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Locating Discretionary



ABSTRACT

Discretionary service facilities are providers of products and/or services that are

purchased by customers who are traveling on otherwise pre-planned trips such as

the daily commute. Optimum location of such facilities requires them to be at or

near points in the transportation network having sizable flows of different potential

customers. In [1] a first version of this problem was formulated, assuming that

customers would make no deviations, no matter how small, from the pre-planned

route to visit a discretionary service facility. Here the model is generalized in a

number of directions, all sharing the property that the customer may deviate from

the pre-planned route to visit a discretionary service facility. Three different

generalizations are offered, two of which can be solved approximately by greedy

heuristics and the third by any approximate or exact method used to solve the p-

median problem. It is shown for those formulations yielding to a greedy heuristic

approximate solution, including the formulation in [1], that the problems are

examples of optimizing submodular functions for which the Nemhauser et. al. [51

bound on the performance of a greedy algorithm holds. In particular, the greedy

solution is always within 37% of optimal, and for one of the formulations it is

proved that the bound is tight.
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In [1] Berman, Larson and Fouska introduced a new problem formulation in

location theory which was called "optimal location of discretionary service

facilities." The motivation was a perceived behavioral change on the part of

customers. Instead of undertaking a one-stop tour from home or workplace to a

facility to purchase a service or product, it was argued that many customers now

carry out such purchases as part of routine pre-planned trips, say on the daily

commute to and from home and workplace. Examples include stopping at gasoline

service stations, automatic teller machines and "convenience stores." Traditional

"Hakimi type" location models focus on minimizing some measure of travel

distance or travel time from home (or workplace) to the facility. The optimal

location of discretionary service facilities, on the other hand, requires convenience

with regard to the customer's pre-planned trip.

The focus in [1] was on locating the m discretionary service facilities so as to

maximize the flow of potential customers who passed at least one discretionary

service facility along her preselected travel path from origin to destination. A path

containing a facility was "covered;" a path not containing a facility, even if there

existed a facility 6 travel units from the path ( > 0), was not covered. In [1] it was

proved that an optimal set of facility locations exists on the nodes of the network,

and both exact and heuristic algorithms were developed to solve the problem.

In this paper we relax the assumption that, to be useful to a potential customer,

a facility must be located at some point precisely on her pre-planned travel path.

Facilities located "near" the pre-planned path may also be utilized by the customer.
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In the first generalization, which we call "delta coverage" or problem (PI), we

assume that, as in [1], the customer passes through each of the nodes of her pre-

planned trip path. If there are no facilities on the path, she is willing to detour a

maximum distance A from any one of the path nodes to travel to a discretionary

service facility. After purchasing the service or product at the facility, she returns to

the same path node, implying that a total detour travel distance of up to 2 is

incurred. This model depicts a situation in which a detour of up to 2A travel units,

starting and ending at one of the pre-planned path nodes, is associated with a zero

disutility on the part of the customer. Any detour requiring more than 2A travel

units has in effect infinite disutility, so the detour will not be executed and the

associated service (product) will not be purchased. We show that this problem can

be reduced to the problem solved in [1].

In the second generalization, which we call "maximize market size" or (P 2), we

assume that customers are increasingly likely to balk at traveling to a service facility

as the deviation distance to it increases. More precisely, we assume that the

probability that a customer is willing to travel an extra d units of distance to a

facility that is located off the pre-planned path, assuming that this facility is the least

inconvenient to the original path, is a convex decreasing function of d. The

objective is to locate the m facilities so as to maximize the expected number of

potential customers who become actual customers at the facilities. We develop both

exact and approximate algorithms to solve this problem.

In the third generalization, which we call "minimize expected inconvenience"

or (P3), we assume that all potential customers traveling on the network must

purchase the service at a service facility, regardless of the extra distance that must be

traveled to get to the facility. In this sense the facilities are no longer discretionary.

