
:-0-~~~ k ERf0

1, 1. , ,.. ; , = -'Wor~~~~~~~~~~~~~~~~. .? -r'"g

.i, , 00r-:000: 0'Lr;740St50: :0:;0R000.ffffff-fff:?,:.?: ff.50;:.; -:f.:1R:=S.f.,.:: - -0- : .
: . R .0. . ? X i f ff .t . V. 0. Atu t. X aD: . t V X 0 rd :0 .f 0 .00. X 00 -: . - =

-;E::00X$:9 t::000-X;0t;0$00 .0:- 0 f;0: fworklng paer :: -I :f ::: ;;:000 ;-i:;;:;u--.,.: '..._..... .; ...:-- ,.-'-

,,i/~~~~ ~: ::,~ :. .' 1~.:< . , , .. ., .. ". :,.. . ..:.;.-..:'.. .

..?-'.,¥. .. .:,." '"'..' ',-:"-? ".i:;.: '.,,;: .:' -~ "?: ~ -
- ' ~ ':,'-",, " ,," ':; - ' .:~", "

.?i .: -': ?- ":E:~' ,: - :,' .00 ':J '' t,-. ".~ . ' " ": .?' , ?.~:-:: :,' : '. -0 . ' .0 - _:

:".. ,'- - .. ': : -:. , .. - - ~ .-: ; --. .

' xII~OF. TENOLOGY

:-,..., t aX ' : ;t ' E t: t

': :: I

.I_�; · ·-· -I.

:: i
;t ' ;-. ; .1-:·i ii

i
:·

·� i:

··.-

I ·'-

j·.-·

i"

-· i
r .

- � - ··

Jackson's Rule for One-Machine
Scheduling: Making a Good

Heuristic Better

by

Leslie A. Hall and David B. Shmoys

OR 199-89 August 1989

Jackson's Rule for One-Machine Scheduling:
Making a Good Heuristic Better

Leslie A. Hall David B. Shmoys
Operations Research Center Department of Mathematics

M.I.T. M.I.T.

August 1988

Abstract

We consider the scheduling problem in which jobs with release times and de-
livery times are to be scheduled on one machine. We present a 4/3-approximation
algorithm for the problem with precedence constraints among the jobs, and
two (1 + e)-approximation algorithms for the problem without precedence con-
straints. Finally, we prove a strong negative result concerning a restricted
version of the problem with precedence constraints that indicates that prece-
dence constraints make the problem considerably more difficult to solve. At
the core of each of the algorithms presented is Jackson's Rule-a simple but
seemingly robust heuristic for the problem.

1 Introduction

Consider the following machine scheduling problem: n jobs are to be processed on
one machine. Each job i has a release time rj, before which it may not be processed,
a processing time pj > 0, and a subsequent delivery time qj. Each job must begin
processing on the machine sometime after its release time, and its delivery begins
immediately after processing has been completed. At most one job can be processed
at a time, but all jobs may be simultaneously delivered. Preemption is not allowed.
The objective is to minimize the time by which all jobs are delivered. We study both
the case in which there exist precedence constraints among the jobs and the case in
which the jobs are independent.

The problem as stated is equivalent to that with release times and due dates,
rather than delivery times, in which case the objective is to minimize the maximum
lateness of any job. The equivalence is shown by replacing each delivery time qj by

2

a due date dj = K - qj, where K is a constant. Accordingly, the problems may be
denoted 1 rj I Lma, and 1 rj, prec I Lma,, in the notation of Graham et al. [1979].

There are two reasons for studying the delivery-time model rather than the due-
date model of the problem. First and foremost, the delivery-time model allows for
a meaningful discussion of approximation algorithms. In the due-date model, the
maximum lateness Lmaz could equal zero, regardless of the other data in the problem;
thus any attempt at approximation algorithms that measure performance in terms
of this objective function appears doomed to failure. The second reason for using
this model is that it emphasizes the forward-backward symmetry of the problem: by
interchanging rj and qj for every job j and inverting the precedence relation, we obtain
an inverse problem with the property that pj,, pj, ... ,pj is an optimal ordering of
the jobs for the original problem if and only if pj, Pin-,. . ,Pj, is optimal for the
inverse problem.

This scheduling problem is strongly NP-hard, even when no precedence constraints
exist [Lenstra et al., 1977]. A few special cases have been shown to be polynomially
solvable, however. If all release times rj are equal, the problem may be solved using
Jackson's rule [Jackson, 1955]: schedule the jobs in order of non-increasing delivery
time. An analogous result holds for equal delivery times, by applying Jackson's rule
to the inverse problem. If all processing times pj = 1 and all release times are integer,
then the problem is solved by the extended Jackson's rule: whenever the machine
is free and one or more jobs are available for processing, schedule an available job
with largest delivery time. The problem becomes considerably more complex when
all processing times are equal but arbitrary release times are allowed; the intuition
behind this fact is that in this latter case, a new job may be released while another job
is in the middle of being processed, and thus the new job may be wrongly postponed if
one simply uses the extended Jackson's rule. This case is still polynomially solvable,
however [Simons, 1978; Garey et al., 1981], using an iterated version of the extended
Jackson's rule, in which restrictions are introduced at each iteration. All of the special
cases above are polynomially solvable when precedence constraints exist, as well.

