generating function of N(oo) is given by

h(u) = PKS((u)) aT2EFF((u)) (2.7)

where

r(u) = X2(1-u) + 1 [ 1 - (BPi(2(l-u)) ], (2.8)

and aT2EFF(S) and ~PKS() are defined in (2.2) and (2.5).

c) E[N(-o)] = 2E[Tsys] (2.9)

and

d) For a low priority customer, the mean time in the system is given by

E[T] = (1-0))E[T1
2] - 2E[T 2

2] + 2E[T 2](1-pl-P 2) (2.10)

2(1-Pl){(1-0)(- 1)-P2 }

Proof: The ergodic number of low priority customers in the system, N(oo), would be the same in

distribution if the low priority customers that feed back were to feed back to thefront of the line

rather than to the back of the line. Hence, h(u) must also be the same under either schedule.

System behavior under the front of the line schedule is equivalent to that for a two priority system
in which the low priority customers have an arrival rate A2 and a service time T2EFF having the
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Laplace transform given in (2.2). Using the reasoning of (2.6) the time in system for the low
priority customers of a two priority M/G/1 system with arrival rates X1 and X2 and service times
T 1 and T2EFF is given by

E[exp(-sTsys)] = PKS(S + x -lO(BPI(S)) aT2EFF(S + 1 -lBPI(S)) (2.11)

where PPKS(S) and aBPl(s) are defined in TABLE 2.1.

From the distributional form of Little's Law [8], provided for conveniencein Appendix A.1, the
distribution of N(oo) and TYS are related to each other according to

h(u) =E[uN(-°)] = E[exp(-(X 2(1-u))Tsys)] (2.12)

so (2.7) follows.
Equation (2.9) follows from either Little's Law [10] or from differentiation of (2.12). From (2.11)

E[T5S 5] E[WS] + E[T 2EFF] (2.13)
1 -pl

where WS , T2EFF and P1 are defined in TABLE 2.1. Equation (2.10) then follows from (2.13)

and the Pollaczek - Khintchine formula,

E[Ws] = PS E[Ts] (2.14)

where T s and Ps are defined in TABLE 2.1. (Alternatively (2.10) follows from (2.7) and the

observation that E[N(o)] = h'(1).),

Remark: Note that when X1 = 0 and 0 = 0, (2.10) coincides with E[Tsys] for the ordinary M/G/1

queue. When kX = 0, (2.10) agrees with E[Tsys ] for the M/G/1 queue with feedback as given by

[11, equation (35)]. When 0 = 0, agreement is found with E[Tsys ] for the preempt-resume

M/G/1 queue with two classes of traffic given in [9, equation (3.8f)].
In the case of no high priority customers, i.e., XI = 0, equation (2.7) is equivalent to

h(u(-u)(1-0-p2) aT2(X2(1-u))

OUaT 2 (X 2 (1-u)) + (1-O)aT 2(X 2 (1-u)) - U

so

h(u) -E(-) = -(1-2 (1-0) U (-aT2(X2(1-u)))

u - (u+(1-0)) aT 2 (X(1-u))
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which is consistent with [11, equation (20)] .

3. The motion of the system on its state space

To describe the feedback system, the following notation will be employed.
Let N(t) be the number of low priority customers in the system.
Let X(t) be the virtual time to availability of service for C 2customers who are not in service

at time t, i.e. let

X(t) = Bl(t) + R2(t),
where Bl(t) is the C1 (high priority) backlog at time t and R 2(t) is the residual service time of any

C2 customer who has been interrupted and is awaiting resumption of service.

The reader will note that [N(t), X(t)] is not bivarate markov for the following reason. When
X(t) becomes zero at a C2 service completion epoch, N(t) decreases by one . On the other hand,
when X(t) becomes zero at a C1 service completion epoch (when no C2 customers having been

served in the current busy period), N(t) does not change. A third process J(t) taking two values S
and V, respectively, distinguishes between such system histories. Specifically:

a) J(t) = V if the server is busy and, in the current busy period, no C 2 service has been

provided;
b) J(t) = S if the server is busy and some C2 service has been provided during the current busy

period.
Finally, let E be the idle state.