For some (lucky) customers, there will be a facility on their pre-planned travel paths,
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and no inconvenience is incurred. For others, the customers must deviate from the

pre-planned trip to travel to the service facility causing least digression from the

originally selected path. We assume that customers select their deviation paths to

be the shortest ones possible. The objective of this problem is to locate the service

facilities so as to minimize the total deviation distance traveled per unit of time, or

equivalently, to minimize the expected deviation distance traveled by a random

customer. We show that this problem is essentially an m median problem, and any

m median algorithm can be used to locate the m facilities.

We present a generic worst case analysis of all the (greedy) heuristics

developed both in this paper and in [1]. We show that each of our models, with the

exception of the median model [problem (P3)], belongs to a family of problems in

which there is a "e- 1" worst case bound associated with the greedy heuristic and the

bound is tight. This result improves upon the worst case bound published in [1] for

the original form of the discretionary services location problem.

The paper concludes with specific algorithms, a greedy heuristic and a branch

and bound algorithm, to solve problem (P 2). Numerical results are included.
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1. Background and Notation

Let G(N, A) be a bidirectional urban transportation network where N is the set

of nodes with cardinality n and A is the set of arcs. We denote by P the set of non-

zero flow paths through the network nodes and let fp indicate the number of units

of travel flow along any path p e P, per unit of time. Let m be the number of

facilities to be located on the network. All facilities are assumed to provide identical

service and thus no customer needs on any given trip to stop at more than one of

them.

1.1. The Case of No Allowed Deviation

In [1] Berman, Larson and Fouska examined the problem [called problem (BLF)]

of finding a set of m facilities on the network so as to maximize the total flow of

different customers intercepted by the facilities under a very specific assumption

regarding the behavior of customers. It was assumed that a customer may receive

service only from facilities located on his (her) pre-planned trip path. In other

words customers cannot deviate from their pre-planned paths. The problem can be

formulated as

(BLF) max X fpI(x, p)

x G pP

where I(x,p) is an indicator variable,

I(x p) t 1 at least one x E x is on path pI(Xt, ) 0 Otherwise

and x is a vector of m points in G. In [1], it was shown that G can be replaced with N

in problem (BLF) since it is proved that an optimal set locations exists in N.
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1.2. Deviation Distances

In this paper we relax the assumption that customers do not deviate from their

pre-planned trips when service is required. We define the deviation distance as the

extra distance incurred when a customer deviates from his (her) pre-planned trip path.

We denote by d(a, b) the shortest distance (travel time) between a and b, a, b e G.

To calculate the deviation distance for a customer who travels on path

p E P, defined by a node visitation sequence p = ({n, n2,...., nl} (where nl is the

path p origin node and nI is its destination node), we distinguish between two cases:

Case i: p E P is a shortest path; Case ii: p P is not a shortest path. When p is a

shortest path, the deviation distance from the path p to the "nearest" of the m

facilities, D(p, x), is given by

D(p, x) - min D(p, x) = min d(nj ,x) + d(x, nj) - d(n, n ) } .
X X X X

When p is not a shortest path, we assume that the "path p" customer when

traveling between origin nl and destination n must visit in proper sequence all the

nodes contained in path p. Therefore, D (p, x) is now given by

D(p,x) - min [ min d(nx) + d(x, nj+l)-d(nj, nj+l)].

nfp,jol XEX

As an example for the calculations of D(p, x) we refer to Figure 1 that depicts a

simple network with 7 nodes. Suppose for Case i, that p = (2, 1, 4, 5) and a single

facility is located at node 3, then

D(p, x)=2+9-9= 2
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INSERT FIGURE 1 HERE.

