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Abstract

We propose a mathematical programming approach for the classical PSPACE - hard
problem of n restless bandits in stochastic optimization. We introduce a series of n increas-
ingly stronger linear programming relaxations, the last of which is exact and corresponds to
the formulation of the problem as a Markov decision process that has exponential size, while
other relaxations provide bounds and are efficiently solvable. We also propose a heuristic
for solving the problem that naturally arises from the first of these relaxations and uses
indices that are computed through optimal dual variables from the first relaxation. In this
way we propose a policy and a suboptimality guarantee. We report computational results
that suggest that the value of the proposed heuristic policy is extremely close to the opti-
mal value. Moreover, the second order relaxation provides strong bounds for the optimal
solution value.
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1 Introduction

Research in integer programming over the last twenty years has crystallized the idea that
our ability to solve efficiently discrete optimization problems critically depends on a strong
formulation of the problem. As a result, much of the research effort in integer programming
has centered in developing sharper formulations. The developments in the fields of polyhedral
combinatorics and more recently nonlinear relaxations (see for example Lovisz and Schrijver
[19]) are strong witnesses of this trend.

In contrast, the area of stochastic optimization in the last twenty years has addressed with
various degrees of success several key problems that arise in areas as diverse as computer and
communication networks, manufacturing and service systems. A general characteristic of this
body of research is the lack of a unified method of attack for these problems. Every problem
seems to require its own formulation and, as a result, its own somewhat ad hoc approach.
Moreover, quite often it is not clear how close a proposed solution is to the optimal one.

Motivated by the success of improved formulations in integer programming problems, we
propose in this paper a theory of improved formulation for the classical restless bandits problem
in stochastic scheduling. This research is part of a larger program to attack stochastic optimiza-
tion problems using ideas and techniques from mathematical programming (see Bertsimas [1]).
In broad terms the approach to formulate stochastic optimization problems as mathematical
programming problems is based on the following idea: Given a stochastic optimization problem,
we define a vector of performance measures, which are typically expectations and express the
objective function as a function of this vector. We then characterize the region of achievable
performance, i.e., we find constraints on the performance vectors that all admissible policies
satisfy. In this way we find a series of relaxations that are progressively closer to the exact region
of achievable performance. In Figure 1 we outline the conceptual similarity of this approach to
the approach used in integer programming.
Background
In the 1980s the pioneering works of Coffman and Mitrani [9], and Gelenbe and Mitrani [14],
initiated a new line of research for solving dynamic and stochastic optimization problems. They
formulated the problem of optimal scheduling control in a multiclass M/G/1 queue as a linear
program, by characterizing the performance space corresponding to appropriate performance
measures as a polyhedron. Facets in the performance space correspond to work conservation
laws in the queueing system. Federgruen and Groenevelt [12], [13], extended that work by
showing that, in certain cases, the performance space of a multiclass queueing system is a poly-
matroid (see Edmonds [11]), which explains the optimality of simple index policies (the classical
cp rule). Shanthikumar and Yao [24] showed that a sufficient condition for the performance
space of a multiclass queueing system to be a polymatroid is that the performance measure
satisfies strong conservation laws. They exhibited a large number of queueing systems that
fit into their framework. Tsoucas [25] investigated the problem of optimal scheduling control
in a multiclass queue with Bernoulli feedback, introduced by Klimov [18]. He characterized
its performance space as a new kind of polyhedron: an extended polymatroid, which gener-
alizes the usual polymatroids introduced by Edmonds [11]. He showed how this polyhedral
structure explains the optimality of priority policies (Klimov's algorithm). Drawing on this
line of research, and on the theory of multi-armed bandit problems (see Gittins [16] and the
references therein), Bertsimas and Niiio-Mora [2] presented a unified framework for formulating
and solving a large class of dynamic and stochastic scheduling problems as linear programs
over extended polymatroids. Their results explain the optimality of index priority policies in
systems that satisfy generalized conservation laws. These include all the problems mentioned
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Figure 1: (a) Improved relaxations for integer programming (b) Improved relaxations for
stochastic optimization problems.

previously, multi-armed bandit problems and branching bandits (see Weiss [29]).
All the scheduling problems mentioned above are computationally tractable: They are solved

in polynomial time by index priority policies that are computed by a (polynomial-time) adaptive
greedy algorithm (see Bertsimas and Niiio-Mora [2]).

Papadimitriou and Tsitsiklis [22] have shown that several of the classical problems in
stochastic optimization are computationally intractable. The multiclass queueing network
scheduling problem is EXPTIME - hard, which implies that the problem cannot be solved
in polynomial time, independently of the P = NP question, while the restless bandit problem
that we address in the present paper is PSPACE -hard. Bertsimas, Paschalidis and Tsitsiklis
[3] have developed a mathematical programming approach for the multiclass queueing network
scheduling problem. Using potential function ideas, they construct a sequence of polynomial-
size linear programming relaxations that approximate with increasing accuracy the performance
space. These relaxations provide polynomial-time bounds on linear performance objectives.
Contribution
Our contributions in the present paper are as follows:

1. We present a series of N linear programming relaxations for the restless bandit problem
on N bandits (see next section). These relaxations capture increasingly higher order
interactions among the bandits. These relaxations are increasingly stronger at the expense
of higher computational times, the last one (Nth) being exact. These relaxations utilize
the following projection representation idea nicely outlined in Lovisz and Schrijver [19]:

It has been recognized recently that to represent a polyhedron as the projection
of a higher-dimensional, but simpler, polyhedron, is a powerful tool in polyhe-
dral combinatorics ... The idea is that a projection of a polytope may have
more facets than the polytope itself. This remark suggests that even if P has
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exponentially many facets, we may be able to represent it as the projection of a
polytope Q in higher (but still polynomial) dimension, having only a polynomial
number of facets.