With this notation it is clear that [N(t), X(t), J(t)] is a multivariate Markov process on the state
space N = V +S +E with
S =(n,x,S); 1 <n <,0< x <}); V = {(n,x,V);0< n <, < x <});E ={E).

Let Ti be the service time of a type i customer having density aTi(x), i = 1,2 Jumps on the

state space N induced by arrivals, busy period terminations and low priority service completions are
enumerated in TABLE 3.1.
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Changes from V or E

(n,x,V) -- > (n, x + T 1, V);
E -- > (1, T 1, V)

(n,x,V) -- > (n+l, x, V);

E -->(1, T 2, S)

(n,x,S) -- > (n, x + T1, S);

(n,x,S) -- > (n+l, x, S);

termination of the (n,O,V) -- > (n,T2 ,S)

J(t) = V mode

C2 service completion

with no feedback

(n,O,S) -- > (n-l,T2,S) ; n > 1

(1,0,S) -- > E

C 2 service completion (n,O,S) --> (n,T 2,S)

with feedback

TABLE 3.1

When underlying service time distributions are absolutely continuous the distribution on the state

space N can be described in terms of densities on S and V. Let

fvn(x,t) = d Prob[ N(t) = n, X(t) < x, J(t) = V];

fsn(x,t) = dd Prob[ N(t) = n, X(t) < x , J(t) = S];

E(t) = Prob [ System is in the idle state E at time t] .

The equations of motion on the state-space may be written down in the customary way (see, e.g.,

6]).One finds that
One finds that

dE(tt) + (-)fs(t)
dt - 0Xl+X2 ) E(t) + f¥(0,t) + (1-)fl(0,t) (3.1)
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af (xt)
O)x

0fvo(x,t)
-- N-

= - 2fvo(,t) + XlE(t) aTl(X) - Xlfvo(X,t) + XlfVO(X,t)*aTl(X),

ofvn(x,t)
&-T

= -X 2fvn(x,t) + 2 fVnli(x,t) - xlfVn(x,t) + lfVn(x,t)*aTl(x),

afsn(X,t)
UT

= -X2fsn(x,t) + 2fSn l(x,t) - LlfSn(x,t) + lfSn(x,t)*aTl(x)

+ fvn(O,t) aT2(x) + (1-)fSn+1(0,t)aT2(x) + fSn(0,t)aT2(X),

afsl(x,t)
ax

= - 2fS(x,t) + 2E(t)aT2(x) - XlfSl(x,t) + lfsl(x,t)*aTl(x)

+ fvl(O,t)aT 2(x) + (1-)fS2 (0,t)aT2(X ) + fSl(O,t)aT2(X) (3.5)
and

E(O) = 1. (3.6)

Equation (3.1) for example states that the rate of change in E(t) is due to losses associated with
the C 1 and C 2 arrivals and gains from busy period terminations. Equation (3.4) says that the time
rate of change of fvn(x,t) seen by an observer moving with velocity -1 consists of losses from

{(n,x,S)) due to arrivals of C 2 customers, gains from {(n-l,x,S) due to C 2 arrivals, internal
losses and gains on{ (n,x,S } due to C 1 arrivals, gains from (n,O,V) for termination of busy
periods initiated by a C 1 customer arrival, and service completion of C2 customers. The other

equations have a similar probabilistic interpretation.

4. Ergodic analysis
In the next theorem the transform of the joint distribution of N(oo), the number of low priority

customers in the system at ergodicity, and of X(oo) are obtained from Equations (3.1)-(3.6).
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Let

Voo(u,x) = _ fvn(X,oo) un; OVOO(u,W) = L [ I fvn(xoo) un ]

n=O n=O
o0 oo0

Soo( ,x) = E fsn(x ,') u n ; Soo(u,w) = L [ I fSn(x,oo) un ]

n=O n=0
(where L[-] is the Laplace Transform operator) and let (u) be the solution of the functional

equation

C(u) = X2[1-u] + X1 [1 - aTl(C(u)) ]. (4.1)

This functional equation plays a key role in the solution. As shown in Appendix A.2, the functional

equation (4.1) has the unique solution given in (2.8).