For Case ii, let us assume that p = (1, 2, 3, 6) and x = 7, then D(p, x) = min {6 + 5 - 3, 5

+3-2,3 +5-3) = 5.
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2. The Problems

2.1. (P 1): Delta Coverage

"Delta coverage" depicts a situation in which a detour of up to 24 travel units,

starting and ending at the same pre-planned path node, is allowed in order for the

customer to visit a facility "nearest" to her pre-planned route. It is assumed that the

detour route is restricted to a tour comprising a minimum distance path from the

detour-originating path node to a nearest facility and, due to network

bidirectionality, a repeat of that path in reverse direction.

The formulation of problem (BLF) can be easily extended to include problem

(P 1). In (PI) a customer is said to be intercepted by a facility if at least one facility is

at a distance of at most A from a node on the customer's trip path p, i.e.,

(P1) max fpI (x,p)
xe G PP

where we define

I P(xp) [1{ 3 j E p such that d(j, x) <A
10 otherwise,

where d(j, x) - shortest distance between j E N and a nearest facility located at x E x.

Let us define N' as the union of the node set N and the set of all points NA in G that

are exactly A units of distance away from a node, i.e., N' = N u NA where

NA = (Y e G I d(j, y) = A, j E N). [Note that problem (Pi) reduces to problem (BLF)

when A = 0.]

Theorem 1. An optimal set of locations for problem (P 1) exists in N'.
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Proof. Straightforward and omitted.

The algorithms of [1], both exact and heuristic, can be applied directly to solve

problem (P1), with the set of possible facility locations now extended to N'.

2.2. (P 2 ): Maximize Market Size

The objective of problem (P2) is to locate the m facilities so as to maximize the

expected number of potential customers who become actual customers at the

facilities. Here we allow customers to deviate from their pre-planned route in the

general manner described in Sec. 1.2; in particular, detours are not restricted to be

tours. We assume that as the deviation distance grows larger, customers become

less and less likely to select the detour to visit a nearest facility. Thus we again have

a flow intercept maximization problem.

We assume that the flow of "path p" customers to the "nearest" of m facilities in

the location set x is a convex decreasing function of the deviation distance D(p, x),

denoted by fp g(D(p, x)), where g(O) - 1. Here g(D(p, x)) can be interpreted to be the

fraction of "path p" customers who would deviate to use a facility in x dosest to path

p, or equivalently, the probability that a random path p customer will deviate to use

that facility. Therefore problem (P2) is

(P 2 ) max £ fpg(D(p,x)).
x G pEP

Theorem 2. An optimal set of locations to (P2) exists in N.

Proof. Case a (all customer paths are minimum distance paths):

Path/facility assignment fixed: For any x x , let Px be the set of all paths in P that

route all or a fraction of its customers to the facility at x. If x lies on path p E Px, there
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is no deviation distance and the corresponding component of the objective function

is fp. Consider a path p E Px not containing x, where as usual nl is the origin node

and ni is the destination node of p. Suppose x e x is an interior point on link (a, b),

having length d(a,b). Assume that the distance from node a to x is Q d(a, b) where 0 <

Q < 1. Then the deviation distance from p to x, defined as D(p, x), is found by

computing the minimum of four possible detour routes to and from x:

D(p, x) = d(ni, x) + d(x, nl) - d(ni, n) =

min(d(ni, a) + 2Qd(a, b) + d(a, nl) - d(nI, nl); d(ni, a) + d(a, b) +

d(b, nl) - d(ni, nl); d(ni, b) + d(a, b) + d(a, n) - d(nl, nI);

d(nl, b) + 2(1 - Q)d(a, b) + d(b, nI) - d(nl, n)}).

Since D(p, x) is the lower envelope of linear functions of Q, it is a piecewise linear

concave function of Q. Since g(y) is a decreasing convex function of y and D(p, x) is a

piecewise linear concave function of Q, g(D(p, x)) is a convex function of Q. Since a

sum of convex functions is convex, we know that the partial sum

E fpg(D(p, x))
pEPx

is convex. Since Q is defined on the closed interval 0 < Q < 1, a maximum of the

partial sum must exist at an endpoint corresponding to Q = 0 or Q = 1.