Early work analyzing approximation algorithms for this problem includes Kise et
al. [1979]. The best approximation algorithm until now was given by Potts [1980], and
it achieves a schedule of length no more than 3/2 the length of the optimal schedule;
in other words, it is a 3/2-approximation algorithm. Although Potts' algorithm is
for the problem without precedence constraints, a simple modification allows it to
achieve the same bound with precedence constraints, as will be discussed below.

The best approximation algorithm result that one can hope for is a fully polynomial
approximation scheme, i.e., a family of algorithms {A)} such that for any e > 0,
Ae produces a schedule of length at most (1 + e) times the length of the optimal
schedule and has running time polynomial in n and 1/e. However, because this
scheduling problem is strongly NP-hard, no such scheme exists unless P=NP [Garey
and Johnson, 1978]. Consequently, the best result that we can hope to obtain is a

3

polynomial approximation scheme, namely a (1 + e)-approximation algorithm whose
running time depends exponentially on 1/e (as well as on n). We present two such
polynomial approximation schemes below.

In the remainder of this paper, we present the following results. First, we present
a modified version of Potts' algorithm [Potts 1980] that produces a schedule of length
no more than 4/3 times the length of the optimal schedule; this algorithm can also
handle precedence constraints. In Section 3, we present two polynomial approxima-
tion schemes for the problem without precedence constraints. The first of these is
based on the result that, given a fixed number of different release times, and unary
processing times, then the problem is polynomially solvable. Finally, we prove a
strong negative result concerning the problem with precedence constraints: given a
fixed number of release times, processing times, and delivery times, all of which are
encoded in unary, the problem is NP-hard.

It will be seen that the algorithms presented here, like Potts' algorithm and those
for the special cases discussed above, all depend in some manner on the extended
Jackson's rule. In some fundamental sense, this rule is the "right" one for this problem
and proves to be very powerful indeed, given the proper modifications.

2 A 4/3-approximation algorithm

To begin, we introduce some notation. There are n jobs 1,2,..., n to be scheduled
on one machine, whose release, processing, and delivery times are given by rj, pj, and
qj, respectively, j = 1,..., n. We let

P = pj.
j=l

We define T* and TH, respectively, to be the length of the optimal schedule and the
length of the schedule given by the heuristic H under consideration. Clearly,

T* > max{P, max rj, max qj}.

We define here once again the

Extended Jackson's Rule Whenever the machine is free and one or more jobs is
available for processing, schedule an available job with largest delivery time.

For any algorithm H, suppose that the algorithm generates a job ordering jl, ... jn,
and that job j, finishes last in the schedule, i.e., its delivery time finishes last. Let
j, be the earliest-scheduled job such that no idle time exists between the processing

4

of jobs j, and j,. Then

TH = r+ E P +
h=m

The sequence of jobs j,,... j, is called a critical sequence for the schedule, and j is
the critical job for that sequence.

When the extended Jackson's rule is used, resulting critical sequences have some
nice properties. To begin with, we observe that every job jh in a critical sequence
j,,..., jc must have release time rjh > rj,; thus if every job jh in a critical sequence
satisfies q > qj,, then the heuristic schedule is optimal. If there exists a job jb in
the sequence such that qjb < qj,, then it must also be true that rj, < rj. Such a job
jb is called an interference job for the critical sequence. We state the following well
known result without proof [Potts 1980].

Lemma 1 Let jm,..., j, be a critical sequence for a schedule generated by the ex-
tended Jackson's rule heuristic J, and suppose that jb is the interference job occurring
latest in the sequence, (so that qjh > qj, for all h > b). Then

T-T* < pjb;
Tj-T* < qj.

If there is an interference job for every critical sequence, the only hope of improving
the schedule is to force some interference job to come after its corresponding critical
job. This idea motivates Potts' algorithm.

Algorithm A

repeat

run the extended Jackson's rule on the current problem, and locate a critical
sequence;

if an interference job jb exists then set rj, := rj,

until there does not exist an interference job or n iterations have been performed;

return the shortest schedule generated.

Theorem 1 [Potts 1980] The above algorithm generates a schedule TA with TA/T* <
3/2.

5

Proof There are two cases to be considered. Let us fix some optimal schedule.
Case 1 All precedence constraints introduced are consistent with the optimal sched-
ule. If the algorithm stops at some point because no interference job exists, then the
schedule is optimal. Otherwise, the algorithm continues for n iterations. There can
be at most one job u with Pu > T*/2. By Lemma 1, the only way that a schedule
generated in the algorithm could have length > (3/2)T* would be if job u were the
interference job. But u can be the interference job only n - 1 times; thus at least
one time, some other job v u with p, < T*/2 will be the interference job, and by
Lemma 1 we have TA < (3/2)T*.

Case 2 At some point, an incorrect precedence constraint is introduced. Consider the
first time that a precedence constraint is introduced, that violates the fixed optimal
schedule. Immediately beforehand, we may assume that Pib > T*/2 and q, > T*/2,
because otherwise we have a schedule with TA < (3/2)T*. The fact that the prece-
dence constraint is inconsistent implies that job b precedes job j, in the optimal
schedule. But then

T* > rb + pj + pr+ + qjC > rib + T/2 + pj + T/2 > T',

a contradiction. Therefore either Pib < T*/2 or qj, < T*/2, and that schedule satisfies
TH < (3/2)T* by Lemma 1. QED.