2. We propose a primal-dual heuristic that defines indices based on dual variables of the
first order linear programming relaxation. Under a natural assumption, we interpret the
heuristic as an index heuristic. We report computational results that suggest that the
heuristic is exceptionally accurate. Primal-dual heuristics construct a linear programming
relaxation of the problem, compute optimal primal and dual solutions of the relaxed for-
mulation, and then construct a feasible solution for the original problem using information
contained in the optimal primal and dual solutions. They have been proven quite effective
for solving hard discrete optimization problem (see for example Bertsimas and Teo [5]).

Structure
The paper is structured as follows: In Section 2 we introduce the restless bandit problem
and review previous research efforts. In Section 3 we strengthen a classical result on the
performance space of a Markov decision chain and use it to present a monotone sequence of
linear programming relaxations for the problem, the last one being exact. In Section 4 we
introduce a primal-dual heuristic for the restless bandit problem, based on the optimal solution
to the first-order relaxation. In Section 5 we address the tightness of the relaxations and
the performance of the heuristic via computational testing. The last section contains some
concluding remarks.

2 The Restless Bandit Problem: Description and Background

The restless bandit problem is defined as follows: There is a collection of N projects. Project
n E NK = 1,...,N} can be in one of a finite number of states in E En, for n = 1,...,N.
At each instant of discrete time t = 0, 1, 2,..., exactly M < N projects must be operated. If
project n, in state in, is in operation, then an active reward R1 is earned, and the project state
changes into jn with an active transition probability pinn If the project remains idle, then a
passive reward R is received, and the project state changes into j with a passive transition
probability Pnjn. Rewards are discounted in time by a discount factor 0 < d < 1. Projects are
to be selected for operation according to an admissible scheduling policy u: the decision as to
which M projects to operate at any time t must be based only on information on the current
states of the projects. Let U denote the class of admissible scheduling policies. The goal is to
find an admissible scheduling policy that maximizes the total expected discounted reward over
an infinite horizon, i.e.,

Z* = max Eu [Z( RG(t) +... RiN(t)) t ]X (1)
uEU N(t) j

where i(t) and an(t) denote the state and the action (active or passive), respectively, cor-
responding to project n at time t. We assume that the initial state of project n is in with
probability ain, independently of all other projects.

The restless bandit problem was introduced by Whittle [30], as an extension of the classical
multi-armed bandit problem (see Gittins [16]). The latter corresponds to the special case that
exactly one project must be operated at any time (i.e., M = 1), and passive projects are frozen:
they do not change state (p°nin = 1, pnj, = 0 for all n E N and in : jn).
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As already mentioned, in contrast to the classical multi-armed bandit problem, the restless
bandit problem is computationally intractable. Papadimitriou and Tsitsiklis [22] have proved
that the problem is PSPACE - hard, even in the special case of deterministic transition rules
and M = 1. In the multi-armed bandit case, Gittins and Jones [15] first showed that the
optimal scheduling policy is a priority inder policy: to each project state is assigned an index,
and the policy operates at each time a project with largest index. The optimal Gittins indices
are computable in polynomial time.

The restless bandit problem provides a very flexible modeling framework and, as a result, a
number of interesting practical problems can be modeled naturally as restless bandits. As an
indication of its modeling power we include the following examples:

Clinical trials (Whittle [30]). In this setting, projects correspond to medical treatments.
The state of a project represents one's state of knowledge on the efficacy of the corre-
sponding treatment. Operating a project corresponds to testing the treatment. If, for
example, the virus that the treatments are trying to combat is mutating, then one's state
of knowledge on the efficacy of each treatment changes whether or not the treatment is
tested.

Aircraft surveillance (Whittle [30]). M aircraft are trying to track N enemy submarines.
The state of a project-submarine represents one's state of knowledge of the current po-
sition and velocity of that submarine. Operating a project corresponds to assigning an
aircraft to track the corresponding submarine.

Worker scheduling (Whittle [30]). A number M of employees out of a pool of N have to
be set to work at any time. The state of a project-worker represents his state of tiredness.
Active selection of a project results in exhaustion of the corresponding worker, whereas
passive selection results in recuperation.

Police control of drug markets. In this setting, M police units are trying to control N drug
markets (see Caulkins [7]). The state of a project corresponds to the drug-dealing activity
level of the corresponding drug market. Operation of a project-drug market corresponds
to a focused police enforcement operation over that market, and tends to discourage
drug-dealing activity. Nonoperation of a project, on the other hand, allows drug-dealing
activity to grow in the corresponding market.

