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Abstract

A comparison is made of the performance characteristics of perishable inventory systems with

LIFO and FIFO selection policies. For each system one has Poisson arrivals to inventory and

Poisson demand epochs with known rates and deterministic shelf life. The comparison requires

development of a new analytical framework for the LIFO systems and extension of earlier results

on the FIFO systems via Green's function methods. The performance characteristics derived for

both policies are spoilage rate, loss sales rate, mean time between stockouts, inventory level on

hand and the distribution of age of items delivered. In particular, the dependance of these

characteristics on the replenishment rate, demand rate and shelf life are evaluated both theoretically

and numerically. Several important management implications are explored and discussed.





1. Introduction

Perishable or outdating items are known to require special management attention
due to their high obsolescence or perishability costs. Typical examples of items with
limited shelf-life include fresh produce, drugs, chemicals and films (Nahmias (1989)). Our
study of product selection policies for perishable items has been motivated by related
problems arising in the management of special consumable materials and assembly
components in the aerospace industry. These highly specialized items include, for
example, structural adhesives, dry film lubricants, fuel cell sealers, batteries or gas
energized launchers and ejectors. Compliance with standard age control requirements can
limit the shelf life of these items to anywhere between nine months to two or three years.
Long term supply contracts from multiple sources are established to assure the desired
availability and quality levels. Interleaved deliveries from multiple sources, variability in
shipment times, sporadic rejection by the receiving quality inspection tests - altogether give
rise to random supply times. The typical demand pattern for many of these items is also
random. In such systems, where the replenishment rates and demand rates are random, the
determination of the distribution of the stock level is difficult because such evaluation must
include the stock level at every age layer.

Several studies are devoted to the management of perishable inventory systems
(Peterson and Silver (1979)). One can differentiate between two types of models used in
the analysis of such systems. Generative (or prescriptive) models aim at developing useful
inventory control policies. Evaluative (or descriptive) models, aim at characterizing the
stochastic system behavior. Several authors (Veinott (1960), Bulinskaya (1964), Pierskala
and Roach (1972), Fries (1975), Nahmias (1978), Schmidt and Nahmias (1985) and
Pegeles (1986), among others) present prescriptive models leading to the development of
optimal and heuristic ordering policies for items having a given utility during their constant
lifetime and zero utility after that. These items must be tracked from the time they arrive
until they are issued on demand or perish. These studies address both continuous and
periodic review policies for deterministic and stochastic demand rates. Ghare and Schrader
(1963), Emmons (1968), Nahmias (1977), Freidman and Hoch (1978), Jaiswal and Dave
(1980), Dave and Pandya (1985), and Perry and Posner(1990) present dynamic lot-sizing,
periodic review, and input control models for items having age dependent or exponential
decay rates. Nose et al (1981, 1984) and Nose (1987) treat the cases of different selling
prices under zero or single time unit stochastic lead times. Most of the studies cited above
assume FIFO issuing policy. Other issuing policies for perishable items are considered by
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Derman and Klein (1958), Cohen and Pekelman (1978) and by Martin (1986). Allocation

and distribution models for perishable products include Prastacos (1978), and Federgruen

et al (1986). A comprehensive review of generative models for perishable inventories and

relevant applications can be found in Nahmias (1982a).

The first evaluative model of perishable systems is presented by Pegeles and

Jelmert (1970). Their objective is to figure out the effects of the issuing policy on the

average inventory level and on the average age of the issued items. Brodheim et al (1975)

develop a model of a system with scheduled deliveries of a fixed amount. A constant

inventory level is considered by Chazan and Gal (1977). Graves (1982) develops the

steady state stock distribution of a constant replenishment inventory system with

compound Poisson or unit demand requests. Nahmias (1982b) uses the results of this

study to determine the replenishment rate which minimizes the total operating costs per time

unit. Kaspi and Perry (1983,1984) compute the generating function of the limiting

distribution of the number of items in certain FIFO systems having unit input process and

poisson demand. It turns out that each one of the existing models concentrate on a single

product selection policy and uses a unique set of operational assumptions. Therefore, one

cannot use the results of these studies to investigate the impact of switching from one
product selection policy to another.

