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Abstract

In a two-capacitated spanning tree of a complete graph with a distinguished
root vertex v, every component of the induced subgraph on V\{v} has at
most two vertices. We give a complete, non-redundant characterization of the
polytope defined by the convex hull of the incidence vectors of two-capacitated
spanning trees. This polytope is the intersection of the spanning tree polytope
on the given graph and the matching polytope on the subgraph induced by
removing the root node and its incident edges. This result is one of very few
known cases in which the intersection of two integer polyhedra yields another
integer polyhedron. We also give a complete polyhedral characterization of a
related polytope, the 2-capacitated forest polytope.





1 Introduction

The K-Capacitated Minimum Spanning Tree Problem is a capacitated verstion of

the classical minimal spanning tree problem. Given a complete undirected graph

G = (V, E) defined on a vertex set V = {1,...,n}, as well as a distinguished root

vertex 1 C V, and costs on the edges c: E -- IR, find a minimum-cost spanning tree

subject to the additional constraint that no subtree off of the root contains more than

n vertices (Figure 1).

For any value of n _ n - 1, this problem is equivalent to the (regular) minimum

spanning tree problem, for which efficient algorithms exist. However, for values of K as

small as 3 and as large as n/2, the -capacitated spanning tree problem is NP-hard

in the strong sense [2, 10]; consequently, no polynomial algorithm exists for these

cases unless P = NP [8].

As is well known, the 2-capacitated vehicle-routing problem is equivalent to finding

a matching in a related graph. Similarly, the 2-capacitated spanning tree problem

is equivalent to a non-bipartite matching problem on a graph of comparable size,

and is thus polynomially solvable. If n is odd, then finding a 2-capacitated tree in

G = (V, E) is equivalent to finding a minimum-cost perfect matching in a complete

graph G = (V, E), defined on the vertex set V = {2,... , n}, and with edge costs

cU = min{cl1 + cv, Clv + cU, Clu + Clv) .

If n is even, the addition of a dummy node n + 1 and edge costs

Cv,n+l = Clv, = 2,... n

ensures the same equivalence between the 2-capacitated minimum spanning tree prob-

lem and a minimum-cost perfect matching problem. To see this equivalence for the

case when n is odd, notice that we can always translate perfect matching in the new

graph into a 2-capacitated tree for the original graph G in the following manner.

Suppose that edge uv is in the matching. Then if c;u = clu + c (or clv + cu), we

include edges lu (or lv) and uv in the 2-capacitated tree; and if cu, = cl + ci,, then

we include edges lu and lv in the 2-capacitated tree. This transformation gives a
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Figure 1: A 3-capacitated tree (left), and a 2-capacitated tree on the same graph. The
shaded vertex is the root.

2-capacitated tree of cost equal to that of the given matching. Conversely, we can

translate an optimal 2-capacitated tree into a perfect matching of equal cost for the

new graph. Because each 2-capacitated tree contains an even number of single-vertex

subtrees off of the root vertex, we can pair these vertices arbitrarily. Now we apply

the inverse of the prior translation to these pairs and the 2-vertex components to

obtain a perfect matching of equal cost. (Notice that, if the 2-capacitated tree is

optimal, the edge costs will translate properly.) The equivalence for the case when n

is even is similar.

Because the 2-capacitated spanning tree problem is polynomially solvable, we

might expect that we can find an explicit linear-programming characterization of the

problem; indeed, this is the case. In this paper, we present a complete characterization

of the polytope defined by the incidence vectors of 2-capacitated spanning trees.

What makes this characterization particularly satisfying is that it is essentially the

intersection of two polyhedra representing graph structures closely related to this one:

trees and matchings. In his pioneering work of the 1960's, Edmonds described both

of these polyhedra [3, 4].

We also consider a combinatorial structure closely related to the 2-capacitated

spanning tree problem--the 2-capacitated forest problem. A -capacitated forest,
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Figure 2: A 2-capacitated forest.

defined with respect to a root vertex, is a forest in which the connected component

containing the root vertex is a K-capacitated tree, and every other component contains

at most /c vertices (Figure 2). In other words, a ic-capacitated forest is a K-capacitated

tree with some of the root edges (edges incident to the root vertex) removed. We

present a complete characterization of this problem's associated polytope as well; it

is closely related to the previous characterization.

In general, the intersection of two integral polyhedra does not have integral ex-

treme points. A notable exception to this principle is the intersection of two poly-

matroids [5]. The forest-cover polytope provides another example [6]. A forest cover

of a graph is a set of edges that form both a forest and a cover (a set of edges with

the property that every vertex is incident to at least one edge) of the graph, i.e.,

a forest containing no isolated vertices. Gamble and Pulleyblank [6] show that the

forest-cover polytope is the intersection of the forest polytope and the cover polytope,

both of which are easy to characterize polyhedrally.

In closing this section, we remark that the polyhedral structure of the K-capacitated

spanning tree problem for > 2 is quite complicated, not surprisingly. For a partial

description of the associated polyhedron, as well as that for related vehicle routing

problems, see Araque, Hall and Magnanti [1].
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2 The Two-Capacitated Spanning Tree Polytope

We use the following notation throughout this paper. Let uv represent the undirected

edge {u, v} E E. For a subset of nodes S C V, let E(S) = {uv : u, v E S} denote the

set of all edges between nodes of S, and for any vertex v E V, let 6(v) = {e = uv :

u E V} denote the set of edges incident to v. Finally, let x be a vector in the space

of edges of G, x E IRIEI. For any subset of edges A C E, we express the sum of the

weights of the edges in A as x(A) = EeEA Xe -

The main result of this paper is the following theorem.