Control of a make-to-stock production facility (Veatch and Wein [26]). In this setting,
M servers can produce N different classes of items; each finished item is placed in its
respective inventory, which services an exogenous demand. The level of the inventory
represents the state of each project (item class). Veatch and Wein [26] model a lost sales
version of the problem as a restless bandit problem and propose heuristic indexing rules
that perform quite well.

Whittle approached the restless bandit problem with dynamic programming methods. He
presented a relaxed version of the problem, solvable in polynomial time. He then proposed an
index heuristic based on the optimal solution of the relaxation. This index heuristic reduces
to the Gittins index optimal policy when applied to the classical multi-armed bandit problem.
A disadvantage is that Whittle's index heuristic only applies to a restricted class of restless
bandits: those that satisfy a certain indexability property, which is difficult to check. Weber
and Weiss [27] investigated the issue of asymptotic optimality of Whittle's index heuristic, as M
and N tend to oo, with MIN fixed. Working with continuous time restless bandits and with the
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long-run average reward criterion, they showed that a sufficient condition for Whittle's heuristic
to be asymptotically optimal is that the differential equation describing the fluid approximation
to the index policy has a globally stable equilibrium point. They also presented instances that
violate this condition, and in which Whittle's policy is not asymptotically optimal.

3 A Sequence of Relaxations for the Restless Bandit Problem

In this section we strengthen a classical result on the polyhedral characterization of the perfor-
mance space for a finite discounted Markov decision chain (MDC) (see Heyman and Sobel [17]).
We then formulate the restless bandit problem as a linear program over a certain restless bandit
polytope. By applying the previous extension on polyhedral representations of MDCs, we present
a monotone sequence of approximations to the restless bandit polytope (each approximation is
tighter than the previous one), that yields a corresponding sequence of polynomial-size linear
programming relaxations for the problem. These relaxations provide a monotone sequence of
polynomial-time bounds for the optimal value of the restless bandit problem.

3.1 Polyhedral representations of Markov decision chains

Markov decision processes provide a general framework to model stochastic optimization prob-
lems. In this section we strengthen a classical result on the polyhedral characterization of the
performance space for a finite discounted Markov decision chain.

Let E = {1,..., n} be the finite state space. At state i E E there is a finite set Ai of actions
available. Let us denote C the state-action space,

C = {(i,a):i E E,a E Ai).

Let ai be the probability that the initial state is i. If action a E Ai is taken in state i, then the
chain moves to state j with probability pi. Let 0 < < 1 denote the discount factor. Let

1, if action a is taken at time t in state j;
0, otherwise.

An admissible policy is specified by a probability distribution on the actions Ai correspond-
ing to every state i. If at state i action a is drawn from the corresponding distribution, then
action a is taken. Let us denote U the class of all admissible policies. We call a policy admis-
sible if the decision as to which action to take at any time t depends only on the current state.
An admissible (i.e., nonanticipative) policy u E U for selecting the actions generates a Markov
chain. Let us associate with policy u the following performance measures:

X (u) = Eu [Z I(t)6] -
t=O

Notice that x(u) is the total expected discounted time spent taking action a in state j under
policy u.

We are interested in finding a complete description of the corresponding performance space
X = {XU, u E U). Let us consider the polyhedron

P={xE .': E Zx =aj+o 3 p ia, jEE, }.
aEAj (i,a)EC
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Notice that by summing over all j E E we obtain that (i,a)EC x = 13 and therefore P is a
bounded polyhedron.

It was first shown by d'Epenoux [10] that, if all the initial probabilities aj > 0, then polytope
P is a complete description of the performance space X (see also Heyman and Sobel [17]). He
also showed that polytope P always contains the performance space, i.e., X C P.

We strengthen next that classical result, by proving that polytope P is always a complete
description of performance space X, even if the assumption that all initial probabilities aj are
positive is dropped.

Theorem 1 (Performance Space of Discounted MDCs) (a) X = P.
(b) The vertices of polytope P are achievable by stationary deterministic policies.

Proof In Heyman and Sobel [17] it is shown that X C P always. We will thus prove only the
other inclusion, i.e., P C X.

Since P is a bounded polyhedron, any point in P can be written as a convex combination
of its extreme points. Therefore, it suffices to show that any extreme point of P is achievable
by some stationary deterministic policy, since any point of P can be achieved using a policy
that randomizes over deterministic policies that achieve the corresponding extreme points.

Let X be an extreme point of polytope P. By standard linear programming theory, X is the
unique maximizer of a linear objective function. Let Z(i,a)EC Rix? be such an objective. Since
Y is an extreme point, it has at most n positive components.
Let us now partition the state space E into two subspaces, E1 and E2, in the following way:

El = {j E E: Tj > 0 for some a E Aj), and E2 = {j E E: = 0 for all a E Aj}.

Let SE1 = {, j E El}. Consider now the following linear program:

(LP 1 ) ZE = max E E Rjazx
jEE1 aEAj

subject to

ZX 3 Z ZpAx = aj, j E El,
aEAj iEEi aEAi

>O, j E 1,a Aj.

By construction, YE, is the unique optimal solution of linear program (LP 1 ), otherwise I would
not be the unique maximizer. ZE, is therefore an extreme point of (LP1 ), and it has at most

IE I positive components. But by definition of E1 , it follows that YE1 has exactly IEl I positive
components, and for each state j E E1 there is exactly one action ;fj E Aj such that <j > 0.