The following central managerial problem motivates this paper: How should a firm

designate either a LIFO or a FIFO product selection policy for issuing perishable items in a

way that considers such basic trade-offs as the inventory holding costs, shortage costs, and

the mean age at delivery (or the "freshness" of the items) when operating with stochastic

supply and demand rates? These policies are typically associated with conflicting

objectives: FIFO is commonly used when the suppliers control the issuing sequence, while

customers prefer picking the freshest items (LIFO) when the expiration dates are known

and when it does not involve an inordinate additional cost. Using LIFO one can expect

higher customer's utility as compared with FIFO. This can be translated to higher sales

revenues. On the other hand, LIFO results in higher perishing rates and lower service

levels. Establishing the most suitable selection policy one must examine the impact of

changing the product selection policy on a broad set of performance measures. To our
knowledge, the analytical framework presented here constitutes the first such comparative

study of LIFO and FIFO using identical operating assumptions.
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The analytical framework developed here has two goals. The first is to characterize the

stock dynamics needed to evaluate various performance measures for the two candidate

policies: FIFO and LIFO. These analytical results are mandatory for choosing the desired

replenishment rate and could be used by managers to explicitly consider purchase, service

level, tax, and inventory holding costs trade-offs. The second goal is to compare the two

policies using several parametrized data sets. The evaluation contrasts the relative impact of
changes in the demand or supply rates on the service level, mean on hand inventories, time
between stockouts and the age of items delivered.

Section 2 states the assumptions characterizing the two models. In Section 3, the LIFO
model is studied and in Section 4, the FIFO model. Section 5 compares the performance of

the two policies numerically. Conclusions are presented in Section 6.
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2. The Inventory System

The perishable inventory system of interest has the following characteristics: The arrival

of fresh items follows a Poisson process with mean . arrivals per unit time. The demand

process is a Poisson process independent of the arrival process. The mean demand rate is

p. requests per unit time. Each demand request is for one unit at a time. Demand requests

arriving when the inventory system is empty are lost. The stored items have a constant

shelf life of D time units. An item which is not used to meet a demand request within D

time units perishes (exits the system).

3. The LIFO Policy

Considered first is the following inventory system characterized by Last In First

Out (LIFO) selection discipline. Items arrive to inventory one at a time in a Poisson stream

of rate k. One has a sequence of demand epochs with iid customer separation times TCj
1

and associated demand rate = E[T j] . At each demand epoch, if the inventory is not

empty, the freshest item is chosen. Each item has a deterministic shelf life D.

To analyze this system caution is needed. Most of the processes describing the

system are not Markov. The number of items in storage, for example is not Markov. To

make it Markov, the process must be supplemented by the ages of all items in inventory

and analysis is then too difficult.

3.1 The loss process X(t)

The following loss process X(t) is Markovian and provides a stepping stone to the

analysis of the FIFO system. At t = 0, a fresh item with infinite shelf life arrives. Let
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X(t) be the anticipated time to selection of that item if no other items were to come, given

that at time t that item has not been selected. The process terminates when the item is

selected.

Theorem 3.1: The loss process X(t) is Markov.

Proof: Consider the motion of X(t) on the state space N = {x: 0 < x < oo}. This

motion may be described as follows: At t=0, X(0) is distributed as the forward recurrence

time TF of the time T¢ between demand epoches, and X(t) decreases at unit rate between

new arrivals. There is a constant hazard rate 3 for new arrivals of fresh items. Each new

arrival delays the selection of the original item by a new independent random amount TCj,

i.e. X(t) increases by TCj. The process X(t) is therefore Markovian. §§

The motion of X(t) on the state space N is shown in Figure 1 for the case of
finite shelf life D.

T
h CC

x0 ~~~~~~~~X

D
Figure 1. Motion on the state-space N.

Clearly, when the shelf life is infinite, the distribution of the time a new item spends

in inventory is equal in distribution to the duration of a special busy period BP* for a

single server queueing system M/G/1 with arrival rate X, service time distributed as T¢,

and initial backlog that of the forward recurrence time of Tc.
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When the shelf life is finite with maximal life D, the time in system TSD is given

instead by

TSD = min[BP*, D] , (3.1)

and the distribution of TSD is evaluated below. When D -- > oo one needs X < g to

assure system stability. For D < oo, the idle state is positive recurrent and the system is

always stable due to the outdating of excess stock.

3.2 Fundamental performance relationships

It will be assumed in all that follows that Tc is exponentially distributed with mean

R1-. The forward recurrence time then has the distribution of Tc and BP*, and the

familiar busy period BP then coincide in distribution.

