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1. INTRODUCTION

In this paper we consider and solve in polynomial time the problem of

minimizing the number of vehicles to meet a fixed periodic schedule. For

example, consider an airline that wishes to assign airplanes to a set of

fixed daily-repeating flights (e.g., San Francisco at 10 p.m. to Boston at

6 a.m.) so as to minimize the number of airplanes,.and deadheading between

airports is allowed. This example may easily be extended to both bus

scheduling and train scheduling.

The finite horizon version of the above vehicle scheduling problem was

solved by Dantzig and Fulkerson [DF]. The periodic version in which dead-

heading is forbidden was solved by Bartlett [Ba] and by Bartlett and Charnes

[BC]. (If deadheading is forbidden, the only question is how to start the

schedule. Once in operation, a FIFO scheduling procedure is optimal).

Finally, Orlin [02] has solved the more general problem of minimizing the

average linear cost per day of flying a schedule subject to a fixed number

of airplanes. This last paper involved a solution technique substantially

different from the technique presented here, although both involve solutions

induced from finite minimum-cost network flows.

The periodic vehicle scheduling problem may be expressed in terms of

task scheduling as follows: What is the minimum number of individuals to

meet a fixed periodically repeating set of tasks? (For airplane scheduling,

the tasks are flights and the individuals are airplanes.) This problem is

shown in Section 4 to be a special case of the "minimum chain-cover problem

for periodic partially ordered sets." This latter problem is formulated in

Section 2 and a large subclass of this problem is solved as a minimum cost

network flow problem in Section 3. The entire problem is solved in the

_ ·_1_11_� -111111 ·._� _.__·__I__
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appendix. These results generalize the work of Ford and Fulkerson [FF] who

showed that the finite version of the above task scheduling problem may

,be solved as a special case of the minimum chain-cover problem for finite

partially ordered sets.

Periodic Partially Ordered Sets

A partially ordered set (poset) is a set with a transitive anti-symmetric

order relation . A "periodic poset" is a special type of infinite poset

in which the relations occur periodically. A "chain" is a set of elements

every two of which are related, and a "chain-cover" is a decomposition of the

elements of the partially ordered set into chains. Periodic posets are very

structured, and in Section 3 we exploit this structure to obtain a polynomial

time algorithm that determines a minimum cardinality chain-cover for a

subclass of periodic posets. The technique is similar to that used by

Orlin [01] to obtain maximum-throughput dynamic network flows, in that the

solution is obtained by reinterpreting a minimum cost flow in a related

finite network.

Periodic Interval Graphs and Circular Arc Graphs

An intersection graph is a graph whose vertices are associated with

subsets of a set, and two vertices are adjacent if the corresponding sets

have a non-empty intersection. A periodic interval graph is an intersection

graph in which the associated subsets are intervals that are periodically

spaced over the real line. A circular arc graph is an intersection graph in which

the associated subsets are arcs on a circle. The problems of coloring

circular arc graphs and (finite) interval graphs have both been studied

extensively, e.g., [GJMP], [Go], [LB], [OBB] and [Tu].
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In Section 4, we show that the coloring problem for periodic interval

graphs is a special case of the task scheduling problem, and thus it is

solvable as a network flow problem. We also observe that the circular arc

coloring problem, which was proved NP-complete by Garey et. al. [GJMP], is

a special case of the task scheduling problem under the added restriction

that each instance of the same task is carried out by the same person,

proving that this latter problem is NP-hard. These results contrast with a

recent result by this author [03] showing that the coloring problem for

"periodic graphs" is polynomial-space complete.
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2. PERIODIC POSETS AND DILWORTH'S THEOREM

A partially ordered set (poset) is a set with a transitive, anti-

symmetric relation >. A chain of a poset P is a (possibly infinite)

subset of elements of P that are pairwise related, and an anti-chain is

a subset of elements of P that are pairwise unrelated. A chain-cover of

P is a partition (or decomposition) of the elements of P into chains. It

is obvious that the number of chains in any chain-cover is a least the number

of elements in any anti-chain. This inequality leads to the min-max result

proved by Dilworth [Di] in 1950.