Theorem 4.1 (The Ergodic Distribution on the State Space)

The ergodic distribution of [N(t), X(t), J(t)] on its state space is described by

(S 00(U,W) =
u E(oo) (u) ( T2(W) - T2(()) (4.2))

[ w - .2(1-u) - l(l-Trl(w)) I [ u- aT2((U )) + CT2( (U))(1-U )]

OV.o(u,w) = X1E(o)
aTl((u)) - aTl(w)

w - 2 (1-u) - k1(- aTl(W))
(4.3)

and

(4.4)

Proof: Equations (4.2)-(4.4) are obtained from the equations of motion, (3.1) - (3.6), by standard

methods employing p.g.f.'s, Laplace transforms, regularity conditions and algebra. Details are

provided in Appendix A.3. 

Remark: By definition h(u) = OS,(u,O) + OV*(u,O) + E(*). Hence, from equations (4.2)-(4.4)

and some algebra, equation (2.7) follows. Details are provided in Appendix A.4.
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5. The first pass time

We define the first pass time of a C 2 customer to be the time from the arrival of that customer to the

system until the completion of that customer's first service. The expected value of the first pass time
at ergodicity is a measure of the performance of the system. Its distribution is also an important
ingredient for the calculation of the total time in the system.

Theorem 5.1 (Ergodic First Pass Time and the Number in the System): The
transform of the joint distribution of V, the duration of the first pass time, and of N, the number

of C 2 customers in the system at the end of the first pass is given by

l(u,s) = E[u NI e-sVl]

= aT2(w) [ IVO(z,w) + E(°°)] + DS(z,w) . (5.1)

Here

z = z(u,s) = (1-O+0u) aT2(w(u,s)) (5.2)

and
w = w(u,s)= s + 2(l-u) + 1 - 1 aBpl(s + 2 (l-u)). (5.3)

Hence,

Ol(u,s)

(1-(pl+P2)) aT2(W) [E2 (u-z ) (54)=[ ] [ E(oo) I h(z) ] / (1- ) (5.4)
1-(p 1+P2)aTl 2(w)+0(l-u)CaT2(w)w (1-) wE[T2]

where aT12(w) and h(z) are defined in (2.4) and (2.6).

Proof: Equation (5.1) follows from a generalization of the argument of Theorem 2.1. Equation

(5.4) follows from algebra involving (4.2), (4.3), and (5.1). Details are provided in Appendix A.5.

The Laplace transform of the disitribution of the first pass time at ergodicity can be found by simply

evaluating (5.4) at u=l. This transform is given in the next corollary:

Corollary 5.2.(Ergodic First Pass Time )

The Laplace transform of the ergodic first pass time distribution is given by
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Tl(S) --- l(l,s)

(PK12('w(s)) anT2((s)) [p + (l-p) h(aT2((s))) aT(W(s)) ]

where

w'(s) =w(1,s)= S+Xl-XlBPi(s),

p = E(oo) / (1-l-2) = ( 1-Pl-2(1-0)- ) / (1-pl-2),

and OPK12(s) is given in (2.5).

The mean is given by

E[W1d =-1(°)

( (1-)(1-pl)-ep2) X2E[T 22]+(1-0)XlE[T 1
2]-2p2E[T21] 

2(1-pl) 2 (1-0) ((1-0)(1-pl)-p2)
+

E[T2 ](1-0)

(1-0)(1-pl)-p2

Proof: Equations (5.5) and (5.6) follow from (5.4). 

Corollary 5.3 (Joint Distribution under no feedback)

If =0

6I(U,S) = PK12(W(U,s))

where w(u,s) and }PK12(s) are defined in (5.3) and (5.6).

Proof: Equation (5.7) follows from (5.4). 

Remark: In thb case of no feedback, i.e., 0 = 0, from (5.7) and (2.6)

Pl(s) = 1l(l,s) = r12(s)

which is equivalent to equation (3.5) and (3.7) of [9]. If 0 = O0 and l= 0 this equation simplifies to

Wl(S) = 4PKl(S) aT2(s) as expected.