Path/facility reassignment: Any change in location of the examined facility from an

interior point on (a, b) to one of the arc's nodes may in turn cause a reassignment of

customers on one or more paths in Px to other facilities and/or may cause

reassignment of customers on paths not in Px to the examined facility. But such

path/facility reassignment cannot decrease the objective function.
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Case b (not all customer paths are minimum distance paths): Proved in a similar

fashion. Q.E.D.

2.3. (P3): Minimize Expected Inconvenience

In problem (P 3) all customers must travel to a service facility "closest" to their

pre-planned paths to purchase or consume the service provided there. "Closeness"

of a facility to a path is measured in terms of the minimum deviation distance (Sec.

1.2). The objective of problem (P3) is to locate the service facilities so as to minimize

the total deviation distance traveled per unit time, or equivalently, to minimize the

expected deviation distance traveled by a random customer, i.e.,

(P 3) m in f pD(p,x)

x G PEP

The objective function of problem (P3) is identical in form to that of the well

known "m-median" type problem [2]. For the m-median problem, Hakimi proved

that an optimal set of facility location exists on the nodes of the network [3]. Thus in

(P 3 ) the search for optimal locations in G in the objective function can be replaced

with a search limited to the node set N. Any of the algorithms, heuristic or exact,

developed and used to solve the (NP-hard) m-median problem can be used for

problem (P3).

3. Worst Case Analysis of Greedy Algorithms

In this section we analyze a generic greedy algorithm for problems (P1) and (P2).

We show that the greedy algorithm is always within 37% of the optimal solution

and this bound is tight. In Section 4 we develop a specific greedy algorithm for
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problem (P 2), as well as a branch and bound algorithm, and we give numerical

results.

Problems (P1) and (P2) can generically be formulated as follows: Let

fi: 2N -- R+ (i = 1, 2) be set functions defined on subsets of the set N. Then, problem

(Pi), (i = 1, 2) can be formulated

(Pi): Zi = Max fi(S)

ScNi,IS<m

where the functions fi(S) are defined in Section 2 and N 1 = N' = Nu N a , N 2 = N.

Problem (P3), the median problem, can be formulated as

(P3): Min f/S) .

ScN, IS<m

Our focus in on problems (P1), (P2). A generic greedy algorithm for problems

(P1), (P2) is:

Greedy Algorithm: [Input: fi(S), m, N i I

[Output: QG' ZG]

1. (Initialization)

2. (Main Loop) For t = 1, . .. , n

J t argmax
j e Ni \ Qt-

Qt f Qt-1 ut}

jf(Qt-I Lu {j)

3. (Output)

Q f0,t&1.

QG = Qm
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ZG = f(Qm)

Given the function f(S), the number of facilities m and the set of potential locations

Ni, the algorithm outputs a set QG of m facilities with value ZG.

Nemhauser, Wolsey and Fisher (1978), Fisher, Nemhauser and Wolsey (1978),

and Nemhauser and Wolsey (1981) have studied the problem of

max f(S) , where f(S) is a submodular and nondecreasing function and where we

ScN, IS m

have suppressed the subscript on the node set N i and fi. A set function is called

submodular if for all S, T c N,

f(SnT) + f(SuT) < f(S) + f(T)

and is nondecreasing if for all S, T, ScT, we have f(S) <f(T).

Obtaining the exact solution to the problem of maximizing a submodular set

function is NP-hard. The greedy algorithm, however, approximates the problem

very well, yielding results "close" to the optimum. More precisely, Nemhauser et.

al. (1978) prove that

Theorem 3. (Nemhauser et. al. (1978))

The value ZG returned by the greedy algorithm when applied to the problem:

Z*= max f(S) (1)

ScN, I S <N

for f(S) being submodular and nondecreasing satisfies
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ZG M 121 -- )- -- 0.63.
Z* m e

In other words the greedy algorithm returns a solution that is optimal for m = 1

and within 37% from the optimal solution value for any value of m. Moreover, the

bound is tight, i.e., there are instances in which ZG = (Z*)[1 - (1 - ) m].
m

Furthermore, Nemhauser and Wolsey (1979) have shown that within a large class

of algorithms the greedy algorithm is the best possible for problem (1).