Dilworth's Theorem . Let P be a finite or countably infinite partially

ordered set. Then the minimum cardinality of a chain-cover is the maximum

cardinality of an anti-chain. 

Let N be an index set, let Z by the set of integers, and let

P = {ir : i e N, r Z be a partially ordered set. We say that P is

periodically closed if it satisfies relation (1) below.

ip > jr if and only if iP+l jr+l (1)

If P = {ir : iEN, rZ} and S is any set of relations on P (not

necessarily a partial order), then the set of relations induced by S and

(1) is called the periodic closure of S. For example, the periodic closure

of the singleton set {ir jP} is the set of relations {ik > jk+p-r : k ZI

The transitive closure of set S is the set of relations u > v such that

there is a finite sequence u = ul, . .., uk = v of elements of P such

that ui > Ui+l is a relation of S for i = 1, . . ., k-l. The periodic-
i1~ '' 
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transitive closure of S is the transitive closure of the periodic closure

of S

Remark 1 . The periodic-transitive closure is periodically closed. O

We say that P is a periodic partially ordered set if P is a partially

ordered set with elements {ir : i N, r Z , and the set of partial order

relations is the periodic-transitive closure of some finite set.

Example 1 . (A periodic poset). Let P = r, 2r :r Z such that (1)

1r 1 for r > p, and (2) 2r 2 for r < p, and (3) 1 r 2 for

r, p Z. Then this partially ordered set is the periodic-transitive closure

of the set {1 > 1 , 2 > 2 , 10 2} .

Example 2 . (A partially ordered set that is periodically closed but is

not a periodic poset). Let P = {1r, 2r :r Z} such that ir > 2 for all

r, p Z, and all other elements are unrelated. It is clear that P is

not the periodic-transitive closure of a finite set of relations.

If the periodic poset P is the periodic transitive closure of set S

of relations, we say that S generates P and that S is a generating

set of P .

The main theoretical result of this paper is a polynomial time algorithm

for finding a minimum cardinality chain-cover and a maximum cardinality

anti-chain in a periodic poset. Here, polynomial time means that the number

of elementary operations to determine the chain-cover and anti-chain is poly-

_ _I L__I III�____ _·______I��·�� IIIIY·IIXI _Il_-_LI_...
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nomially bounded in the length of the input for the generating set, which

we assume is given as input.

An Alternative Description of Periodic Posets

Let P be a partially ordered set whose elements are the set of

integers. We say that P is periodic with period n if relation (1')

holds.

i > j if and only if i + n> j + n . (1')

There is a 1:1 relation between the sets P' = Z satisfying (1') and partially

ordered sets P = {ir : i = 1, . .. , n, r Z satisfying (1), which is as

follows: we associate the element ir P with element i + rn P'.

If we consider partially ordered sets with P' = Z as above, the

notation is somewhat simpler. However, we will continue using the previous

notation because it helps to make the proofs and applications more transparent.

_ _�_II I�-���--I�L�-�I �II
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3. FINDING MINIMUM CARDINALITY CHAIN-COVERS AND MAXIMUM CARDINALITY ANTI-

CHAINS IN FORWARD-DOMINATING PERIODIC POSETS.

Forward and Backward Dominating Indices

In a periodic poset, index i is said to be forward dominating (resp.,

backward dominating) if there is an integer p > 0- (resp., p < 0) such that

iO > iPs 

Remark 2 . If some index i of a periodic poset P is neither forward

nor backward dominating, then the set ir ·r Z} is an anti-chain of P. 

Remark 3 . No index of a periodic poset is both forward and backward

dominating.

Proof . Let p and r be positive integers. If i0 > i-p then ir p > i .

If i > ir then i > irp . It is therefore impossible that both i > i- p and

0 r
i >i . 0E

If index i of a partially ordered set is forward (resp., backward)

dominating then we also say that element ip is forward (resp., backward)

dominating for each p Z. If every element of the periodic poset P is

forward (resp., backward) dominating then we say that P is forward (resp.,

backward) dominating.