Little's Law, [0], can be used to relate the average number of customers in a system to the average

time in the system. The following corollary verifies the distributed form of this law for the case of
0 =0.
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Corollary 5.3 (A Distributional form of Little's Law):

If 0 = 0, then

T1l(h2- X2u) = 1(1,X2 - 2u)= 1l(U,0) = h(u). (5.9)
Hence

E[N(oo)] = )2 E[Tsys] (5.10)

and

Var[Tsys] = Var[X 2N(oo)] + E[N(oo)]. (5.11)

Proof: If 0 = 0 then, from (2.8), (5.3) and (5.7),

tl(X2 - X2u) = 1(1,X2 - X2 u)---(u,0)= l(PK12(()) aT2 (r(U)).
But if 0 = 0 then aT2EFF(S) = aT2(), 4 PK12(s)= PKS() so from (2.7) this equals h(u) so (5.9)
follows. If 0 = 0 there is no feedback so the time in the system, Tsys, is equal to the first pass time,

V 1. Therefore 1
'(0) = E[Tsys], P1 1"(0) = E[Tsys2], h'(1) = E[N(oo)], and h"(1) = E[N(o) 2 ] -

E[N(oo)]. Hence (5.10) and (5.11) follow from (5.9).*

6. Total time in system

Theorem 6.1: Let X(u,s) be the transform of the joint distribution of: a) the number of customers

remaining in the system at departure and b) the total elapsed time from arrival to the system to
departure from the system. Then x(u,s) satisfies

X(u,s) = (1- )1l(u,s) + OaT2 (w(u,s)) X(z(u,s),w(u,s))) (6.1)

where z(u,s), w(u,s) and l1(u,s) are defined in equations (5.2),(5.3) and (5.4).

Proof: Using an argument similar to Theorem (5.1) one can show that fi+l(u,s) =

aT 2(w(u,s))Oi(z(u,s),w(u,s)) where i(u,s) is the joint transform of the duration of the first i
passes and the number of C 2 customers in the system at the end of the ith pass. But X(u,s) =

, (1-0)0i-li(u,s) so equation (6.1) follows. Details are provided in Appendix A.6.*
i=l

7. The busy period
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The following theorem gives a generalization of the Takacs busy period equation.

Theorem 7.1: (The Busy period)The busy period has a Laplace transform

COBp(S) = 1 o*BpI(S)+ Y oBP2(S)
1+ X (s) + xi + X2 * ()

where

*BPl(S)= OT11 S + X1 - Xl'*BP 1(S)+ X2 - X20*BP2(S) ]

*BP2(S) = aT2EFF[ S + 1 ~- Xl'*BP1(S)+ X2- X2'*BP2(S) ]'

aTl (s) and aT2EFF(S) are defined in TABLE 2.1,

and

pl+ P2(1-)l
E[TBP]=

1 - P- P 2(1-O)-l

1 E[T s]

+X2 1- PS
Proof: See Appendix A.7.

Note that if Xi or X2 is set equal to zero then equations (7.2) and (7.3) reduce to the familiar Takacs

busy period equation.

8. Clocked schedules

Consider a system in which the priority tasks arrive with deterministic interarrival times kA.

Suppose further that: a) the service time of the priority tasks, T 1 is infinitely divisible, i.e., for
every integer N, T1 is distributed as the sum of N independent and identically distributed random

variables; b) the low priority tasks arrive with an exponentially distributed interarrival time and

have a service time with a general distribution; c) the low priority tasks feed back with probability
0.

The distributed Poisson approximation of [7] may be used to model the high priority traffic as a
sequence of Poisson streams parametrized by the variable N with rate X1N = N/A and service time

having Laplace Transform alN (s) = aT11/N(s).
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As in the classical proof of de Finetti's Theorem [3], one has

aTl(s) = lim N-<° [ exp ( - X1N A [1 - alN (s) } ], (8.1)

i.e, the distribution of the high priority tasks arriving in A time units under the approximate
Poisson model with arrival rates XlN and service times cxlN(s) is exactly aTl(s). From (8.1) it can

be shown that

lim N-- { X1N A E[T1N] } = E[T1 ], (8.2)

lim N-Xoo { 1N A E[T1N 2] } = Var[T1], (8.3)

and

Pi = lim N---o { 1N E[T1N] } = E[T 1] / A. (8.4)