The spoilage rate of arriving items is

Spoilage Rate = X P[BP > D]. (3.2)

The probability of spoilage for an individual item is

Pr [ Spoilage = P[BP > D]. (3.3)

We assume that demand epochs taking place when the system is empty are ignored and the

customers are lost. In order to get the rate of lost sales we denote by e the probability

of having an empty stock.
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Getting e, we first note that the long term sales rate from the on-hand inventory is

the demand rate minus the lost sales rate. This long term sales rate must equal the arrival

rate minus the spoilage rate.

Consequently, we get the following inventory balance equation

our perishable inventory systems :

- = spoilage rate - lost sales rate = spoilage rate - g e . (3.4)

Thus one has

Spoilage Rate = - g(1-eo) = X P[BP > D] . (3.5)

Similarly

Loss Sales Rate = eoo = - X + X P[BP > D], (3.6)

and

g - X + X P[BP > D]
e =

00. (3.7)

Property 3.1 : When g -> 0, it will be seen subsequently that
this is true for any selection policy when there is no demand.

eoo -> e- D since

The inventory system service level, or the probability that stock is on hand, is

Service Level = 1-eoo
0

E[number of items in system] = XE[TSD] (3.8)
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Lemma 3.2: The expected time between stockouts E[TG] is given by

11
E[TG] = i ( - 1 ). (3.9)X e.

Proof: We use the following ergodic argument: Periods of stockout alternate with periods

of stock availability. The stockout periods are exponentially distributed with mean duration
equal to - . It follows that the alternating time intervals should satisfy:

1

eoo= 1
-+ E[TG]

This leads the desired result above. §§.

Property 3.2: The expected time between stockouts satisfies E[TG] -- > D as
g -- > .

Property 3.3: The duration of the stockout period is of course exponentially distributed
with mean - because there are no backorders.

3.3 Evaluation of the busy period distribution

In order to get the distribution of the time in system TSD we need to evaluate the busy

period distribution of the analogous single server queueing system M/M/1 described above.

It is known (Takacs [1962] ) that for M/M/I1 the busy period pdf is given by

SBP(X) = 2g e- [(X+) x] I1(2x4/(Xg.)) (3.10)

where Ii(.) is the modified Bessel function of the first kind and order 1.

This expression can be further simplified to obtain :
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SBP(Y) = 2 , e [(; +)y] Il(y)
Y

Y = 2(Xg) X

[2( - ,g]2
2( )g)

This expression for SBP(X) is valid for both < and X > g.

We note that (3.11) will have

1, if < 

Pr [BP < ] =

I' if X > .

If a high service level is wanted, one needs to have X> g. In that case one gets 5 << 1. For

example, if X//g = 1.1 than r is about .005.

3.4 The mean age at delivery

For items which are delivered to demanding customers, the mean age at delivery is:

E[age at delivery] =

1
= 2/(3,g)

z

D X SBP(X) dx

D SBP(X)
O

dx

y e(+l ) Y I1(y) dyy

S
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(3.13)

(3.14)

(3.15)
e.(C+l ) Y I1(y) dy

YI;



where Z is given by

Z = 2(Xg)D. (3.16)

The quantity Z is equal to twice the geometric mean of the number of arrivals and demands in a

shelf life. It is approximately equal to twice the mean number of arrivals in a shelf life. In practice

we expect to have Z >> 1.

3.5 The probability of perishing

Similarly, the probability that an individual item will perish is:

lard
Ad j
'q XJ

P[BP>D] = {

X "rcO
'Xz

exp[-(C+l) Y] dy ,
Y

if g
X

exp[-(+l1) y] Ii(y) dy + (1 -
Y

1 ),

>1,

(3.17)

if x <1.

3.6 The mean inventory level on hand

level:
A Little's Law type argument provides a general expression for the mean inventory

E(N(o))= X { P[BP>D]D + (1 - P[BP>D] )E[age at delivery]}
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4. The FIFO Inventory System

We next treat the perishable inventory system with single poisson arrivals to

inventory of rate X and deterministic shelf life D. Again one has a sequence of demand

epochs with i.i.d. separation times TCj and associated demand rate E [Tj] The

intervals between arrivals will be designated by TAj and these too are i.i.d. with

expectation -1. At each demand epoch, if the inventory is not empty, the oldest item is

chosen. The system is said to be FIFO in that items which have not perished are delivered

on a first-in first-out basis. The system is easiest to discuss when the demand epochs come

in a Poisson stream and only this case will be treated. The earlier results of Kaspi and Perry

(1983) are extended here via the Green's function method for the comparison of many

performance characteristics with those developed above for the LIFO policy.