We plan to show in the remaining of this section that problems (PI), (P2) are

instances of problem (1), i.e., the functions fi(s), (i = 1, 2) are submodular and

nondecreasing. We will also show that problem (P3) is an instance of minimizing a

supermodular nonincreasing function.

3.1 Delta Coverage

With the usual bidirectional network G = (N, A), let d(x, i) be the length of the

shortest path from node x to node i (x, i e N) and let N(x, A) = i E N: d (x, i) < A) be

the set of nodal "delta coverage" points associated with node x. Let P be the given

set of paths, assuming that a path p E P is specified as a set of nodes in N, i.e., p = {n1,

. . ., ndl. A customer whose path includes node x could travel from x to a service

facility located in N(x, A), and back, incurring a detour travel distance not greater

than 2A; in that way any facility in N(x, A) "covers" node x. Or, equivalently, a

customer whose travel path includes at least one node nj in N(x, A) could travel

from that node to a service facility located at x and back, incurring a detour travel

distance not exceeding 2,; in that way a facility located at x covers any node

ni E N(x, A).

Let

-15 -



Li
N(S, A) =

xeS
N(x, 4)

be the set of nodal "delta coverage" points corresponding to any subset S of

potential facility locations, Sc N U NA (see Figure 2). A customer whose travel

path includes at least one node in N(S, A) could travel from that path node to and

from a facility, with a detour travel distance not exceeding 2A, if at least one facility

is located in S.

INSERT FIGURE 2 HERE

Using Theorem 1, problem (Pi) is formulated as

(P1) Max

S c NuNA

ISI (m
pEP

pn N(S, A) 0

Note that for A = 0, N(x, A) = x}l, N(S, A) = S and the problem reduces to the problem

studied in Berman et. al. (1992).

Proposition 1

If fp > 0 for all p e P then for any A Ž O, fi(S) is submodular and nondecreasing.

Proof:

* If S c T, then clearly N(S, A) c N(T, A) which implies thatfi(S) fil(T) iffp 2 0,

i.e., fi (S) is nondecreasing.

* In order to show that a set function is submodular it suffices to show that for all

S c T and k o T, fi (T u k}) -fi(T) <fl(Suk) - f ( S ) .
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For any S and T, S T, let PT = {P e P: P n N(T, A) = 0}, i.e., PT is the set of all paths

not covered by locating facilities in T. Since S c T, then N(S, A) c N(T, A) which

implies that PT c PS. Then,

fi(T u(k)) -fi(T)

peP
p n N(TO(k), A) • 0

fp

p P
pn N(T, A)• 0

fp

p P
p N(T, A) =0

pn N(k, A)• 0

< fp
p e P_s
p N(k, A) •0

fp

PE PT
p n N(k, A) • 0

fi(S u{k}) - f (S),

i.e., fi(S) is submodular.

3.2. Maximize Market Size

In Sec. 1.2 path deviation distances were defined for two cases: (1) all customer

paths are minimum distance paths; (2) not all customer paths are minimum

distance paths. For the former case, for each p e P and S c N, we can write the

deviation distance of path p from set S as

D(p, S) = Min [d (i, x)+d (x, j)-d (i, j)}.

i, I e P
xe S
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Let g(y) : R+ - R+ be a nondecreasing function not necessarily convex.

Theorem 2, Problem (P 2) can be formulated as

Max f 2(S)

Sc N
ISI m

= £ fp g(D(p, S)).

pE P

In the following proof, we assume that all customer paths are minimum distance

paths. A directly analogous proof applies to the other case.