Equation (8.1) suggests that the clocked schedule with feedback could be accurately modeled as the
limit, in N, of a system with two classes of Poisson traffic having arrival rates 1N and X2, service
times with Laplace transforms alN(s) and a2(s) and having a feedback parameter 0. In fact, in [7]

this distributed Poisson approximation has been shown analytically as well as numerically to be
highly accurate for the case of 0=0. The mean time to completion for the limiting system can now

be readily obtained:

Theorem 8.1 (Mean Time to Completion of the Distributed Poisson Approximation
to the Clocked Schedule with Feedback)

The mean time to completion is given by

E[TY = (1-O)Var[T 1]/A +X2E[T 2
2] + 2E[T 2](1-pl-P2) (8.5)

2(1-pl){ (1-0)(1-P)-P 2}

Proof: Equation (8.5) follows immediately from equations (2.10), (8.2), (8.3) and (8.4).,

Results

page 15



To test the accuracy of (8.5) the following three examples were compared with simulations:

CASE 1: X, = 1; T1 has an Erlang-3 distribution with a mean of .2; X2 = 1; T2 has an exponential
distribution with a mean of .15; Four values of 0 were examined: 0=0,.25,.5, and .75.

CASE 2: X, = 1; T1 has an Erlang-2 distribution with a mean of .2; X2 = 5; T 2 has an Erlang-2
distribution with a mean of .05; Five values of 0 were examined: 0=0, .1, .2,.3,.4, and .5.

CASE 3: XI = 1; T1 has an exponential distribution with a mean of .2; X2 = .1; T 2 has an Erlang-5
distribution with a mean of .2; Eight values of 0 were examined: 0=0, .25, .50, .75, .90, .95, .96,

and .97.

In TABLE 8.1, for each case the value of E[Tsys] is computed via simulations. The simulated value
of E[Tsys], E[Tsys]sim, is given with a 95% confidence interval. In addition, the theoretical value
of E[Tsys] from (8.5), E[Tsys]theory' is given along with the relative error,
IE[Tsys]sim- E[Tsys]theorv

E[Tsy]sim
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CASE 0 E[Tsys]theory E [Tsys]sim
E[Tsys]sim' E[TsyS]theorv

E[Tsys]sim

1 .00 .244 .244± .090 0.0%
1 .25 .347 .352+ .379 1.4%
1 .50 .617 .620-+ 1.060 0.5%
1 .75 3.042 3.066+ 7.251 0.8%

.00
.10

.20

.30
.40
.50

.107

.122

.144

.177

.233

.349

.284

.374

.554
1.135
3.342

9.962
16.583

49.688

.108+

.122+

.154+

.187+

.243+

.357+

.251

.212

.095

.000

.095

.402

.283+ .232

.368± .474

.551+ .943
1.128+ 2.496
3.327± 8.425
9.962± 26.320

16.232± 43.390
50.171+136.89

TABLE 8.1

0.9%

0.0%

6.5%

5.3%
4.2%
2.2%

0.4%
1.6%

0.5%
0.6%

0.5%
0.0%

2.2%

1.0%

APPENDIX

A. 1: Theorem (Keilson and Servi [8]):

Let an ergodic queueing system be such that for a given class C of customers,

a) arrivals are Poisson of rate X2
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b) all arriving customers enter the system, and remain in the system until served
c) the customers leave the system one at a time in order of arrival
d) arriving customers do not affect the time in the system of previous customers

then N(oo) and Tsys, the ergodic number in the system and the time in the system, are related

according to equation (2.12).

A.2 Proof that equation (2.8) is a solution to equation (4.1):

Let 2(v) = v + X1(1 - yBpl(v)) and V(w) = w - 1(l - aTl(w)) where OBPl(v) is the Laplace

transform of a busy period of an M/G/1 queue with arrival rate X1 and service time Laplace
transform aTl(W). It can be easily shown that Q(v) and V(w) are inverses on the appropriate

domain, i.e,

V(Q(v)) = 2(v) - l - Tl(Q(v)) }

= v + Xi 1 - oBP1() - 1{ - T1(n()) = v
because the Takacs equation is equivalent to oBPl(v) = aTl(Q(v)).