We can now define a stationary deterministic policy U that achieves X: For each state j E E2

pick an arbitrary action ;rj E Aj. Now, policy U deterministically takes action 7j in state j.
Clearly, this policy achieves the vector , which completes the proof of (a) and (b). 

3.2 The Restless Bandit Polytope

In order to formulate the restless bandit problem as a linear program we define decision variables
and characterize the corresponding feasible space. We introduce the indicators

if project n is in state i, and active at time t;
in l= 0, otherwise,



and
1, if project n is in state in and passive at time t;

in ={ 0, otherwise.

Given an admissible scheduling policy u E U let us define performance measures

zutn() = Eu [ It)t],

and

Notice that performance measure () (resp (u)) represents the total expected discounted
Notice that performance measure xri (u) (resp. xQ (u)) represents the total expected discounted
time that project n is in state in and active (resp. passive) under scheduling policy u. Let us
denote P the corresponding performance space,

P = { x =((U))iE I E U }
It is clear that performance space P is a polytope. This follows from the fact that the

restless bandit problem can be viewed as a discounted MDC (in the state space E1 x ... x EN),
and the performance space of the latter is a polytope from Theorem 1.

We will refer to P in what follows as the restless bandit polytope. The restless bandit problem
can thus be formulated as the linear program

(LP) Z* = max Z Z E Ri:xan.
nEN/ inEEn anE{O,1}

The polytope P has been fully characterized in the special case of the classical multi-
armed bandit problem by Bertsimas and Niiio-Mora [2] as a polytope with special structure
(an extended polymatroid). This characterization leads to strong structural properties of the
optimal scheduling policy (Gittins priority index policy). For general restless bandits, however,
it is highly unlikely that a complete description of polytope P can be found, since as mentioned
above the problem is PSPACE - hard.

Our approach will be to construct approximations of polytope P that yield polynomial-
size relaxations of the linear program (LP). We will represent these approximations P D P
as projections of higher dimensional polytopes Q. An advantage of pursuing this projection
representation approach is that we will be able to represent approximations P of P with expo-
nentially many facets as projections of polytopes Q with a polynomial number of facets, thus
providing polynomial-time bounds on the optimal value Z*. The approximations we develop
are based on exploiting the special structure of the restless bandit problem as an MDC, and on
applying Theorem 1.

3.3 A First-order Linear Programming Relaxation

Whittle [30] introduced a relaxed version of the restless bandit problem, solvable in polynomial
time. The original requirement that exactly M projects must be active at any time is relaxed to
an averaged version: the total expected discounted number of active projects over the infinite
horizon must be M/(1 - /). Whittle showed that this relaxed version can be interpreted as the

problem of controlling optimally N independent MDCs (one corresponding to each project),
subject to one binding constraint on the discounted average number of active projects. In this
section we formulate Whittle's relaxation as a polynomial-size linear program.
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The restless bandit problem induces a first-order MDC over each project n in a natural way:
The state space of this MDC is En, its action space is A1 = {0, 1}, and the reward received
when action a, is taken in state i is R"n. Rewards are discounted in time by discount factor
d. The transition probability from state in into state jn, given action an, is p"n" . The initial
state is i with probability ai.
Let

n {xn = (i (U))inEEn,anEAl I u E U}.

From a polyhedral point of view, Q is the projection of the restless bandit polytope P over
the space of the variables xzn for project n. From a probabilistic point of view, Q1 is the
performance space of the first-order MDC corresponding to project n. In order to see this, we
observe that as policies u for the restless bandit problem range over all admissible policies U,
they induce policies un for the first-order MDC corresponding to project n that range over all
admissible policies for that MDC. Applying Theorem 1 we obtain:

Proposition 1 The complete polyhedral description of Q1 is given by

{xn > I Zn + pn = an + : p an jn En.} (2)
inEEn anE{o,1}

Remark: A consequence of Proposition 1 is that the general restless bandit problem, with
active and passive rewards, can be reduced to the case with active rewards only. This follows
since by (2) the passive performance vector x°(u) is a linear transformation of the active one,

Now, Whittle's condition on the discounted average number of active projects can be written
as

E Z n(u) = LEUZ I(t) 3t
nEKT inEEn t=O nE~ninEEn

oo

= EM t

t=O

M (3)

Therefore, the first-order relaxation can be formulated as the linear program

(LP') Z' = max E E E Ranian
nEA inEEn anE{O,1}

subject to

Xn E Qn, n E ,
1 M

nEK inEEn

We will refer to the feasible space of linear program (LP') as the first-order approximation of
the restless bandit polytope, and will denote it as P'. Notice that linear program (LP1) has
O(NIEm,,l) variables and constraints, where IEmI = maxnEK IEn .
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3.4 A Second-order Linear Programming Relaxation

In this section we present a second-order polynomial-size linear programming relaxation for the
restless bandit problem, which is represented as the projection of a higher-dimensional polytope
(introducing new variables). The new decision variables we introduce correspond to second-
order performance measures for the restless bandit problem, associated with pairs of projects.
Given a pair of projects, n1 < n2, the valid actions that can be taken over each pair of states,
(il, i 2) E En, x En2, range over

A 2 = { (al,a2) E {0,1}2 1 a + a2 < M}.