Proposition 2

If g(y) is a nonincreasing function, then f2(S) is a submodular, nondecreasing

set function. On the other hand, f3(S) a is supermodular, nonincreasing set

function.

Proof,

If S c T, then D(p, S) 2 D(p, T) which implies that g(D(p, S)) < g(D(p, T)), since

g(y) is nonincreasing. Therefore, f2(S) f2(T), i.e., f2(S) is nondecreasing.

f 3(S) 2f3 (T), i.e., f 3(S) is nonincreasing.

We will now show that g(D(p, S)) is submodular. Let S c T and k T.
note that D(p, Tuk})] = min D(p, T), Min [d(i, k) + d(k, j) - d(i, j)]}.

i, E p

In order to check whether g(D(p, S)) is submodular it suffices to show that

g(D(p, Tuk})) - g(D(p, T)) <g(D(p, Su(k})) - g(D(p, S)),

or equivalently, defining ca Min [d(i, k) + d(k, j) - d(i, j)],
i, j p

g(Min[D(p, T), ca]) - g(D(p, T)) <g(Min [D(p, S), o]) - g(D(p, S)).

Similarly,

We first

(2)

-18
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In order to check (2) we distinguish three cases:

1. a 2 D(p, S) 2 D(p, T).

Then (2) becomes

g(D(p, T)) - g(D(p, T)) < g(D(p, S)) - g(D,(p, S)),

which is obviously satisfied.

2. D(p, S) > o > D(p, T)

Then (2) becomes

0 <g(a) - g(D(p, S)),

which is satisfied since g(y) is nondecreasing.

3. D(p, S) d(p, T) 2 a

Then (2) becomes

g(a) - g(D(p, T)) < g(a) - g(D(p, S)),

which is satisfied since g(D(p, S)) <g(D(p, T). ( S c T and D(p, S) 2 D(p, T)).

Therefore the set function g(D(p, S)) is submodular. Then, if fp 2 O, f2(S) is also

submodular since it is a sum of submodular set functions.

By exactly the same proof we can show that D(p, S) is supermodular, i.e.,

D(p, Tu(k)) - D(p, T) > D(p, Su{k}) - D(p, S) which implies that f3(S) is

supermodular. Note that the submodularity of f2(S) is independent of any

convexity assumption on g(x).
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3.3 Main Theorem

Combining Theorem 3 and Propositions 1 and 2, we can prove

Theorem 4. For problems (P 1), (P2) the generic greedy algorithm produces a value

ZGi (i = 1, 2) such that

ZGi (1 m
Z*; m (3)

In the following theorem we investigate the tightness of the bound.

Theorem 5. For problem (P1) with A = 0, the bound (3) is tight.

Proof: Consider a network with nodes A o, Al, ... , Am, B1, B2, ... Bm_2, C1, ... , Cm.

The set of edges is as follows: E = (A O, Ai), (A i, Ci); i=1, ..., m}) , (A i, B ); i = 1, ... , m,

j=l, ... , m-2). (See Figure 3 for m=4.) The set P of paths is as follows: For i = 1,... m

m paths (A O, A i)

m paths (A i, B1)

m paths (Ai, Bj)

m paths (A i, Ci )

each with value

each with value

each with value

each with value

fo = mm-2
m-i m -2

fi= mm

f-l l m-2

fm-i = (m - )m -l

INSERT FIGURE 3 HERE

The optimal solution of problem (Pi) with = 0 and up to m facilities is the set

(A1, ... , Am) of the nodes at the first level that covers all the paths. The value of the

optimal solution is

-20 -
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m-2
Z* = mffo+ m Z fj+ mf-l = m

j=1

The greedy algorithm selects node AO first, then node B 1, then node B 2, ... ,node

Bmi2 and finally one of A, ... , Am.