We note that with a slight modification the algorithm will work when there exist
precedence constraints among the jobs. At the start of the algorithm, we preprocess
the jobs as follows. If job i must precede job j, then

* if rj < ri set rj := ri;

* if qi < qj + pj set qi:= qj + pj.

Notice that no feasible schedule is lengthened by these modifications. Furthermore,
these modifications ensure that the extended Jackson's rule automatically enforces
the precedence relations. To see this, notice that if i must precede j, the fact that
r < rj ensures that job j does not become available for processing before job i; and
the fact that qi > qj + pj > qj ensures that if both i and j are available, Jackson's rule
will schedule job i first. (If pj = 0, technical modifications will ensure that ties are
broken correctly.) We now modify Algorithm A as follows. Whenever an interference
job b gets its release time reassigned as rb := r, we then reassign rj := rb(= r) for
all jobs j that must be preceded by job b. It is straightforward to show that the proof
for Case 1 of Theorem 2 above carries through. (For the purposes of the proof, if job
c is forced to go after b and in actuality c must precede b, this constitutes a "bad"
precedence constraint.) We shall refer to this modified algorithm as Algorithm A'.

6

Corollary 1 Algorithm A' finds a feasible schedule of length TA, < (3/2)T* for the
delivery-time version of 1 rj, prec I Lmax.

Our modification of Potts' algorithm is based on running Algorithm A or A' on
the forward and inverse problem. In fact, experimental results of Grabowski, Nowicki
and Zdrzalka (1986) show that this modification does improve the results obtained in
practice. (Recall that the inverse problem exchanges the roles of rj and qj, for each
job j, and reverses the direction of the precedence relation.) Generally, doing so is
enough to obtain the 4/3-approximation; however, the situation in which two very
long, incomparable jobs exist must be dealt with separately. Our initial solution to
handling this case used the fact that the number of "interesting" schedules for this
restricted case was quite small. The more elegant algorithm included here is due to
Potts (1988).

Algorithm B

if there do not exist jobs u and v with pu, p, > P/3, then (*)

call Algorithm A' (or A) on both the forward and inverse problem;

return the best schedule generated;

else ()

if the two long jobs u and v are comparable, call Algorithm A' with the modi-
fication that 2n -1 iterations of the extended Jackson's rule are performed,
rather than n;

else

first add the constraint "u precedes v" and call Algorithm A', with 2n- 1
iterations;

then instead add the constraint "v precedes u" and call Algorithm A'
with 2n- 1 iterations;

return the best schedule generated.

Theorem 2 Algorithm B generates a heuristic schedule of length TB satisfying TB <
(4/3)T*.

Proof
Case 1 At most one job, call it u, has length pu > P/3, so that step (*) of Algorithm
B is carried out. Suppose that the solution delivered by the algorithm has length
> (4/3)T*. Note that Pu > T'/3, since otherwise, by Lemma 1, on the first iteration
in Algorithm A we have a schedule with the proper bound. As in the proof of Theorem
1, if in the forward or the inverse problem, all precedence constraints introduced are

7

consistent with some optimal schedule, then either an optimal schedule is found or in
some iteration job u is not the interference job, in which case, by Lemma 1,

TB < T* + P/3 < (4/3)T*.

Next, suppose that in both the forward and inverse runs, precedence constraints
are incorrectly introduced, i.e., constraints that together allow no optimal schedule.
Since every optimal schedule is violated, we may fix an optimal schedule, called OPT,
and consider the first iteration that a constraint violating OPT is introduced in the
forward schedule. As in the proof to Theorem 1, we may assume that, just prior to
introducing the "bad" precedence constraint, the interference job is the large job u
and the critical job j satisfies qj, > T*/3. The fact that the constraint introduced
is "bad" implies that job u precedes job j, in OPT. Next, define OPTi,, to be the
inverse schedule to OPT, and consider the first iteration that a constraint violating
OPTi,, is introduced in the inverse schedule. Again, u must be the interference job,
and some job l4 is the critical job; and tIc > T*/3, by assumption, where -ql = rc
is the delivery time of job Ic in the inverse schedule. Again, because the constraint
introduced is bad" we see that job u precedes job l, in OPTiv, or equivalently, job
I, precedes u in OPT. Recalling that u precedes jic in OPT, we have

T* > r + p + pu +pj + qj

> T*/3 +pi, + T*/3 + pj +T*/3

> T*

a contradiction. Thus we have shown that, whenever there is a single job u with
p, > P/3, Algorithm B provides a schedule of length < (4/3)T*.

Case 2 Two jobs u and v exist with pu > P/3, Pv > P/3. In this case, step (t)
of the algorithm is carried out. Without loss of generality, assume that there exists
an optimal schedule in which job u precedes job v. Whether or not there actually
exists a precedence relation between u and v, the algorithm runs Algorithm A' with
"u precedes v" enforced. We will focus on this part of the algorithm. As in Case
1, there are two possibilities. If no "bad" precedence constraint is ever introduced
into the problem, then since each of the jobs u and v can each be the interference
job at most n - 1 times, either the algorithm stops with an optimal solution or in
some iteration some other job j with pj < T*/3 is the interference job. In that case,
by Lemma 1 TB < (4/3)T*. Next suppose that at some point a "bad" precedence
constraint is introduced. We assume that, just prior to enforcing the bad constraint,
either u or v is the interference job, and the critical job jc satisfies qjc > T*/3, since
otherwise by Lemma 1 TB < (4/3)T*. If v is the interference job, then the fact that
u precedes v and that the new constraint requiring v to follow jc is bad implies

8

Thus v cannot be the interference job. Now suppose that u is the interference job,
and suppose further that either v is processed between jobs u and j or v = j. In
either case, q, > qj . But then we have

T* > p + p + qj > T,

a contradiction. Finally, suppose that u is the interference job and that v is processed
after the critical job j. Since u precedes j, in the optimal schedule (because the
constraint "u follows jc" is bad),

T* > r + p + qj,.