Given an admissible scheduling policy u, let us define the second-order performance measures
by

x. t.2 (U) = E al Itl (t)a2 (t)3t].
t=O

Similarly as in the first-order case, the restless bandit problem induces a second-order MDC
over each pair of projects n1 < n2 , in a natural way: The state space of the MDC is En x En2,
the action space is A 2, and the reward corresponding to state (in,, i 2) and action (an,, an2) is
Ran + Rn2 . Rewards are discounted in time by discount factor ,. The transition probability

from state (in, i, 2 ) into state ( ,j,n2), given action (an, a, 2), is Pl. p' 2
2

. The initial
, ,nl n1 rn 2 3n 2 ·

state is (i,, in 2) with probability ain ain2 Let

Wn n2= {Xn2l,n2 = (Xl1 2 (U))iEEnl1i2EE n2(ala2)EA 2 I EU

be the projection of P over the space of the variables (tal 2 )iEEn,i2EEn2 ,(a1,a2)EA2. An admis
sible scheduling policy u for the restless bandit problem induces an admissible scheduling policy
u,,n2 for the MDC corresponding to projects nl and n2. It is easy to see that as u ranges over
all admissible scheduling policies for the restless bandit problem, the corresponding induced
policy u.1,. 2 ranges over all admissible policies for the MDC. Therefore, the projection Q 2

Poi n,n2 CY"~U VII U11 UIIIIUIUI~Y~ll~rlrU II VI1~IIIUV IIIC~VI-·I U1~ ~ILJ~~UInl,n2
is the performance space of the discounted MDC corresponding to the pair of projects (nl, n 2),
(nl < n 2). Therefore, from Theorem 1 we obtain:

Proposition 2 The complete polyhedral description of Qnn 2 is given by

X ;alja
2 = ... +p E Piajl p/i. Jp2. ilz2 (jl,j2) El x E 2, (4)

(al ,a2)EA
2

i EEn ,i2EEn2

(al ,a2)EA 2

Xia~2 > O, (i,i2) >Enl x En2, (al,a2) E A 2 . (5)

We can show some other second-order conservation laws to hold, based on combinatorial
arguments. For all admissible scheduling policies u, we have, if N > M + 2,

{ N-M 

E Z Z x1112(U) = (6)
l<nl<n2 <N ilEEnl i2 EEn 2

10



since the N M passive projects required at any time correspond to (

passive project pairs. Moreover,

E E E (4, (U)
1<ni<n2<N iiEEn1 i2 EEn2

since at any time the M active and N - M passi
active-passive project pairs.

Furthermore, in the case that M > 2, we have

N-M
2 - passive-2

1 U) M(N- M)
+ xt1i2( ) = 11-fl (7)

ve required projects give rise to M(N - M)

(8)Z Z Z Xi'2(u)= 1 -)
l<nl<n2<N iEEn 1 i2EEn2

since at any time the M > 2 active projects give rise to ( ) active-active project pairs.

In order to lift the first-order approximation to the restless bandit polytope into a higher
dimensional space with variables Xia,2 we need to relate the first and second-order performance
measures. It is easy to see that, for any admissible policy u,

X (U) = E giia2 (u), i E En,,al E {0, 1},1 < nl < n2 < N,

i2 EEn2

a2:(al ,a2)EA
2

(9)

and

x·2(U) = (10)y xzit12(u), i 2 E En2,a 2 E {0,1},1 < 711 < n2 < N.

ii EEn1

al :(al ,a2 )E.A
2

We define now the second-order relaxation, based on
program

(Lp 2 ) Z2 =

the above identities, as the linear

max y E Z RInnz"

nEhr in EEn an E{O,1}

subject to

Xnl,n E Qnl,n2

Z Z
l<nl<n2<N ilEEn1

l1n<n2<N iEEn1

l<nl<n2<N iEn 1

N-M)

i - S-2- - '
i2 En2

o 01 _ M(N - M)
E (SI2 + ll2) 

= )
i2 EEn2

E ti2 -= 1 - ' 
i2 EEn2

11
/



Xi=l = E - - e2, ii E E,,l E 0,1},1 < nl < n2 N,
-i2 EEn2 a2:(al,a2)EA2

a22 = Z E E Xala2 i2 E En 2, a2 E {0,1},1 < n < n 2 N,
ii 2il6En1 al :(al,a2)EA

2

~E E~~ En 1 _
nEa in EEn anEO,1 }

Sa > 0.

We define the second-order approximation to the restless bandit polytope P as the projection
of the feasible space of linear program (LP 2) into the space of the first-order variables, x, and
will denote it as p2 .

Notice that the second-order relaxation (LP2) has O(N 2 1IE,ax 2 ) variables and constraints,
(recall Emax, = maxnEr IEn .)

3.5 A kth-order Linear Programming Relaxation

In this section we generalize the results of the previous sections to present a kth-order linear
programming relaxation for the restless bandit problem, corresponding to a kth-order approx-
imation for the restless bandit polytope, for any k = 1,..., N. This kth-order approximation
corresponds again to lifting the first-order approximation polytope into a higher dimensional
space, and then projecting back into the original first-order space.