Hence, on the appropriate domain
w = Q(V(w))

= V(w) + 1 ( 1 - BPl(V(W)) )

w - 1i ( 1 - aTl(W))+ 1 ( 1 - aBPl(W - ( 1 - aTl(W)) )

This implies that

aTl(w) = gpl(w - 1 ( 1- aT(W)) )- (A.1)
Evaluating (A.1) at w = 4(u) gives

aTl(A(u)) = BP1( (U) - X [ 1 - aTl(()) I )

so, from (4.1),

aTl(4(u)) = BPl(X2 [1-U]). (A.2)

Therefore equation (2.8) follows from (4.1) and (A.2). ,

A.3 Proof of Theorem 4.1:

From equations (3.3) and (3.4) the Laplace transform with respect to the variable x and the

probability generating function with respect to the variable n is found and its limit is evaluated when

t approaches oo. Then

voo(u, 0) - w OVoo(u,w)

= - 2(l-u)(vo(u,w) - ¢Icv(u,w) + lvoo(U,W)aTl(W ) + XlE(o)aTl(W),
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(Voo (u,w) =
yooV(u,O) - XlE(o)aTl(w)

w - X2(1-u) - I( 1 - aTl(w))

From (4.1) the denominator of (A.3) vanishes at w = (u). Regularity in w in the half-plane {w:

Re(w) 20 requires that the numerator also vanish there. One then has from equation (A.3)

voo(u, 0) = 1 E(oo) aTl(C(u)). (A.4)

Equation (4.3) then follows from (A.3) and (A.4).

Also, from (3.1), dE(to) = 0. Hencedt

(L1 + X2 )E(°° ) = fv0(0, °°) + (-0)fSl(0,°°) 

Equations (3.4) and (3.5) imply that

- L- 2Dfix) ] = Sj(u,0) - WcD(u,w)

= -X 2(l-u)Osoo(u,w) - ,1(1 - aTl(W)) So(u,w)

+ [ vo(u,0) - fvo(0,° ) ] aT 2 (W) + 2 E(oo)aT2 (W)U

+ (1-0)[ OSo(u,O)u - fs(0,oo) ]aT2(w) + So(u,O)T2(w).

From (A.4), (A.5) and (A.6) one obtains,

0sco(u,w) = So(uO) [ 1-0aT2(W)-(1-0)u 1aT2(W) 

w - 2(1-u) - Xl(l-aTl(w))

+ E(°°)aT2(w)[ X(1- OBPl(X2(l-U))) +X2(1-U) ]
w - 2(1-u) - L(l-ocTi(W))
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From (4.1) the denominator of (A.7) vanishes at w = C(u). Regularity in w in the half-plane
{w:Re(w) 20 } requires that the numerator also vanish there. One then has from equation (A.7)

0 = SJ(u,O) [ 1 - aT2(()) - (1-0)U-1T 2 ((u)) ]
+ E(o°)aT2((u)) [ )1( 1-aBP1(h 2(1-u))) +X2( 1-u) ]

which, from (2.7), implies

So(u,') = 1 0
- E(()aT 2 (((u)) '(u)

"T2((U)) - (l-O)U-laT2(C(u))

Equation (4.2) then follows from (2.8), (A.7) and (A.8). Equation (4.4) follows from equations
(4.2) and (4.3) and the condition that 1Soo(1 ,0 ) + 1 voo(1 ,0) + E(oo) = 1. 

A.4 Derivation of h(u) from equation (4.2)-(4.4):
From (4.2) and (4.3)

·DS (u,O) =

DVoo(u,0 ) + E(oO) =

-E(oo) (u) (1- aT2((u )) )

1 - OaT2((u)) - (1-G)u-1a0T2((u)) ]

E(oo) 1 ( l-aT((U))) + X2(1-u)
X2(1-u)

Then from (4.1)

VoVo(u,O) + E(oo) =
E(oo)C(u)

X2( 1-u)
But

h(u) = DSo(u,0) + OVo(u,O) + E(oo)

so, after some simplification,

h(u) =
-E(oo)r(u)( 1 -O)T2((u))

u2( - OuaT2((u)) - (1-0)aT2(((u)))