4.1 The age of the oldest item process X(t)

The process describing the number of items in the system is not Markovian and is

not tractable. Instead one works with the age X(t) of the oldest item using the convention

that X(t) = 0 when the system is empty.

Theorem 4.1: The process X(t) is Markov for FIFO discipline.

Proof: The process X(t) is Markov, for the five following reasons: a) when an item of

age D perishes, the age of the oldest item becomes max[O,D - TAj] where TAj is the

arrival lag between that item and the next arrival; b) when an item of age x < D is

selected, the age of the oldest item becomes max[0,x - TAj]; c) when X(t) = 0, an

arrival gives rise to age 0+; d) between demand epochs, X(t) increases at rate 1; e) there is
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a constant hazard rate X for an arrival epoch and hazard rate CL for a demand epoch. The

process X(t) is therefore Markovian. §§

When D is finite, the process X(t) is ergodic even when X > g. Its state space N

is the union N = {S U E } of the set S = {(S,x) : 0 < x < D}where stock is

available and of the point state E for stockout. The motion on the state space N is as

follows. There is a constant hazard rate X for new arrivals. If the stock is not empty there

is a drift to the right due to aging at unit velocity. At demand epochs, the oldest item is

removed and the age of the oldest item jumps to the left by x with pdf Xexp(-Xx). If the

virtual value of X(t) after a jump is negative, X(t) enters the idle state E . When X(t)

reaches D, the item is removed and X(t) jumps to the left by x with pdf Xexp(-Xx), etc'.

In the idle state E there is hazard rate X for transition to (S,O+). The motion of X(t), on

the state space N is shown in Figure 2.

X xp( ) exp(- exp (- )

x

DE

(The Idle State)

Figure 2. Motion of X(t ) on its state space for FIFO.
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4.2 Evaluation of the distribution on the state space

The FIFO system can be analyzed by employing the method of green's functions.

This method provides a natural tool for the treatment of spatially and temporally

homogeneous processes modified by boundaries . A simplified account of the method has

been given by Graves and Keilson [1981] in the treatment of a system with a dynamic

structure similar to that examined here.

If one looks at the motion of X(t) on the set S = {(S,x) : 0 < x < D}, it is

seen that this motion, apart from the influence of the two boundaries at x = 0 and x = D,

consists of exponentially distributed jumps to the left with hazard rate gt and uniform drift

to the right at rate unity. Let the spatially homogeneous process in the absence of

boundaries starting at t = 0 be designated by XH(t). This process has a generalized

dynamic Green density gH(x,t) = d P[XH(t) < x IXH(O)=O] with Laplace transform

YH(W,t) = E[exp(-wxH(t) IXH(0)=0] = e-t k! k e-w t
k=0 k!

= exp[-gt(1- -w) -Wt] . (4.1)

Correspondingly one has the ergodic Green density transform

00 1
YoH(w) = f H(w,t) dt= (4.2)

o [1 -. -W] + w

The compensation measure needed to recreate the influence of the two boundaries is

obtained as follows.When an item reaches age D, it is discarded and is replaced by

[D -- 1E], where E is the exponential variate with mean value unity. This is equivalent to

an injection of negative mass concentrated at D to annihilate the item and to injection of

positive mass having the distribution of D - X-1E. The transform of the corresponding

compensation measure at the boundary D is then given by
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X -wD w -wDK [-1+ -w ] e K wD , (4.3)
X-w X-w

where K is a positive constant to be determined. To understand the form of the

compensation, one observes it to be equivalent to a delta function at x=O with transform
-1 and an exponentially distributed mass with transform X and a shift of + D

corresponding to e' WD.

There is a similar compensation mass localized at the boundary at 0. There one

must have negative mass to annihilate the overshoot mass on (-oo,O) and positive mass

concentrated at 0 representing the entry into the upper part of the state space S after

passing through the idle state. The renewal rate for departures from stockout is ,e,. The

transform of the compensation measure at 0 is then of the form ,eo[1l -w' =- Xet X-w

and the transform of the total compensation measure is

X .(w) = - e ,W +K W e-wD (4.4)
X-w X-w

with K positive and yet to be determined. The negative exponentially distributed

compensation from the D boundary which overshoots 0 has the same structure as the

compensation at 0 and blends with it since the arrival rate exceeds the perishing rate.

4.3 The probability of having an empty stock

The compensation method states that the ergodic distribution on S is the

convolution of the compensation and the ergodic Green's function. With the convention

that X(t) = 0 when the system is empty, the ergodic distribution of X(t) which will be

designated by XO, has the transform.