In the kth-order case, we introduce new decision variables corresponding to performance
measures associated with kth-order project interactions. For each k-tuple of projects 1 < nl <
.· < nk < N, the admissible actions that can be taken at a corresponding k-tuple of states
(il,..., ik) range over

Ak = {(al,...,ak) E {0 , }k I a, + + ak < M}.

Given an admissible scheduling policy u for the restless bandit problem, we define kth-order
performance measures, for each k-tuple 1 < n < n < - < nk < N of projects, by

Xal ...ak() U= I (t)...I(t) t], jl Enl,.,, jk E En. (
t=0

Analogously as in the first and second-order cases, the restless bandit problem induces a
kth-order MDC over each k-tuple of projects nl < -- < nk in a natural way: The state
space of the MDC is E mn x ... x Enk, the action space is Ak, and the reward corresponding
to state (in,. . .,ink) and action (a,..., ank) is Rta + + Rnk . Rewards are discounted

in time by discount factor 3. The transition probability from state (in,-...,ink) into state

(nl, ... ink) given action (anl,...,ank), is Pinl ... pk The initial state is (in,,... ink)

with probability inl ... a,ink. Introducing the projection

nil...nk =! Xn..n =k ( ?(Xl.ik (U))ilEEnl ...ikEEnk,(1.,-ak)EAk I u E .

and arguing as before, we conclude that the projection nk is the performance space of the
discounted MDC corresponding to the k-tuple of projects nx < ... < nk. From Theorem 1 we
obtain
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Proposition 3 The complete polyhedral description of Qnl..n k is given by

X zl ... k = j, ' _ _ ajk+#
(a ... ka)

(aI,...,ak)EAk
E

il EEn1 ,...ik EEnk

(al ,...,ak)EAk

ali ak al ...ak
piljl Pikjk il.ik ' jl E Enl,., jk E Ek 

(12)

(13)Xl... ak > 0, ii E El, .... ik E Enk,(al,...ak) E A .

Similarly as in the second-order case, we show that some additional kth-order conservation laws
hold, by using combinatorial arguments. If u is an admissible scheduling policy, then

E E E
<nl< ...<nk<N ilEEn .. . ikEEnk (al ,...,ak)EAk :

al +...+ak=r

M

X. ,ik (U) =SI.*-
t
k

max(O, k - (N - M)) < r < min(k, M). (15)

Conservation law (14) follows since at each time the number of k-tuples of projects that contain

exactly r active projects is ( ) (N ) for r in the range given by (15).

In order to lift the first-order approximation to the restless bandit polytope into a higher
dimensional space with variables Cxi...aik we need to relate the first and kth-order performance
measures. It is easy to see that if u is an admissible scheduling policy, then for n E X, i E E,,
a E {0, 1), 1 < r < k, n = n, and n < ... < nk, we have

E
(al ,...,ak)EAk

il EEn 1. -- ikEEnk 

il... tk () (16)

r=t,ar=a

We now define the kth-order relaxation of the restless bandit problem as the linear program

(LPk) Zk = maxE E E Ranin
nEAr inEEn anE{O,1}

subject to

Xnl...nk Qnl...nk

C N E
1lnl<...<nkN iEEn..... ikEEn k

E
(al ,...,ak)EAk :

al +,*+ak=r

max(0, k - (N - M)) < r < min(k, M),

13

for

)N-M
Ik-r

k 1-
(14)

M) N-M)
X. ...ak _ 

tl tk ~1 -d



Xq = al...ak
-i E il ...i k ,

(al ,...,ak)EAk

il EE, 1 ---,ikEE, k

ir=i,ar=a

xi > 0.

We define the kth-order approximation to the restless bandit polytope P as the projection
of the feasible space of linear program (LPk) into the space of the first-order variables, x, and
denote it pk. It is easy to see that the sequence of approximations is monotone, in the sense
that

pl D p2 D ... D pN = p.

Notice that the kth-order relaxation (LPk) has O(NklEmaxlk) variables and constraints, for
k fixed. Therefore, the kth-order relaxation has polynomial size, for k fixed.

The last relaxation of the sequence, (LPN), is exact (i.e., ZN = Z*), since it corresponds to
the linear programming formulation of the restless bandit problem modeled as a MDC in the
standard way.

4 A Primal-dual Heuristic for the Restless Bandit Problem

In this section we present a heuristic for the restless bandit problem, which uses information
contained in an optimal primal and dual solution of the first-order relaxation, (LP 1 ). Under
some mixing assumptions on the active and passive transition probabilities, we can interpret
the primal-dual heuristic as an index heuristic. The dual of the linear program (LP') is

(D 1 ) Z1 = min Z E jn Ain + M_ A
nEAr jnEEn

subject to

Ain- Pinj,Ain > Rn, in E E, n E ,
inEEn

A; 7Pil njnAjn + A > RIn in E En n E N,
inEEn

> 0. (17)

Let {inn}, {in,}, i, E En, n E N be an optimal primal and dual solution to the first-
order relaxation (LP') and its dual (D1). Let {'/n} be the corresponding optimal reduced cost
coefficients, i.e.,

-- n = in Pinjn ) RjX
jnEEn

ln =in-h E Pln'nAin +-R 1n,
jn EEn

which are nonnegative. It is well known (cf. Murty [20], pp. 64-65), that the optimal reduced
costs have the following interpretation:

in is the rate of decrease in the objective-value of linear program (LP') per unit increase in
the value of the variable x .
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/n is the rate of decrease in the objective-value of linear program (LP 1 ) per unit increase in
the value of the variable 0.