But because E pj < T*/3 and there is no idle time in the schedule between ru and
j0u, v

the processing of job jc, we have

TB < r + p + T3 + qjC < (4/3)T*,

by the previous inequality. Thus in every case with two long jobs, the schedule
delivered satisfies

TB < (4/3)T*,

and the theorem is proved. QED.

Algorithm A requires time O(n 2 log n) to run [Potts 1980]; processing the addi-
tional precedence constraints does not dominate this time, so Algorithm A' also run
in time O(n2 log n). It follows that Algorithm B also requires O(n 2 log n) time.

The example in Figure 1 shows that the bound of 4/3 is tight for Algorithm B.
In the example given, no job j has pj > P/3, and thus step (*) is implemented;
but when Algorithm A is run on the forward and inverse problem, a schedule of
length 4Q + 3 is obtained. The optimal schedule has length 3Q + 4. Thus the ratio
between the heuristic value and the optimal value can be made arbitrarily close to
4/3. Furthermore, the example can be modified so that step (t) of Algorithm B is
carried out rather than step (*). By setting P2 = p4 = Q + 2, we have P2, P4 > P/3.
When job 2 is forced to precede job 4, then the same schedules as before are generated.
When job 4 is forced to precede job 2, the schedules are even worse. Thus the best
schedule generated will again be off by an amount arbitrarily close to T*/3.

3 Two polynomial approximation schemes for 1
rj I Lmax

In this section we present two different polynomial approximation schemes for the
one-machine scheduling problem without precedence constraints. The first algorithm

9

Release, processing, and
delivery times for jobs 1 to 5

q 3 =2Q+2 I

Q I1H Q I q1

q,=2Q+l

4Q+3

4Q+3

q3 =2Q+2 I

... sQ+1 I,
3Q+4
(optimal)

Figure 1: Example of a schedule that demonstrates that the 4/3-bound for Algorithm B
is ight. The first ordering generated is (1 2, 3, 4, 5). Job 3 is the critical job and job 2is the interference job. Ater job 2 is forced togo after job 3, the new schedule becomes
(1, 3, 2, 5, 4). At this point there is no interference job, and the algorithm starts over with
the inverse problem. $ince the inverse problem s identical to the forward Droblem the
algorithm halts with a best schedule of length 4Q+3. The optimal schedule, (2, 3, 1,5, 4),has length 3Q + 4.

10

Job rj pi qj

1 0 Q 0

2 1 Q 2Q+1

3 Q+1 1 2Q+2

4 2Q+1 Q 1

5 2Q+2 1 Q+1

Schedules:

Q I1,2,3,4,5 1

1,3,2,5,4 Q 1 Q 1 Q

2,3, 1,5,4 Q I Q

I
- I

I
I

I. . .

. i Ill ~_~A

Q 1

- I
I
I
I
I

I
->

is based upon a polynomial-time dynamic programming formulation for the special
case in which the number of release times is fixed and the processing lengths are
encoded in unary. The second is based upon dividing the set of all jobs into two
sets of jobs, large and small, respectively, such that the number of large jobs is fixed
(relative to). The algorithm essentially tries every configuration for the large jobs
and then tries various ways of fitting in the small jobs, using the extended Jackson's
rule.

First, we make an observation that will simplify the analysis.

Lemma 2 Given a polynomial approximation scheme for the restricted version of
1 rj Lma in which there is a fixed number of distinct release times, then there
exists a polynomial approximation scheme for 1 rj I Lma.

Proof Consider the following procedure.

1. Let = maxj rj.

2. Round down each rj-value to the nearest multiple of 77, to obtain a fixed number
of release times;

3. Use the (1 +)-approximation algorithm on the rounded problem to obtain an
ordering of the jobs;

4. Use the given ordering to schedule the jobs with their original release dates.

By rounding down in step 2 to multiples of 77, we end up with 2/e + 1 different release
times, which is a fixed number. We observe that adding 77 to every aj obtained in step
3 results in a feasible schedule of length (1 +)T* + r7. Since maxj rj < T*, it follows
that 77 < T*, and thus step 4 delivers a schedule with length at most (1 +)T*.
QED.

In the remainder of this section, we shall assume that we have only a fixed num-
ber of release times, denoted by , except in the final running time analyses of the
approximation algorithms. We denote the r. possible release times by pl, 2,... -, ,;
for each job j, r = pi for some i < xe. For notational convenience, let +l1 = oo.

We present a polynomial approximation scheme that is based on a polynomial-
time dynamic programming algorithm to solve 1 rj I L when restricted to a fixed
number of release times and given the processing times in unary. If there are X release
times and the sum of the processing times is P, then the algorithm runs in O(nP 2 ')
time. We first show that such an algorithm yields a polynomial approximation scheme.