An Overview

Below we give a polynomial time algorithm for finding a minimum

cardinality chain cover in either a forward or backward dominating periodic
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poset P. To do this, we associate a finite network with each generating

set for P, and we show that certain periodic chains may be induced from

cycles in the finite network. Finally we show that a minimum cardinality chain-

cover of P may be induced from an optimal covering of the nodes of the

associated finite network by directed cycles. At the same time we determine

a maximum cardinality anti-chain in P. These results are applied in the

next section to solve the periodic task scheduling problems.

Suppose P = P u P', where P (resp., P') is the subset of forward

(resp., backwarE) dominating elements of periodic poset P. The union of

the minimum chain-covers for P and P' does not, in general, form a

minimum chain-cover for P. In the appendix we show how to transform this

union of chain-covers into a minimum cardinality chain-cover by pairing a

number of chains.

Generating Networks

Let P be a periodic poset with element set {ir : i N, r Z}

and let S be a finite set of relations that generates P. We associate with

S a generating network GS = (N, A S) , where N is the set of nodes and

A is an arc set that is constructed as follows: for each relation ir > jP

in S, there is an associated arc a in A directed from i to j and

with an associated length c = p - r. Of course, GS may contain multiple
a

arcs.

Example 3 . Let P = {1r, 2r r Z} be a periodic poset such that (1)

1r > 2P if p - r > 5 , (2) 1r > 1P if p - r = 3k for some positive integer

k and (3) all other elements are unrelated. Then P is generated by the

_ � �li�____ ·_·�



-9-

of relations S = {1 13 25 10 26 0 7
set of relations S = 1, 1 2 , 1 >2,1 >2 . Thegenerating

network GS is portrayed in Figure 3.1. The numbers on the arcs are the

arc lengths.

Figure 3.1. A Generating Network

3

Figure 3.2. A Directed Path of Length 6.

4
- --

- �- ^I"---�-����- ----- ·----- . .. t 
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A directed path in network G is an alternating sequence

i1, al, . ., ak 1, 
ik of nodes and arcs such that arc aj is directed

from node i to node ij+ for j = 1, . . ., k-l. The length of a

directed path is the sum of the lengths of the arcs of the path. A directed

*cycle is a directed path in which the initial node is the same as the terminal

node, and no other node appears twice on the path.. Figure 3.2 represents a

directed path of length 6. Figure 3.3 is a directed cycle of length 3.

Figure 3.3. A Directed Cycle of Length 3.

Lemma 1 . Let P be a periodic poset with generating set S. Then ir > jP

in P if and only if there is a path in the generating network G from

node i to node j with length p - r.