- eo =W +K e-w ewD
o(w) = e +X oo(W) Hoooo e+ X-w X-w

[-X-w + 
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-ke+ Ke wD
e+ (4.5)

where eo, = P[X(o) = 0]. Note that Xo, has all support on [O,D] so that qo(w) is

entire. The zero in the denominator must be counteracted by a zero in the numerator. One

also has 0(0) = 1. Algebra then gives

oo(w) = eoo + eoo
1 - e(X-g)D e-wD

w - X + (4.6)

with

e =
Xe(X-g)D.t 

It should be noted that 0 < e< 1 whether or not X > ; When X = A then
1

e =+XD°° + hD

(4.7)

Property 4.1: When =0, one has e = e - X D

This result is true for any selection policy, when there is no demand (i.e.g=O), as

one can see from M/G/oo when each item arriving is given its own shelf (server)
and awaits outdating.

The inverse bilateral Laplace transform of 0(w) is, using the indicator function

I[O,D](X) = 1, X E [O,D], zero elsewhere,

= eo 6(x) + eoo

f (x) { = eo 6(x)

= e 6(x)

+ eo e(X-g)(X-D) I[o,D](X); X > g , (4.8)

+ Xeoo I[O,D](X); X = . -
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One can see from these results that the pdf of the oldest item decreases monotonically from

X eo on [0,D] when X < g and increases monotonically towards X eoo on [0,D] when

X > g. It is equal to 1 + X when X = . Figure 3 illustrates these three cases for

{I = 0.95 , g = 1.0 },

Xeoo
0.28'

0.26'

0.24 

f (x) 0.22"

0.20 -

0. 18-

0. 16 -

0.14-
0

{X= 1.05, gL= 1.0}, and {X= 1.0, gp= 1.0 }with D= 8.

2 4 6
8
8

X

Figure 3. The pdf of the oldest item for FIFO.

The probability that the system is not empty is clearly

Service Level = l-e = 1- X-t =
)e(X-L)D. -

Xe(X-L-)D.,

.e(X-g)D-A

16
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x > 
Xeoo0 0
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(4.9)
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Since the spoilage rate is X - pP[not empty] , simple algebra gives

Spoilage Rate = 
X-e-(,-[t)D

(4.10)

Note that the ratio of spoilage rate to arrival rate is a positive number smaller than one as it

should be. This ratio decreases with D and decreases with g.

4.4. The distribution of the age of the items delivered

The age of the item delivered in the steady state is the conditional distribution of

Xo, for X, positive. One then has from 0o,(w), with 0 = k-g,

1 - e(O-w)D

xoo I xoo > O(w)
w- 

1 - eeD

- 0

(4.11)

The expected value of the age of items delivered is then

E[xolxo>O] = -'x I x > 0(0)

-= D lg( e ( ].
= D a-~ og( I i = D [1-v + (eV-1)-l]. (4.12)

One also sees that logk -- = v + log
1.e-v .e-v s

( -). The function ( - )isv v the bilateral

Laplace transform of the uniform distribution on [0,1]. Since mixtures of log-convex

functions are log-convex [Artin(1931)], one sees that log t--v- is strictly convex in v

on (.oo,oo), Hence

V E[xxlx>O] = D a2 i-e-,
log(-V) IV= (4.13)D> 0.0D

It follows from (4.13) that E[xolx,>0] increases with OD = (X-[t)D on (oo,oo).
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4.4. Structural properties

One can verify the following structural properties of the FIFO policy:
(a) when OD -- > -o, the mean age at delivery -- > 0;

(b) when OD -- > +oo, the mean age at delivery -- > D;

(c) when X -- > g, the mean age at delivery -- > D;

(d) when X -- > oo and g <oo the mean age at delivery -- > D;

and (e) when A --> oo and X <oo.the mean age at delivery --> 0.and (e) when L -> -o and <.the mean age at delivery -- > 0.
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5. Numerical Results

Several numerical examples are presented in this section. These examples illustrate

some salient properties of the two selection policies analyzed above. The inventory system

considered has a shelf life D of 8 time units and a mean demand rate 1 of one item per time

unit. The age of items delivered E[x~olxo>O] is computed using (3.15) and (4.12) and is

depicted in Figure 4. The mean age at delivery under FIFO is greater than under the LIFO

selection policy. Under FIFO the mean age at delivery decreases with the increase of the

demand rate X. This is due to the fact that the mean time in storage declines with the

increase in . On the other hand, in the LIFO case the mean age at the delivery is not a

monotone function of the demand rate. Increasing the initially small demand rate results in

supplies of items from older age layers: Further increases in the demand rate lead to

minimal storage levels and very short time intervals between replenishments and deliveries.