The cost of the greedy algorithm is

m-2

ZG=mtfo+ m fj+f m-lm -(m-l
j=1

The reason is that the value of Ao is at least as large as any other's node, B1 is at least

ZG iMas high as any from the remaining nodes, etc. Thus, Z, =1 - (1 -) . Q. E. D.
Z m

Problem (P3) is a minimization of a supermodular nonincreasing function

subject to a cardinality constraint. Although approximating a maximization of a

submodular function within a constant factor is possible as we have seen,

approximating a minimization of a supermodular function within a constant is NP-

hard. Although the supermodular function f 3(S) appearing in problem (P3) has

special structure, we strongly suspect that the problem does not have a constant

guaranteed heuristic. Indeed the greedy algorithm which was very successful for

problems (P1) and (P2) delivers a solution with cost arbitrarily far from the optimal

cost.

4. Solving Problem P2

In this section we focus on solution methods for problem (P2). Building on our

standard notation, let D(p, i) be the deviation distance for a path p customer to

detour through node i. This notation applies whether or not strictly minimum

distance paths are used. Define the potential expected path p flow through node i as
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Cp= fpg(D(p,i)) -f g(( minD(j,i)).
j'Ep

Since g(.) is a convex decreasing function,

Ifp g(D(x, p)) =
peP

I max Cpi
pe iex

Therefore problem (P 2) could be formulated as

(P 2) max max Cpi
xeN P iex

We can now identify binary decision variables and assignment variables.

Xi= {
1 if a facility i is assigned to path p

0 otherwise

1 if a facility is located at node j
Xj =

0 otherwise

Now problem (P 2) can be stated as a mathematical programming problem:

n
(P 2) max E CpiXpi

pep i=1

s.t.
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n
Xj = m

j=l

Xj-Xpj>O j = 1,2,,n

n
, Xpj= 1 foralp E P

j=l

The first constraint guarantees that m facilities are located. In the second set of

constraints we have made sure that path p cannot be assigned to a node that does

not house a facility, whereas the last set of constraints ensures that each path is

assigned to exactly one facility.

To solve problem (P 2), we developed a greedy heuristic (having the properties

of the generic greedy heuristic of Sec. 3) and an exact algorithm. The greedy

heuristic is a modification of the greedy heuristic to solve problem (BLF) (See [1].).

The Greedy Heuristic to Solve PZ

Step 1. 1=1

Step 2 Compute bi=1pEpfpg(d(ip)), i=l,...,n.

Step 3. Find bimax = maxieN {bi; locate facility I at node imax and delete imax

from N.

Step 4. Set Vp , Vj N,

g(D(i, p)) = [g D(i, p)) - g(D (imax p))]+

Delete from P the set P max (which is the set of all paths p for which

g(D(imax, P)) = 0.
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If I = m or if P = 0, STOP. Otherwise set I = + 1 and go to Step 2.

As an example, let us refer again to the network in Figure 1 and let us solve

problem (P3) with an exponential customer damping factor, i.e., g(D(p, x)) =

e-bD(P,x). The paths and all extra distances are given in Table 1. Suppose b = .05

and fp = 1 Vpe P. We start the heuristic with I = 1.

Since bi = 9.413; b2 = 8.781; b3 = 8.993; b4 = 9.065; b5 = 8.171; b6 = 9.4999; b7 =

8.722; bjmax = b6, we locate facility 1 at node 6 and we delete node 6 from N. We

find new ebD('j) V p, j 6 and delete from P paths 4, 5, 6, 7, 8, 9. Since I = 1, P = 0,

we let I = 2. Now bI = .0975; b2 = 0.2300; b3 = .1812, b4 = .0975; b5 = .3187, b7 = .4024,

bjmax = b7 and we locate the second facility at node 7, and we delete node 7 from N.

We find new e-bD(p, J) and delete from P paths 2 and 10. Since I = 2, P= 0 we set I =

3, find bl = 0.0975; b2 = .0487, b3 = 0; b4 = .0975; b5 = .0975, jmax = 1 (or 4 or 5). Since I

= 3, we are done. Total flow intercepted 9.4999 + 0.4024 + 0.0975 = 9.9998.