Proof . Let PC(S) be the periodic closure of set S. It is clear that

ir > jP e PC(S) if and only if there is an arc a = (i, j) AS with length

da = p - r. By definition of the periodic-transitive closure, ir > jP in

if . 1 .rk
P if and only if there is a finite sequence of elements i = 11. .. , k

~~~~~~~~~~~~~~~~_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ---- _ 
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in P such that the relation i i + is in PC(S) for Q = 1, . .., k - 1.

The above is true if and only if there are corresponding arcs a% from i%

·to iZ+1 with length r%+1 - r , and this is true if and only if the path

il' al' ' ' '' ak-l ik is a path in GS from i to j with length

p - r. D

Corollary 1 . Let C be a simple cycle with length r in the generating

network G . Let P' be the periodic poset generated by C. Then elements

of P' partition into Irl chains such that no element in one chain is

related to an element in another chain.

Proof . Let the cycle be a path from i to i with length r. Then C

induces a chain in P from ip to ip+r for all integers r. Let S.

denote the chain obtained by concatening the chains from ip to ip+r for

{p : p = rk + j, k Z . Then the chains S1, . .. , SIrl cover all elements

2P for node g of C and p Z, and no elements in distinct chains are

related by Lemma 1. D

Example 4 . Let P be the periodic poset whose generating network is

portrayed in Figure 3.3. Then the elements of P decompose into the three

chains S - {lj+3k 2j+l + 3k 3j+2+3k 4j+2+3k 5j+ 1+ 3k k Z f
= ,k 4 , S :+ k Z for

j = 1, 2, 3.

Let G = (N, A) be a generating network for a periodic poset. A

cycle-cover for G is a union of cycles (not necessarily disjoint) that

contain all of the nodes of G. The length of a cycle-cover is the sum of

the lengths of the cycles.

_I_ �II�I _ ^_I _
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Theorem 1 . Let P be a forward dominating periodic poset, and let G = (N, A)

be a generating network for P. Then a minimum length cycle-cover for G

induces a minimum cardinality chain-cover of P. Furthermore, a minimum

length cycle-cover may be determined as an optimal solution to linear program

.(2) below.

(2.1)Minimize z = c x

Subject to
aT a qi = 0
agT.

I

q - Xa =

aEH.

qi 1

x > 0
a

for i £ N ,

for i C N ,

for i N ,

for a A ,

where Ti (resp., Hi) is

node i.

the set of arcs of G whose tail (resp. head) is

Proof . We first show that there is an optimal solution x to (2) that

induces a chain-cover C of P whose cardinality is the objective value of

x. If there is no feasible solution to (2), then there is a node i that

cannot be covered by any cycle and thus by Remark 2, the set {ip : p C ZI

is an anti-chain. Henceforth, we assume that there is a feasible solution to

(2).

Each feasible solution to (2) is a circultion with the property that the

flow into (and out of) each node i is qi 2 1. It is well known (see, for

(2.2)

(2.3)

(2.4)

(2.5)

--�--·----�·--·-C_11*··L�--l�·IP- ���CII�---·C·I�·I�--)41111··.^--.·--_111 �I..
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example, Ford and Fulkerson [FF]) that a circulation may be decomposed into

flows around cycles. The flow around any cycle has a positive cost because

each cycle has positive length, and thus the objective value of (2.1) is

bounded from below. Therefore, there is an optimal solution x to (2) that

is a basic feasible flow.

The basic flow x is integer-valued because.the constraint matrix is

totally unimodular. Therefore, x decomposes into unit flows around directed

*
cycles, and thus x induces a cycle-cover of G whose length is equal to

the objective value for x , which we denote henceforth as r. This cycle-

cover in turn induces a chain-cover C of P with cardinality r by

Corollary 1.

In the remainder of the proof we produce an anti-chain S whose cardinality

is the cardinality of C. Then by Dilworth's Theorem, the chain-cover has

minimum cardinality while the anti-chain has maximum cardinality.

Consider the linear program (3) below, which is the dual to linear pro-

gram (2).

Maximize w = Yi (3.1)
isN

Subject to -ui + v < ca for a = (i, j) A , (3.2)

-Ui + Vi - Yi 0 for i N ,(3.3)

Yi > 0 for i c N. (3.4)

Because (2) has an optimal solution x , linear program (3) also has an

optimal solution (u, v, y) and by linear programming duality the objective

� _ .__��__I _1�1_�_ I·IIIX1-�-aYL- I^^I·^1-I 11- 11 .1111 I
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value of (u, v, y) is r. Furthermore, the constraint matrix is totally

unimodular, and thus we may assume that (u, v, y) is a integer-valued basic