By Lemma 2, we need only consider instances that have only a fixed number of
release times. Let p = P/n, and round the processing times to the nearest multiple

11

of p; that is, Pi5 = Lpj/yJ. Note that the sum of the modified processing times,

n n

P = < Pl(+ n =n(+ < /+ =).
j=1 j=1

Thus, the presumed algorithm can find an optimal schedule for the rounded problem
in O(n/e(n/) 2K) time. Since we have rounded down the processing times, the length
of this schedule is no more than the optimal schedule for the original problem, T*.
We now interpret the optimal schedule for the rounded problem as a schedule for
the original problem; by rescaling and expanding the processing time of each job, we
increase the length of the schedule by at most It = eP/n with each job, and thus get
a schedule of length at most T* + P < (1 + e)T-.

In actuality, it is more convenient to view the algorithm that finds an optimal
solution to the restricted problem as a collection of dynamic programming algorithms.
Consider some schedule for a particular instance. We can subdivide the duration of
the schedule into intervals in the following way: let Ai be defined so that Pi + Ai is
the first point where a job with release time > pi is processed; this gives a partition
{[pi + Ai, pi+l + A+13]}. Each job is processed entirely within one interval. (Note that
we will allow jobs with pj = 0, and such a job may fall in more than one interval, so
we arbitrarily pick one of these to "contain" this job.) Finally, we shall call pi + Ai,
i = 1,..., Ic, the effective release times.

Notice that there must exist an optimal schedule where the processor is active
throughout the interval [pi, pi + Ai] (if Ai > 0), so that each A; < P, the total
processing time. Algorithm C, presented below, finds an optimal schedule, subject to
the constraint that the effective release times are pi + A;, i = 1,... iK. By the previous
observation, we need only run Algorithm C for each of the P4 plausible choices of
effective release times to obtain an optimal schedule.

Suppose that pi + /i, i = 1,... Ie, are the effective release times of an optimal
schedule, and consider the set of jobs Ji scheduled in the interval [Pi + Ai, pi+l + i+l].
By the definition Ai+l, all jobs in Ji have been released by pi, so Jackson's rule must
give an optimal ordering of Ji. This implies that if we are given the optimal Ai, then
we need only determine the interval in which each job is processed.

In fact, this observation is the core of the dynamic programming recursion. Sort
the jobs so that q > ... > q,. Let f(a;j) = fa(al,..a.,a,;j) denote the minimum
completion time of a schedule for jobs {1,..., j} that uses exactly ai total processing
time in the interval [pi + Ai, pi+l + hi+l]. Then it is easy to see that

fa(a;j) = min{max{fA(al,...,ai-_,a;-pj, a+ ... ,a,;j-l),pi+Ai+ai+qj} : i such that rj < p}

for all a such that pi+Ai+-ai < Pi+l + Ai+l, i = 1,..., K-1. Notice that Jackson's rule
is crucial to the correctness of this recurrence, since it is based on the idea that job j
must be contained in some interval, but no matter which, we may assume that it is

12

scheduled within that interval after all jobs previously scheduled (with longer delivery
times). The basis for the recursion is easy, since we may set f(O,..., O; O) = 0, and
all other f (a; O) = oo. This gives the following algorithm:

Algorithm C

order the jobs such that ql > q2 > ... > qn.

initialize the array fa = oo except f(O, ... , 0; 0) = 0.

for j := 1,...,n do

for all -tuples (al,.. ., a,,) with

K i

Zai =- pl, and pi+ Ai + a +l1 + i+i, i =,...,Pc,
i=l 1=1

for all i such that rj < pi compute the length of the optimal schedule
with job j in the interval [pi+Ai, pi+l, Ai+,] (using fA (al,... , ai 1, ai-
pj, ai+l,..., a; j - 1)).

choose the best interval and schedule job j last among the jobs already
scheduled in that interval; let fa(a; j) be the length of this extended
schedule.

return min f,(a; n) and the actual schedule corresponding to this minimum value.

Combining Lemma 2, the observation that a polynomial-time algorithm for the
restricted case with a fixed number of release times and unary processing times yields
a polynomial approximation scheme, and Algorithm C, we get the following result.

Theorem 3 There exists a polynomial approximation scheme for the delivery-time
version of 1 rj Lma, based on Algorithm C above, which for any fixed > 0
delivers a schedule of length less than (1 + E)T* and requires running time

0(161(n/E)4/¢ +3),

Proof Given > 0, the approximation algorithm consists of running Algorithm C
for each possible value of the vector A, O(nPK,) time. Since there are O(PK) choices
for A, the overall running time is bounded by

O(nr.P2") = O (n(l + 2/e)(n + 2n/E)2(1+2/c))

= 0 (16/(n/E)3+4//). QED.

13

We turn now to the second polynomial approximation scheme. Suppose that e > 0
is given. We introduce the following notation.

Definition For a given schedule, let aj denote the starting time of job j, i.e., the
time at which job j begins processing.

(Of course, in any feasible schedule, j > rj, for any job j.) Let

Pe
5=-2x

where P = j pj and ,c is the number of distinct release dates. Suppose that we
divide the jobs into two sets, according to the length of their processing times,

A= j : pj > S} and B= {j : pj <} .