-E(-)C(u)(1-0)aT2((u ))

X2(1-aT2((u))) -2(1-U) ( l-0aT2((U)) )
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which, from (4.1),

-E(oo)~(u)( 1 -0)oaT 2((u))

, 2 (1-aT 2((u))) +[l(1-aTl((u)))- (u) ] ( 1-0aT2 (u)) )

which, from (2.3),
E(oo) (u)

(U)- (1+2)(1 - XT((u))) 1-B aT2((u))

l-Ps

1 - aTS(V(u))

(u)E[T S]

1-O aT2((u))

equals (2.7).*

A.5 Proof of Theorem 5.1:

The joint transform of V*, the duration of the first pass, and N*, the number of C2 customers in

the system at the end of the first wait conditioned on the value of (N,X,J) upon arrival, if no future

C 1 or C2 customers arrive, is

E[uN*eSV* I N=n, X = x, J = V] = (1-0+0u)n aT2n+l(s) esx.

The first term reflects the fact the each of the n C 2 customers will feed back with probability 0.

If J = S the right hand side of (A. 10) is modified to reflect the fact that a C2 customer is in service

E[uN*e -sV* I N=n, X = x, J = S] = (1-0+0u)naT 2 n(s) esx,

E[uN*eSV* I system is idle i.e., N(oo)=O, X = 0, J = E]

Hence,
00

E[uN*esV*] = I (1-8+Bu)n 0 aT2n+l(s) eX fVn(x,oo)dx
n=O S

+ I (1-0+0u)n aT 2 n(s) e-s x fSn(x,o)dx + aT2()E(o).
n=Os=O
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Therefore,

E[uN*e-SV*] = aT2(S) 0V[(l-O+0u)aT 2 (s),s] +so[(1-0+0u)aT(s),s] + aT2(s)E(oo) (A.14)

In the presence offuture Ci arrivals, the number of C 2 customers in the system at the end of

the first wait, Npl, is still N*. However, the C1 arrivals modify V* by interruptions of rate %I with

each interruption time is equal in distribution to that of TBP1, the C1 busy period. Hence, in the

presence of future C1 arrivals the joint wait transforms of, V1, the time to completion of the C 2

customers and Npl is [4],[5]

E[uNPl*e-SV l *] = E[ uN* e-( + X1 -XlBPl(S))V* ] (A.15)

where OcBPl(S) is defined in TABLE 2.1.

In the presence of both future C1 arrivals and future C2 arrivals the time to completion C 2

customers, V 1, is still V;. However, the number of C 2 customers in the system at the end of the

first wait, Np1, is a modification of Npl which reflects the Poisson stream with rate X2 that arrives

during V 1. Hence the joint distribution of Np1 and V1 is

*l(u,s) = E[uNP1 e-sV1] = E[uNPl*e - (s + X2 -X2u)V1* ] (A.16)

Combining (A.14), (A.15) and (A.16) gives (5.1)-(5.3).

From (2.8) and (4.3),

T 2(W)E(co)(w- -(z))

ar2(W) [ DVoo(z,w) + E(oo)] = - )) (A. 17)
w- 2(1-z) - Xl(l - aTl(W))

From (4.2) and (A. 17),

S(Z,W) + a2(w) [ v,,(z,w) + E(oo)]

E(oo)

w-X2(1-z)-X l ( 1-aT2 (w ))
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[
z 4(z) (aT2(W) - aT2(C(Z)))

z - aT2((Z)) + OaT2(C(Z))(-Z)
+ a2(w)(w - (Z)) ]

From (5.2)
E(oo)aT2(w)

w-X2(1-(1-e+0u) aT2(W))-X 1(1-T1(w))

(z) (z- (1-0+Ou)aT 2 ((z)))

z- aT2((z)) + OaT2((z))(l-z)

which, from (2.1) and (2.4)

E()C (T2(w)

w-(p 1+P2)wcT12 (w)+ 0 (1 -U) t T
2 (w)

which, from (A.9),
E(oo)cT2(w)

= ( 1
w-(p+P2)wl 2 ( w )+ 0 (l-u)O0T'2(w)

04(z) (z-u) aT2([(Z))

z- aT2((z)) + aT2(C(z))(-z )

[ -h(z)X20 (z-u) +w ]
E(oo)(1-0)

which simplifies to (5.4).,

A.6 Proof of Theorem 6.1: Using the argument of Equation (A.10) one finds that if V* is the
joint distribution of the duration of the first i passes and N* be the number of C 2 customers in the
system at the end of the ith pass if no other C1 or C2 customers arrive then

E[uN*e- SV* I Npl=n1, V1 = V1] = (1-0+0u)nl aT2nl+l(s) e-SV .