solution. Let

u. v.-1
S = U i 1-, 1 }

i

Then ISI = Y1 + + y = r. We now claim that S is an anti-chain, and

this proves the theorem.

Suppose there is a chain containing two elements ir, jP of S. By

Lemma 1, there is a path in G from node i to node j of length p - r,

and suppose it is the path i = il, al, . .. , ak-l' ik = j. Then the length

of the path may also be written as follows:

k-l k-l

p- r = a Ca 2 X (Cti u.i)
2=l aQ £=1 +1 1

k-l

= v. - u.+ X (v. - U. ) V.- U.
i 1 £=2 £ 1 i

If i S then r u and hence p > vj, contradicting that jP £ S,

and proving that S is an anti-chain. C

In order to find maximum cardinality anti-chains and minimum cardinality

chain-covers in backward dominating periodic posets, it is easy to transform

the poset into a forward dominating poset as follows.

Remark 4 . Let P be a backward dominating periodic poset with generating

set S. Let P' be the forward dominating periodic poset derived by P by

reversing the direction of all relations. Then P' is generated by the set

I�_� 1__�1 __111_11_1_1_____1_1lli---...
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S' obtained from S by reversing the direction of all relations. Further-

more, each chain (resp., anti-chain of P) is a chain (resp., anti-chain)

of P'. 

At this point the following conjecture may seem plausible: "a minimum

cardinality chain-cover for periodic poset P may be obtained by finding

minimum cardinality chain-covers for the forward dominating elements and the

backward dominating elements, and then taking the union." This decomposition

approach fails because, as in example 1, sometimes a chain of forward

dominating elements may be paired with a chain of backward dominating elements

to yield a single chain. A decomposition argument plus a pairing approach is

given in the appendix to determine a minimum chain-cover for periodic posets

with both forward and backward dominating elements.

_____111_111_111______II -1_1111-·----1-_-� ---̂l--illlll�-t-(·-i�·ll··^(L·�--· .XY^-----.-.II_ _I·-I_. _ ----- -------- l _C 1_ (1 _ ~--·IXI
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4. THE MINIMAL NUMBER OF INDIVIDUALS TO MEET A FIXED PERIODIC SCHEDULE

OF TASKS.

Ford and Fulkerson [FF] showed how to find the minimum number of indivi-

duals needed to meet a fixed schedule of tasks by reducing that problem to a

special case of finding a minimum cardinality chain-cover in a poset. Here

we extend their results to the case in which there .are a finite number of

tasks that must be performed periodically over an infinite horizon.

Let T1 . . ., T be a set of tasks that must be carried out periodically,

and let p denote the period length. Associated with task Ti are non-

negative real numbers ai and b.i such that Ti must be processed by an

individual during the time interval (ai + k , b + kp) for k = 0, 1, 2,.

We refer to the kth iteration of task T. as the kth instance of T.. (We

allow that ai + p < bi, which corresponds to the case that two instances of

the same task are processed in overlapping intervals.) The individuals

(processors) are identical, and thus any individual can carry out any task.

Finally, there is a set-up time rij between the successive processings of

instances of task Ti and task T.. We assume that r = (rij) satisfies

the triangle inequalities: rik < rij + rjk for all i, j, k.

We transform the task scheduling problem into the chain-covering problem

.r th
as follows. Let j denote the r instance of task Tj, which is carried

out in interval (aj + pr, b + pr). We then induce a periodic partial order

,q >ollws: 9 js th
as follows: q > js if the q instance of task Ti may be the immediate

th
predecessor of the s instance of task Tj ; i.e., bi + pq + rij < aj + ps.

So long as r.. is finite for each i, it is clear that the above periodic

poset is forward dominating. Furthermore, each chain of P is a number of

instances of tasks that can be carried out by the same individual. Thus the

_ · _ Ili�·pll·ll�llll)l�-·I · 111-�-·I ..I1 I_-_ -_-I. .--_.... ..
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minimum number of individuals needed to carry out all of the tasks is the

minimum cardinality of a chain-cover of the induced periodic poset. Further-

more, we have the following interpretation of Dilworth's Theorem:

The minimum number of individuals needed to carry out a fixed number
of periodically repeating tasks is equal to the maximum number of
instances of tasks such that no two of them may be carried out by
the same individual.

An Application to Airplane Scheduling

Consider an airline that must schedule a minimum number of airplanes to