INSERT TABLE 1 HERE

To solve the problem (P2) exactly we developed a branch and bound code for the

problem. This branch and bound procedure is based on two upper bounds. The first

one which is a minor modification of the one developed in [1] for (PI) is called UB1.

The variables Xi, ... , Xn are the decision variables for the branch and bound tree.

Let us define D c N as a set of all variables that constitute a partial solution in the

branch and bound tree (i.e., j D Xj = 0, 1) and let U = N- D. Let D1 c D I D1 I = 1,

be the set of all nodes in D that house a facility (j E D1 = Xj = 1) and let DO = D - Di

(j E DO Xj = 0). Let
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ri= max C i=1,..., IPI,

jeD1

i.e., ri is the maximum amount of flow that the facilities in the partial solution

intercept from path i. For each j E U we define max[,C-rj}, i.e.,1 j is

maximum amount of flow node j can intercept after deleting all the flow

intercepted by the already-located facilities. Now UB1 can be defined

UBi= ri + L
i=1

where L is the sum of the (m - ) greatest 6j'S. The second upper bound called UB2

can be now defined

UB2 = max Cpj
pEP jeDi U

We note that UB2 is useful when there are many variables in a partial solution for

which Xj =0 which is exactly the situation when UB1 is not useful. Therefore UB1

and UB2 complement each other in the branch and bound. Finally, the upper

bound is the minimum of UB1 and UB2.

The computer code implementing the branch and bound algorithm for

problem (P 3) is written in C and tests were run on DEC 5810. In order to provide test

results we generated randomly network sizes, their path and corresponding flows. In

Table 2, we illustrate a typical sample of our test cases for the problem with an

exponential damping factor. The table provides the CPU time and the ratio of the

solution value provided by the greedy heuristic and the branch and bound for
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networks with number of nodes and number of paths ranging from 20 to 100 and

number of facilities ranging from 2 to 5. We see that for this set of runs the greedy

heuristic performs considerably better than its worst case bound.

INSERT TABLE 2 HERE
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Figures:

A 7-Node Network
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P 1

D

4

P1 = {C, E, F, A) fP 1
= 2

P2 = A, B, C} fP2 = 2
p3 = D, C fp3 =1
A=I

S = (A, F)

N(A, 1) = {A, F, N(F 1) = A, F, B, E

fl(s ) = fPl + fP2= 4

Figure 2

Example for Delta Coverage
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Figure 3. Example in the Proof for m = 4.
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TABLES:

Nodes/Path

(1) 2145
(2) 237
(3) 145
(4) 167
(5) 361
(6) 3645
(7) 463
(8) 546
(9) 612
(10) 75

1 2 3 4 5 6 7

0 0 2 0 0 1 2
4 0 0 7 10 4 0
0 6 7 0 0 1 6
0 2 1 3 6 0 0
0 1 0 3 11 0 5
1 2 0 0 0 0 0
1 2 0 0 6 0 5
1 2 6 0 0 0 5
0 0 1 3 11 0 6
6 8 6 5 0 5 0

Table 1: Paths and Extra Distances for the Example.
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n IPI m CPU of the
B&B Algorithm

Value of Greedy
Value of Branch and Bound

10, 10, 2
3
4
5

30, 30 2
3
4
5

50, 50 2
3
4
5

100, 100 2
3
4
5

CPU Times in Seconds
the greedy heuristic to

(rounded to closest integer) and ratio of objective function of
the objective function of the branch and bound procedure for

several n, I P I, m values.
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0
0
0
0
0
1
5

1
11
69
355
5
169
693
2147O
2147

1
I
1
1
.998
.937
.951
.993
.983
.935
.968
.955
1
.936
.934
.943

Table 2