In the presence offuture C1 arrivals, joint transform of the duration of the first i passes, V i * ,

and number of C2 customers in the system at the end of the ith pass, Npi is found using the

argument of (A.15) to be

E[uNp2*e-sV2*] = E[ uN* e (s + X1 -1BP1(s))V* ] (A.19)

where cBpl(S) is defined in TABLE 2.1.
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In the presence of bothfuture C1 arrivals andfuture C2 arrivals, the duration of the first i passes,
V i , number of C2 customers in the system at the end of the ith pass, Npi, is found using the

argument of (A.16), to be

02(u,s) = E[uNP2 e-SV2] = E[UN2*e- (s + X2 -2u)V 2* . (A.20)

Combining (A.18), (A.19) and (A.20) gives

O2(u,s) = cT2(w(u,s))1 l (z(u,s),w(u,s))

where z(u,s) and w(u,s) are defined in equations (5.2) and (5.3).

Using a similar argument, for i = 1,2,...

*i+l(U,S ) = T2(W(U,S))5i(z(u,s),w(u,s)). (A.21)

If we uncondition on the number of passes then we find that the joint distribution of the number of
C2 customers in the system and the total elapsed time is

00

X(u,s) = E (1-0)0i-1li(u,s)
i=1

(A.22)

which equals
00

- (-0)l1(u,s) + 0 Z (1-O)0i-11 i+l(us)
i=l

which, from (A.21),

= (1-O)0 1(u,s) + OaT2(W(U,s))X
i=l

(1 0)Oi-li1i(z(us),w(u's))

which, from (A.16) equals (6.1)*

A.7 Proof of Theorem 7.1:

If OBpl(s) is the Laplace transform of an busy period of C1 customers assuming no C 2 customer

arrivals, i.e.,
OBPl(r) = aTl(r + X - lcqBpl(r))- (A.23)
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Define O*Bi() to be the Laplace transform of a busy period that begins with a C i customers in the

presence of both C 1 and C2 arrivals. Then, O*Bpl(s) corresponds to the duration of a TBP1

interrupted at rate X2 by a interruptions having a duration with Laplace Transform O(*BP2(S).

Hence,

'*BPl(S) = IBPl(S + 2- X2(*BP2 (S)) ' (A.24)

The busy period of the C 2 customers is independent of the order of service. Therefore it will be

assumed, as was done in Theorem 2.1, that the customers feed back to the front of the line rather

than the back of the line and therefore have an effective service time given in equation (2.2).

If this service time is modified due to the interruptions of the Poisson stream of C 1 customers

having busy periods with a Laplace transform aBrp(r) then the modified service time has a Laplace

transform,

aT2EFF(r) = aT2EFF(r + 3. - XlaBP1(r)) (A.25)

and a busy period starting with a C 2 customer is given by

BP2(S) = T2EFF( + 2- X2 BP2(S) ) (A.26)

From (A.23) and (A.24), setting r = s + 2- X2°*BP2(s),

*Bpl(S) = arl(S + X2 - X20*BP2(s) + 1 - XlBP1(S + X2 - X2*BP2(S)))

which from (A.24) implies (7.2).

From (A.25) and (A.26), setting r = s + 2 - 2*sBP2(S)

'*BP2(S) = aT2EFF(S + 2 2 *2(*BP2 (S) + 1 - XlBP1(S + 2- X20*BP2(S))

which from (A.26) implies (7.3).

Equation (7.1) follows from the definition of OBp(s), *Bpl(), and o*Bp2(s) and (7.4) from

differentiations of (7.1), (7.2) and (7.3)*
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