meet a fixed daily-repeating set of flights, where deadheading is permitted.

This problem is easily seen to be a special case of the above task scheduling

problem. The tasks are flights, and the period length is one day. The

set-up time r.. is the amount of set-up time required between the arrival
1J

of flight i and the departure of flight j, assuming that the same airplane

flies both flights. We allow that the arrival site s for flight i is

different from the departure site t for flight j, in which case the set

up time rij would include the deadhead time from airport s to airport t.

We observe that the flight schedule that we obtain from Section 3 is

daily-repeating. However, it is not the case that each individual airplane

flies a daily repeating schedule. Recall that the chain-cover of a periodic

poset is induced by cycles in a generating network. A cycle of length 5 will

be interpreted in the airplane scheduling problem as a periodic route that

repeats every five days. To fly this route daily, we need five different air-

planes.

If we add the restriction that the schedule for each airplane is daily-

repeating, then the resultingproblem is NP-hard, as demonstrated below in the

subsection on "circul arc graphs."

_ I __ _ � I_ IP�--Y- 1.·-11III-�--_I--_I_� 11 -·-l----L^I1 -l-l·__ll.-IIL___I-.I_ ... _ _II I�__��_�_
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In terms of airplane scheduling, Dilworth's Theorem states that the

minimum number of airplanes needed to meet a fixed daily-repeating schedule

is the maximum number of instances of flights, no two of which may be flown

by the same airplane.

The above problem and solution technique generalizes that of Dantzig

and Fulkerson [DF], who solved a finite horizon version of the airplane

scheduling problem. The approach here also generalizes the work of Bartlett

[Ba] and Charnes [BC] who solved the airplane scheduling problem in the case

that deadheading is not permitted. This latter case is significantly easier

because there are no relevant decisions to make once the schedule is initialized,

as airplanes may fly only the required routes.

Coloring Periodic Interval Graphs

Another "application" of the task scheduling problem is to a coloring

problem in graph theory. An intersection graph G is the graph derived by

a set of subsets S as follows: we associate each vertex of G with a

subset in S, and two vertices of G are adjacent if the corresponding

subsets have a non-empty intersection. An interval graph is the intersection

graph of a set of intervals on the real line. An interval graph is periodic

if the corresponding set of intervals is an infinite set spaced periodically

over the real line, i.e., the set of intervals may be written as follows:

{(ai + kp, b.i + kp) : i N, k Z} . In other words, it is the set of

intervals in which tasks may be carried out for the periodic task scheduling

problem.

Interval graphs were introduced into the literature by Lekkerkerker and

Boland [LB] in 1962, and have been studied quite extensively. For a recent

11 I._.III.1I_-I_-IIII*L· IPI I�X-L· _II·�11III.
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book that surveys the literature on interval graphs see Golumbic [Go].

It is easy to see that the minimum number of colors needed to color

the vertices of a periodic interval graph is exactly the number of individuals

needed to carry out the tasks of the corresponding task scheduling problem,

assuming r.. = 0 for all i,j.

Coloring Circular Arc Graphs

Consider the problem of coloring periodic interval graphs with the added

restriction that the set of vertices corresponding to the intervals

{(ai + kp, b.i + kp) : k Z} be colored the same color for any fixed i.

We may reinterpret the coloring as follows. Consider a circle whose points

are real numbers in the interval (O,p) extending clockwise around the circle.

Let (a,b) denote an arc of the circle extending clock-wise from point a to

point b, and let S = {(a, bi) : i N} . Then the intersection graph

for S is a circular arc graph, and any k-coloring of the graph may be

extended to a k-coloring of the periodic interval graph such that

(ai + kp, bi + kp) is given the same color for each p.

In terms of the scheduling problem, such a coloring corresponds to an

assignment of tasks to individuals so that each instance of task i is

assigned to the same individual, or each instance of a flight is flown by

the same plane. Recently Garey et. al. [GJMP] proved that the problem of

coloring circular arc graphs is NP-hard. Since the circular arc coloring