(Notice that I A 1< P/ = 2a/, a fixed number.) Now suppose that, for some fixed
optimal schedule with starting times a,...,a,, we know which interval [pi, pi+l)
contains aj*, for all j E A; let Ii denote the set of jobs in A that have start times in
[pi, pi+l). Let

M := (pj : aj E [pi, pi+,) and j E B),
and suppose that we know Ni := [M i /1], for i = 1,..., c; that is, we know ap-
proximately how much time in the interval [pi, Pi+l) is spent processing the small
jobs. Call {(Ii, N) :i = 1,..., c}) the outline of the optimal schedule. Consider the
following procedure that uses the outline as part of its input.

Algorithm D

let W/ := {j E B : j ' Jk, for any k < i, and rj < pi };
jl,..., j, denote the jobs in Wi, such that qj > ... >

if E pj < Ni8 then let Ji = Wi;
jEW.

let Il/i = m; let
qi ;

else let Ji be the minimal set {jl,... , j} such that E pj > N;
jEJi

order the jobs in Ii U Ji in order of non-increasing qj;

schedule all jobs as follows: first schedule the jobs in I U J1 in the order determined
above, then schedule the jobs in I2 U J2 , and so on, through I,, U J.

14

�il�l 1____·_11 11 I II

for i = 11 ... I r. (*)

We first prove an important dominance relation concerning the scheduling of the
small jobs by Algorithm D. We wish to show that the set of small jobs that are
available at iteration i of the heuristic is easier to schedule than the comparable set
of "available" jobs in the optimal schedule. To capture the appropriate notion for the
optimal schedule, let

Vi = {j E B: rj < pi and a; > Pi}

For notational convenience, if Z = {jl, ... , jm} is a set of jobs ordered so that qjl >
qj2 * -> q,, and t is any value such that t < Z pj, then define a(Z, t) = jk so that

jEZ
k-1 k

y.pj < t < Epyp, and let S(Z,t) = {jl,...jk}. Note that these definitions depend
/=1 1=1
on the particular ordering of the set Z, so that for definiteness, order jobs of equal
delivery time by increasing release time, and break ties among jobs of equal delivery
and release times by their index.

Lemma 3 For any iteration i, let Wi and Vi be the sets of available jobs in the
heuristically and optimally constructed schedules. Then

(1) pj < E pj; and
jEWi jiv

(2) for any t < E pj, q,(w,,t) < q(v,t).

Proof The proof uses induction on i, the iteration of Algorithm D being performed.
For i = 1, Wi = Vi and thus (1) and (2) hold trivially.

Assume that (1) and (2) hold for all iterations up to i - 1; in particular, they hold
for Wi_1 and Vi_1. It is useful to observe that property (1) implies that a(Vi, t) is
well-defined in (2). There are two cases to consider. If VTi-l = Ji-1, Algorithm D
schedules all short jobs with release time less than pi in the first i - 1 iterations, so
Wi C V. Properties (1) and (2) follow immediately from this relation.

Now suppose that Vli- 1l Ji-1, which implies that pj > Ni_18. Let us

consider how WVi and Vi differ from Wi-1 and Vi_, respectively. Define Ri = {j E
B : rj = p). Also, let U_ 1 = {j E B : pi-l < < pi}. Then l1_7 n Ri = 0 and
Vi_l nRi = 0; and

Wi = Wi-1 \ Ji-1 U Ri, and V = V 1 \ Ui_1 U Ri.

To prove the inductive claim, we will first show that Wi \ Ji-1 and Vi_ \ Ui_ 1
satisfy (1) and (2). To see that (1) holds for these sets, observe that

E pj > Ni_lS > Mi_l > E pj.
jEJ- 1 jEUi-

15

To prove (2), let t be any value such that t < E pj. We need to show that
jEW_x \Ji-i

qa(Wl\i_l,t) < qa(V-l_\ui_ ,t). Let

t = t + E(pj : j E Ji-1 and qj > q(w,_\Ji_l,t)), and

t"= t + (pj : j E Ui- 1 and qj > q(v,.\u_1,t)).

Because Ji-1 is taken from the beginning of the list Wi_ 1,

>(pj ' j E Ji-1 and qj > qa(wi_,\Ji-,t)) = E Pj.
jEJi-i

Thus it follows that t' > t", since

E pj > Ni_1 > Mi_l > E pj > (pj : j E Ui-_ and qj > qa(vi_-\u 1,t))-
jEJi-l jEUi-,

Thus if we examine t' and t" in the inductive hypothesis with respect to Wi-1 and
Vil, then because t' > t" we see that

q0(w-_l\J&-,It) = (w_1,t') < (wi_,te) < (v,_,,t") = qa(vi_1\Ui_,t),

where the latter inequality follows from the inductive hypothesis. Therefore, we have
shown that (1) and (2) hold for Wi- 1 \ Ji_1 and V_1 \ Ui_.