At that point, any increase in the demand rate results in smaller shelf storage times.

Figure 5 illustrates the mean time between stockouts E[TG], and Figure 6

illustrates the service probability (-e,). The FIFO policy results in relatively less

spoilage and, therefore, higher service probability and longer times between stockouts.

Note that in the LIFO case a service level of 95% or higher requires a supply rate which is

at least twice the demand rate.
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Figure 4. The mean age of items delivered.
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Figure 5. The mean time between stockouts.
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Figure 6. The service probability (level).

The impact of the selection policy on the optimal replenishment rate A* and on the

net operating income is evaluated next. Evaluating these issues let h be the inventory

holding cost per item per time unit, p be the sales price, s be the salvage value of an

outdated item, be the cost of lost sales, and c be the purchasing price in $ per item. The

net profit rate per time unit N is given by

N = p. (-e) p + ( - (1-e,)) s - X E(N(oo)) h - X p - , e 1. (5.1)

Figure 7 presents the values of N as a function of X for h = 1, p = 80, s = 8, =

100, and c = 10 $/item. It shows that FIFO results in a greater maximal net profit rate

since it is associated with higher service probability and the unit revenues are age

independent. The optimal supply rate for FIFO is a bit smaller than the one for LIFO, and

the net profit rate declines sharply when the supply rate is reduced below the optimal

levels.

21



20

10-

e0 0

0 -. -

-10-

-20 i I

0 1 2 3

Supply Rate (Items/Day)

Figure 7. The profit rate with age-independendt sales price.

The LIFO policy is more appropriate when product reliability, or utility, is closely

related to age. In those situations where customers can observe the expiration dates one

can think of a pricing scheme that results in declining sales prices as a function of the

products' age. A typical case in point is the well known discount on "day old bread."

Investigating a similar option, consider a case where the sales price p declines linearly

over the age of the products delivered within the interval [0-D].
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Figure 8 shows the values of N when the sales price declines from $120 to $80. In

this case the LIFO policy dominates since there is an income premium for delivering fresher

products as compared with the FIFO policy. Again, the optimal supply rate for FIFO is

smaller than the one for LIFO.
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Figure 8. The profit rate with age-dependendt sales price.
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Figures 9 and 10 present a breakdown of the various cost components for the FIFO

and LIFO policies, respectively. These Figures show that under LIFO the sales revenues

increase with the supply rate and the cost of lost sales approaches zero asymptotically. The

sales revenues under FIFO tend to be nonmonotone: in our example they tend to increase

for X < I, (to counter the cost of lost sale) and start declining rapidly for x < t due to the

significant increase in the age of items delivered ( and the reduced income for older items.)
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Figure 9. The profit rate components with FIFO and age-dependendt sales price

( 1- net profit, 2- sales revenue, 3- salvage income, 4- cost of lost sales, 5- inventory

holding cost, 6- purchasing cost.)
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6. Conclusions

This paper has presented an analysis of perishable inventory systems under either FIFO or

LIFO product selection policies. In these systems one has to follow the age of each unit in stock to

keep track of the available inventory level. This results in a multidimensional state space that

complicates the analysis and the actual monitoring of such systems. The results presented here

illustrate the potentially great impact of the product selection policies on the following performance

measures (a) spoilage rate, (b) mean age at delivery, (c) expected time between stockouts, (d)

service level, and (e) mean on hand inventory level. In particular, it is shown that LIFO results in a

much lower age of items delivered and on hand inventories, while FIFO assures a higher service

level and longer times between stockouts. The mean age at delivery for FIFO goes down with the

demand rate, and is not monotone with the demand rate for LIFO.

Optimization of the supply rate of both policies reveals that, whenever the sales price is age-

independent, FIFO can bring higher profits with lower supply rates. When the utility, and the sales

price, of new items is higher than for older ones it may be that LIFO policy is more economical.

When customers can observe the expiration dates and select the newest items they may impose the

LIFO policy on the vendors . Perhaps the most intriguing result is the observation that under both

policies the supply rate must be significantly greater than the demand rate to obtain a reasonable

service level and to account for losses due to perishability. This observation is particularly

important to logistic and distribution systems managers seeking to figure out the basic tradeoffs

between spoilage costs, service level, transportation and shipping time delays and the useful shelf

life for perishable products.
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