problem is a special case of the airplane scheduling problem with the

restriction that schedules for each airplane repeat daily, this latter

problem is also NP-hard.

_ _�_ I 11.^1_.11� 1_.-__..·
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There have been partial results on coloring circular arc graphs. For

example, Tucker [Tu] analyses several heuristics for coloring and reduces the

problem to a multi-commodity flow. Recently Orlin, Bonuccelli and Bovet [OBB]

gave a polynomial time algorithm for the special case of circular arc coloring

in which no arc is contained within another.

__ -~~~I~---^--~-- -
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APPENDIX

Minimum Cardinality Chain-Covers in Periodic Posets

In Section 3, we showed how to obtain in polynomial time a minimum

cardinality chain-cover and a maximum cardinality anti-chain in a forward

(resp., backward) dominating periodic poset. The proof depended critically

on the fact that all cycles of a generating network have positive (resp.,

negative) length. In this section, we show how to extend the results to

periodic posets that are neither forward nor backward dominating.

The gist of the procedure is as follows. Partition the elements of P

into sets P' and P of forward and backward dominating elements. Then

find minimum cardinality chain-covers S' and S for P' and P using

the procedure in Section 3. A forward dominating chain C and a backward

dominating chain D are compatible if C u D is a chain. A minimum

cardinality chain-cover may be obtained by taking S' S and then pairing

as many compatible pairs of chains as is possible. This procedure may be

carried out by solving a matching problem on an associated bipartile graph

that has IS'I + IS*I vertices, as detailed below.

Henceforth, we consider only those periodic posets in which each

element is either forward or backward dominating. By Remark 2, the minimum

cardinality of a chain-cover in all other periodic posets is .

We say that a pair C, D of chains is compatible if C u D is a chain.

To pair two compatible chains C and D is to create the single chain C D.

Theorem 2 . Let P = P' u P be a periodic poset with forward (resp., back-

ward) subset of elements P' (resp., P ). Let S' and S be minimum

I _I 1 __ __ __ CIII I11·II 1 .·^ll�-_--.l---�Ulq�- -- ---·------· llll---LI�II___�____��_
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cardinality chain covers for P' and P . Then a minimum cardinality chain-

cover for P may be obtained from S' u S by pairing a maximum number of

compatible chains.

Proof . As a preliminary we prove the following lemma.

* *
Lemma 2 . If C' and C are chains of S' and S respectively, then

either C' and C are compatible or else no element of C' is related to

*
an element of C

Proof . Suppose ir c C', JP C and ir > jP. (The proof in the case

that jP > i is symmetric to the one below.) Chains C' and C were

induced by cycles in the corresponding generating networks as in Corollary 1.

Let and -k be the lengths of these cycles. It follows that for each

r+Zkt p+Rkt *
integer t we have i ck C' and j k C . Because P is periodic,

we also have ir+tkt jp+Zkt
we also have ikt > jpkt for each integer t. Then for every u C'

and v C , we can choose t sufficiently large so that u > i r+kt > jp t > v.

To complete the proof of Theorem 2, we let U = {ul, . . ., ur} (resp.,

V = {l, . ., v ) be a maximum cardinality anti-chain of P' (resp., P ).

Of course, r = IS'l, p = IS*l. Furthermore, for every s U u V there is a unique

associated chain C in S' u S such that s C because IS' = Ul and

Is = Ivl.

Let B be a bipartite graph with vertex set U u V, and where i is

adjacent to v. if the corresponding elements of P are related. Let I

a maximum cardinality independent set in B, and let M be a maximum

----l�_lll-.�-X^-_^��� I�I Ill�ll_-_L__I_ _·�l_._.l_.·.I_ ·^·_·l·-�·YI-llll�--L .I_-�-�^P-·l __ _..II_
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cardinality matching. By our construction, I is an anti-chain of P.

In fact, we claim that I is a maximum cardinality anti-chain. To see this,

let S denote the chain-cover of P derived from S' S by pairing

compatible chains C' and C whenever the associated vertices of B are

matched. (This pairing is legal by Lemma 2.) The cardinality of this chain-

cover is IS'I + IS*I - IMI, which is equal to III by a direct extension

of the Knig-Egervary duality theorem for bipartite matchings. Therefore,

the chain-cover S has minimum cardinality, and the anti-chain I has

maximum cardinality. O
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