We now show that we can add in the elements of R. to both Wi- \ Ji-1 and
Vi_l \ Ui- 1 while maintaining these two properties. The first property is trivial, since
R, and V_ \ Ui- 1 are disjoint. To see that (2) holds, first consider the case where
R = {j* }. Recall that j* is inserted into both Wil \ Ji_- and Vi_ 1 \ Ui_1 at a position
such that any job following j* has delivery time strictly less than j*. Let G and H
denote the sets of jobs that precede j* in Vi_ \ Ui_1 and Wi_1 \ Ji_1, respectively.
Furthermore, assume that j is inserted between jobs g and g*, and between jobs h
and h* in these two sets. Set

t = > pj, (3)
jEH

and let = a(V._ \ Ui_ 1, t). Because (1) and (2) hold for Wl_l1 \ Ji_ and Vi- \ U- 1,
we have qh < q. Also, by definition,

t < (pji: j E S(Vi_ \ Ui_,t)). (4)

On the other hand, the positioning of j* in the two sets implies that q > qj > qg..

Thus, q > q*, and this implies that

(pj j S(Vi_1 \Ui_l,t)) < E pj. (5)
jEG

16

__________________ __________________ _ W ,.l\ J. U (*) =W sI I
I - I

IP P.
jenl

I I

G I

T 1 T2 T3

Figure 2: Domination of the heuristic scheduling of small jobs over the schedule OPT.

Combining (3), (4), and (5) givesz~~~~1 j < E pJ.

IEH jEG

This inequality implies that the processing requirements lists of the (ordered) sets
Wi = Wi-v \ J- U {j*} and V = Vi_ \ Ui_ 1 U {j*} are related as shown in Figure
2. This figure depicts three distinct time periods and we prove that (2) holds by
considering these three cases separately. For t E T1, the sets are unchanged by adding
j*, so (2) must still hold. Similarly, for t E T3, we see that a(Wi_1 \ J_1, t - pj.) =
o(W/, t) and a(VI_ \ U_ 1, t - pj.) = c(Vi, t), so we obtain the desired outcome.
Finally, consider t E T2. In this case, either j* = a(Wi, t) or j' comes before a(WVi, t),
in Wi; and either j* = a(X,t) or j* comes after a(V'i,t), in Vi. This implies that
q(v,t) qj > q(wi,t).

To complete the proof, one need only notice that R of larger cardinality can be
handled identically, merely adding one element at a time, and applying induction.
QED.

Theorem 4 Given the outline of an optimal schedule, Algorithm D delivers a sched-
ule of length TD < (1 + E)T*.

Proof We will show that every job j finishes in the heuristic schedule before time
T* + 2. It then follows that

TD < T* +26

17

- T* + 2 e
2t

< T*+T*f.

Consider any job j, and suppose that j E Ii U Ji. Suppose that in the schedule
generated by Algorithm D,

TA= (p1 : I E I and q > qj),

and
TB = (P l E Ji and qI > qj).

Let al denote the starting time of job in the schedule produced by Algorithm D. If
we define i = min(al: 1 Ii U Ji) and (i to be the time at which j finishes being
delivered, then

Cj < (i + TA + TB + qj. (6)
Next consider the jobs I in the optimal schedule with aj E [Pi, Pi+l). By the definition
of the outline, we know that all jobs in Ii are contained in this set. Furthermore, there
is at least as much time from small jobs scheduled in the optimal schedule after time
Pi as there is assigned to U =i Jr. Thus, by Lemma 3, we know that there exists at
least TB time from small jobs with starting times in the optimal schedule > pi and
delivery times > qj; thus, including the jobs from Ii, we see that there is at least
TA + rB total time in the optimal schedule from jobs with starting times > pi and
delivery times all > qj. Therefore we have

T* > pi + TA + TB + qj. (7)

If we can show that
(i < i + 286,

then by inequalities (6) and (7) we are done. But this is true by the definition of the
outline. The amount of time allotted to each of the sets I, U Jr, I < i, is approximately
equal to that allotted to each interval [pi, pi+l); in fact, the error is bounded by 26
per interval: 6 due to the round-off error (Ni - Mi < 6), and 6 due to overshooting
N 1 (I pi -Ni < 6). Thus

IEJi

(i < Pi + 2(i - 1)5 < Pi + 2tc6,

and we are done. QED.
Combining Lemma 2 and Theorem 4, we have the following result.

Theorem 5 There exists a polynomial approximation scheme for the scheduling
problem 1 rj I Lm based on Algorithm D, that, given E > 0, delivers a sched-
ule of length less than (1 + E)T* and requires running time

O (n log n + n(2/e)16/e2 + 8/)

18

Proof Ordering all jobs with respect to length of delivery time must be done once
and requires time n log n. If the sets Ii and Ji are kept ordered, then the amortized
work of step (*) in Algorithm D is O(n), and thus Algorithm D requires O(n) time.
Algorithm D must be called once for each potentially optimal outline of the schedule;
and the number of such outlines is bounded by the number of assignments of large
jobs to intervals,

= O(KIAI) = O(2K/(c/ 2)) = (4/e);

times the number of ways to choose N 1,..., N,,

= O(KJ/6), where 6 = P(e/2)/2tc = PE/4K,

= 0(i/'c);

and since tc = 2/e + 1, this product equals

O ((2/6)8(2/c +1)/c) = o0 ((2/)16/ 2 + 8/)

Thus the total time required is bounded by

O (n log n + n(2/E)16/ 2 + 8/,) QED.

We make one final remark concerning Algorithm D. As in Algorithm B, the actual
scheduling of all jobs could be done using the extended Jackson's rule, rather than
the method given. The resulting schedule would be at least as good as that produced
by the current version of Algorithm D.