The proposed heuristic takes as input the vector of current states of the projects, (il,..., iN),

an optimal primal solution to (LP 1 ), {"j' }, and the corresponding optimal reduced costs, n },
and produces as output a vector with the actions to take on each project, (a*(il), ... , a*(iN)).
An informal description of the heuristic, with the motivation that inspired it, is as follows:

The heuristic is structured in a primal and a dual stage. In the primal stage, projects n
whose corresponding active primal variable z1n is strictly positive are considered as candidates
for active selection. The intuition is that we give preference for active selection to projects with
positive in with respect to those with Yn = 0, which seems natural given the interpretation of
performance measure x 1 () as the total expected discounted time spent selecting project n in
state in as active. Let p represent the number of such projects. In the case that p = M, then
all p candidate projects are set active and the heuristic stops. If p < M, then all p candidate
projects are set active and the heuristic proceeds to the dual stage that selects the remaining
M - p projects. If p > M none of them is set active at this stage and the heuristic proceeds to
the dual stage that finalizes the selection.

In the dual stage, in the case that p < M, then M-p additional projects, each with current
active primal variable zero (1 = 0), must be selected for active operation among the N -p
projects, whose actions have not yet been fixed. As a heuristic index of the undesirability of
setting project n in state i, active, we take the active reduced cost . This choice is motivated
by the interpretation of -1 stated above: the larger the active index 71 is, the larger is the
rate of decrease of the objective-value of (LP') per unit increase in the active variable xz.
Therefore, in the heuristic we select for active operation the M -p additional projects with
smallest active reduced costs.

In the case that p > M, then M projects must be selected for active operation, among
the p projects with l > 0. Recall that by complementary slackness, -1 = 0 if l > 0. AsIn Yi = I. 

a heuristic index of the desirability of setting project n in state in active we take the passive
reduced cost o/yi. The motivation is given by the interpretation of o/n stated above: the larger
the passive index y°n is, the larger is the rate of decrease in the objective-value of (LP1) per
unit increase in the value of the passive variable x. Therefore, in the heuristic we select for
active operation the M projects with largest passive reduced costs. The heuristic is described
formally in Table 1.
An index interpretation of the primal-dual heuristic
We next observe that under natural mixing conditions, the primal-dual heuristic reduces to an
indexing rule. For each project n E N we consider a directed graph that is defined from
the passive and active transition probabilities respectively as follows: Gn = (En, An), where
An {(i,, i I ' E} We tha

An = {(ins n)I Pnn > O, and i > 0 in, n E En}. We assume that
Assumption A: For every n / at least one of the following two conditions is satisfied:
a) ain > 0 for all jn E En, b) the directed graph Gn is connected.

Given that the polytope P' has independent constraints for every n E V and only one
global constraint, elementary linear programming theory establishes that

Proposition 4 Under assumption A, every optimal extreme point i solution of the polytope pl
has the following properties: a) There is at most one project k and at most one state ik E Ek,
for which -l, > 0 and k, > 0.
b) For all other projects n and all other states either - > 0 or -i, > 0.

Therefore, starting with an optimal extreme point solution and a complementary dual
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Input:

* (i,... , iN) current states of the N projects )

* ({n) ({ optimal primal solution to first-order relaxation (LP') }

* (n") ({ optimal reduced costs for first-order relaxation (LP') )

Output:

* (a*(ii),..., a*(iN)) actions to take at the projects }

{ Initialization: 
set S := 0; S: set of projects whose actions have been set)

set a*(in) := 0, for n E A; actions are initialized as passive}

{ Primal Stage: 

set p := I({ : 1 > O, n E N})I1 p: number of projects with positive active primals 

if p < M then { set active the projects with positive active primals, if no more than M )
for n E AJ do

if l >O then
begin
set a*(in) := 1;
set S:= SU {n}
end

( Dual Stage: }

if p < M then ( set active the M - p additional projects with smallest active reduced costs }
until SI = M do
begin
select fi E argmin(yln : n E X \ S}
set a*(ij) := 1;
set S := S U {}
end

if p > M then { set active the M projects with largest passive reduced costs }
until ISI = M do
begin
select fi E argmaxin : n E N \ SI
set a*(iw) := 1;
set S := S U {I}
end

Table 1: Primal-Dual Heiistic for Restless Bandits



optimal solution, with corresponding reduced costs y, let us consider the following index rule:
Index heuristic:

1. Given the current states (il,..., iN) of the N projects, compute the indices

bin = -1n __n

2. Set active the projects that have the M smallest indices. In case of ties, set active projects
with x1 > 0.

tn

We next remark that under Assumption A, the primal-dual and the index heuristics are
identical. In order to see this we consider first the case p < M. The primal-dual heuristic,
would set active first the projects that have ln > 0. From complementarity, these projects
have y? = 0 and therefore, bin < 0. Then, the primal-dual heuristic sets active the remaining
M -p projects with the smallest ln. Since for these projects n = 0 and therefore, n > 0,
i.e., 0n =, we obtain that 6in - = n O0. Therefore, the choices of the two heuristics are
indeed identical.

If p > M, the primal-dual heuristic sets active the projects that have the largest values of
T/n' For these projects 7n = 0, and therefore, in = -/n, < 0. Since the remaining projects
have bin = in -> 0, the choices of the two heuristics are identical in this case as well.

In contrast with the Gittins indices for usual bandits, notice that the indices bin for a
particular project depend on characteristics of all other projects.

5 Computational Experiments

In this section we address the tightness of the relaxations and the performance of the primal-dual
heuristic introduced previously.

For the usual bandit problems with the average reward criterion (/ = 1), Bertsimas, Pascha-
lidis and Tsitsiklis [4] show that the second order relaxation is exact, i.e., p 2 = P. Moreover,
in this case P is an extended polymatroid. For discounted problems, however, the second order
relaxation is not exact, i.e., p 2 $ P even though P is still an extended polymatroid.

In order to address the tightness of the relaxations and the heuristic for restless bandit prob-
lems we performed a series of computational experiments. For each test problem we computed
the following measures:

ZGreedy: Estimated (through simulation) expected value of the greedy heuristic (at each time
M projects with largest active reward are operated). We simulate a run using the heuristic
policy and we obtain a value for the reward for the particular run. In order to obtain
the value for a particular run, we truncated the infinite summation in (1) ignoring terms
after time t, such that /t > 10-10. Even if we used a smaller tolerance, the results did
not change. The stopping criterion for the simulation was that the difference between the
average from the first l + 1 runs and the average from the first runs is less than 10 - 5

(using a smaller tolerance, did not change the results in this case as well).

ZPDH: Estimated expected value of primal-dual heuristic. The estimation was achieved through
simulation as before.

Z*: Optimal value, which is equal to ZN (due to the size of the formulation, this value was
calculated only for small instances).
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Z2 : Optimal value of the second-order relaxation (LP 2).

Z 1: Optimal value of the first-order relaxation (LP1 ).

The heuristics and the simulation experiments were implemented in C. The linear program-
ming formulations were implemented using GAMS and solved using CPLEX. All the experi-
ments were performed in a SUN 10 workstation. In order to test the proposed approach we
generated the following 7 problem instances.

Problems 1 and 2 involve 10 projects with 7 states each, with M = 1, and their data (the
reward vectors and the passive and active transition probabilities) was randomly generated.
For these problems we were not able to compute the optimal solution because of the large
size of the instance. Since these instances were randomly generated we expected that the
greedy heuristic would perform very close to the optimal solution. To test the last statement
we generated Problem 3 that has 5 projects with 3 states each, for which the data was also
randomly generated and M = 1.

Problem 4 has 5 projects with 3 states each, with M = 1. The data was designed so that
the greedy algorithm would not perform optimally. Problems 5 through 7 have the same data
as problem 4, except that the number of active projects ranges from M = 2 through M = 4,
respectively. The data sets are available upon request from the authors.

In Table 2 we report the results of our experiments for various values of the discount factor
6. Some observations on the results, shown in Table 2, are:

1. The primal-dual heuristic performed exceptionally well. It was essentially optimal in
Problems 3-7 and it was slightly better than the greedy heuristic in Problems 1 and 2.
Given that we expect that the greedy heuristic is near optimal for randomly generated
instances (as a verification Problem 3 had also randomly generated data and the greedy
heuristic was extremely close to the optimal solution), we believe that the heuristic is
extremely close to the optimal solution for Problems 1 and 2 as well. For this reason, we
did not experiment with other heuristics, as we feel that the quality of solutions produced
by the primal-dual heuristic is adequate for solving realistic size problems.

2. Regarding the performance of the relaxations, the bounds from the second-order relax-
ation improve over the first-order ones, and in most instances the bound was very close
to the exact optimal value. In Problem 1 there is a wider gap between the value of the
primal-dual heuristic and the value of the second-order relaxation. The closeness of the
value of the heuristic with the value of the greedy solution (which is expected to be near
optimal in this case), suggests that the main source of this gap is the inaccuracy of the
second-order bound.

3. As expected, the performance of the greedy heuristic deteriorates as the discount factor
approaches 1, since in that case the long-term impact of current decisions is more heavily
weighted. The primal-dual heuristic outperforms the greedy heuristic over the sample
problems (it performs significantly better in instances with higher discount factors, and
never worse, even for # = 0.2). Notice that in the randomly generated instances both
heuristics yield very close rewards.

6 Concluding Remarks

We have proposed an approach that provides a feasible policy together with a guarantee for
its suboptimality for the restless bandit problem. Our computational experiments suggest
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Table 2: Numerical experiments.

that the primal-dual heuristic has excellent performance, while the second order relaxation is
quite strong. Our approach has the attractive feature that can produce increasingly stronger
suboptimality guarantees at the expense of increased computational times.

We believe that our results demonstrate that ideas that have been successful in the field
of discrete optimization (strong formulations, projections and primal-dual heuristics) in the
last decade, can be used successfully in the field of stochastic optimization. Although we have
only addressed in this paper the restless bandit problem, given the generality and complexity
(PSPACE - hard) of the problem we expect that these ideas have wider applicability. We
intend to pursue these ideas further in the context of other classical stochastic optimization
problems.
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