4 An NP-Completeness Result

We conclude this paper with a negative result on 1 r, prec I Lma., that indicates
that it may not be easy to find an c-approximation for this problem. Consider the
following special case of the problem.

RESTRICTED MAXIMUM LATENESS. Input: two release dates, R 1 and R 2, two
processing times, P1 and P2, and two delivery times Q1 and Q2; a set of n jobs with
rj = R1 or R 2, pj = P1 or P2, and qj = Q, or Q2, for j = l,...,n; precedence
relations among the jobs; and a deadline, D.
Question: does there exist a 1-machine schedule satisfying release times and prece-
dence constraints, such that every job is delivered by time D?

Theorem 6 RESTRICTED MAXIMUM LATENESS is strongly NP-hard.

19

Proof The reduction is from CLIQUE.

CLIQUE. Input: G = (V, E), K <I V .
Question: Does G contain a complete subgraph H = (V', E') with V' 1> K?

Given an instance of CLIQUE, we construct an instance of RESTRICTED MAX-
IMUM LATENESS as follows. There will be IV I I E I +1 jobs altogether:

* V I vertex jobs with Pv = (K) +1; r = O, q = 0;

· I E I edge jobs with p, = 1; r = 0, q =0;

· One dummy job, job 0, with po = 1; r = (K + 1) ((K-1)+) -1;

o = (I V I -K - 1) ((-) + 1) + +E I E +1.

Thus we have R1 = 0, R 2 = ro; P1 = (K-1) + 1, P2 = 1; and Q1 = , Q2 = qo.
There exist precedence constraints among the jobs as follows:

For all e = {u, v} E E, vertex jobs u and v must precede edge job e, and the deadline
is set to

D =1 V (I (I-) + 1) + E +1

We need to show that the given instance of CLIQUE is a "yes"-instance if and only
if the given instance of RESTRICTED MAXIMUM LATENESS is a "yes"-instance.
First, we observe that job 0 must be processed at exactly time r0, if the deadline D
is to be met. Thus job 0 essentially partitions the processing time into two intervals.
Furthermore, if D is to be met then all jobs must be processed without any idle
time, starting at time 0. Provided that job 0 begins at time ro, the only way to
avoid idle time in the schedule is to process K vertex jobs followed by K(K - 1)/2
edge jobs, before job 0. But this is possible if and only if a K-clique exists in G,
because of the precedence constraints (see Figure 3). Furthermore, if a K-clique does
exist in G, then a feasible schedule may be completed by processing the remaining
vertex jobs followed by the remaining edge jobs, after job 0. Thus we have shown
that the reduction is valid. Since this reduction is clearly polynomial-time, and since
the magnitudes of the numbers involved are polynomial in K, we have shown that
RESTRICTED MAXIMUM LATENESS is indeed strongly NP-complete. QED.

Notice that in addition to all of the other restrictions allowed, the reduction re-
quires a precedence-tree of depth only two. Even so, the existence of a polynomial
approximation scheme for 1 rj, prec I Lmax is not ruled out.

Acknowledgements The authors are grateful to Chris Potts, for allowing them to
include his more elegant version of the 4/3-approximation algorithm.

20

���11111�1111· -

| V, p.: v E' P Other vertex jobsOther edgej

- K((K(K-1)/2+ 1) ------- K(K-)2-I 1
I ! I

- C(K+1)(K(K-1)/2) + 1) -1 -

Figure 3: This diagram illustrates the only way in which a feasible schedule satisfying
the bound may e implemented. uch a schedule s possible if and only if a clique
H = (V', E) of size K exists.

5 References

Garey, M.R. and D.S. Johnson. (1978) Strong NP-completeness results: motivation,
examples and implications, J. Assoc. Comput. Mach. 25, 499-508.

Garey, M. R., D. S. Johnson, B. B. Simons, and R. E. Tarjan. (1981) Scheduling
unit-time tasks with arbitrary release times and deadlines, SIAM J. Comput.,
Vol. 10, No. 2, 256-69.

Grabowski, J., E. Nowicki, and S. Zdrzalka. (1986) A block approach for single-
machine scheduling with release dates and due dates, European J. Oper. Res.
26, 278-285.

Graham, R. L., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. (1979)
Optimization and approximation in deterministic sequencing and scheduling: a
survey, Ann. Discret Math. 5, 287-326.

Jackson, J. R. (1955) Scheduling a production line to minimize maximum tardiness,
Research Report 43, Management Science Research Project, UCLA.

Kise, H., T. Ibaraki, and H. Mine. (1979) Performance Analysis of Six Approxima-
tion Algorithms for the One-Machine Maximum Lateness Scheduling Problem
with Ready Times, J. Opns. Res. Soc. of Japan, Vol. 22, No. 3, 205-24.

Lenstra, J. K., A. H. G. Rinnooy Kan, and P. Brucker. (1977) Complexity of Machine
Scheduling Problems. Ann. Discrete Math. 1, 343-62.

Potts, C. N. (1980) Analysis of a Heuristic for One Machine Sequencing with Release
Dates and Delivery Times, Operations Research, Vol. 28, No. 6, 1436-41.

Potts, C.N. (1988) Private communication.

21

� _____1YLIILUL·ILIIj___llll�--··--�lll 1--__ - �I I I�-

Simons, B. (1978) A fast algorithm for single processor scheduling, IEEE 19th Symp.
on Foundations of Comp. Sci., 246-52.

22