Theorem 1 The following set of inequalities and one equality is a complete descrip-

tion of the 2-capacitated spanning tree polytope.

x(E) = n-1 (1)

x((v)\{lv}) < 1, v E V, vi (2)

x(E(S)) < [2J, S C V, ISI > 3, ISI odd, 1 S (3)

x(E(T)) < TI-- 1 , T C V, 2 < ITI < n-2, 1 T (4)

x > . (5)

That is, the set of vertices of the polytope described by this system is exactly the set

of incidence vectors of feasible 2-capacitated spanning trees.

Before proving this theorem, we observe that this formulation is actually the inter-

section of two well-studied polyhedra-the spanning tree polytope and the matching

polytope. The following set of inequalities defines the polytope whose extreme points

are the incidence vectors of trees in G [4].

x(E) = n-1 (1)

x(E(T)) < ITI- 1, T V, IT >2 (6)

> . (5)

The following inequalities describe the polytope in IRIEI whose extreme points cor-

respond to the incidence vectors of matchings in the subgraph G of G induced by
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removing the root vertex 1 and its incident edges, i.e., G = (V, E), V = {2,..., n),

E= E(V) [3].

x(6(v)) < 1, v e V (7)

x(E(S)) < [J, S C V, Isl > 3, IS} odd (8)

> . (9)

If we consider the vector x as an element of IREIEI lying in the subspace correspond-

ing to the set E, then inequalities (7), (8), and (9) are equivalent to (2), (3), and

(5), respectively. Let Q be the polytope described by (1) through (5). Then Q is

the intersection of the tree polytope, given by (1), (6), and (5), and the polytope of

matchings on the subgraph G, given by (2), (3), and (5). To see this, we note that

constraints (1), (2), (3), and (5) appear explicitly in the description of Q; and each

inequality of (6) either is a member of (4) or is dominated by an inequality of (3).

3 Proof of Theorem 1

Let P be the convex hull of incidence vectors corresponding to 2-capacitated trees,

and let Q be the polyhedron given by (1) through (5). It is easy to see that (1)

through (5) are valid constraints for P. Since extreme points of P represent trees,

the elements of P satisfy constraints (1), (4), and (5). Moreover, in a 2-capacitated

tree, no subtree off of the root vertex may contain more than 2 nodes; in particular, if

we delete all edges incident to the root vertex 1, the resulting components contain at

most 2 nodes. Thus these remaining edges correspond to a matching in the induced

subgraph G, and so constraints (2) and (3) are also valid for extreme points of P.

Thus P C Q.

It remains to show that Q P, i.e., that if x E Q then x can be expressed

as a convex combination of 2-capacitated trees. Let P be the matching polyhedron

on G. If x E Q, then the partial vector x given by projecting x into the subspace

IRIEI C IRIEI i.e.,

X = (Xe : e E))
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Figure 3: The (non-perfect) matching shown is extended to a 2-capacitated tree by
adding root edges.

is contained in P. This fact is easy to see by noting that x satisfies (7), (8), and (9),

which describe P completely. Thus if ml,..., m L E IRIEI are the 0-1 incidence vectors

of matchings in G, we can express x as a convex combination of matchings on E,

L L

= EAim i, Ai = 1, > O.
i=1 i=l

We will show that it is possible to use this convex combination of matchings for 7 to

construct a representation of x 6 Q as a convex combination of 2-capacitated trees

71, 72, ... KK
K K

= Epil, E i = 1, > o.
i=l i=1

We might view this task as follows. Consider any of the individual matchings

m i such as the one shown in Figure 3. We can transform this matching into a 2-

capacitated tree r i by adding edge 1w if node w is unmatched and by adding either

edge u or edge 1v if edge uv is in the matching. We can view this transformation as

an allocation process. If the given matching m i has weight Ai, then the tree r i and

thus the edges 1w and lu (or 1v) have a weight Ai; we will associate, or allocate, a

weight of Ai from edge lu (or edge Iv) to edge uv, and allocate a weight of Ai from

edge 1w to node w. We need to make the allocation so that the sum of all allocations
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from any root edge lv equals its weight xl, in the given vector x. By doing so, we

will have obtained the desired representation x = Ei'l lti1

Rather than making this allocation for each matching individually, we will make

it in aggregate. For all v E V, let M(v) C {m',..., mL}, be those matchings in which

vertex v is unmatched, and for all e E E, let M(e) be the matchings containing edge

e. Then for any edge e E E, e is contained in a fraction

Z Ai= Xe
iEM(e)

of the weight of the matchings. For any vertex u E V, u is unmatched in a fraction

E Ai=l-x v
iEM(u) veV

of the weight of the matchings. We would like to allocate the weight of the root edges

to the matchings, in order to extend the matchings to 2-capacitated trees.

Lemma 1 For any x E Q, there exists an allocation

a :(E \ 7x EUV) -[0, 1]

of weights from root edges lv to edges uv E E and nodes v E V satisfying the

following conditions:

E a(lv, vw) + (lv, v) = ,, V lv E E (10)
wEV

a(lv, v) = 1- yxU,, Vv V; (11)
uEV

c(lv, uv) + a(lu, uv) = x,, Vuv F. E (12)

If such an allocation c exists, we can use it to construct the desired convex com-

bination of 2-capacitated trees for x as follows. To simplify the construction, we

assume that all A and all allocations a(lv, v) and ca(lv, uv) are rational. (This as-

sumption is not necessary; it simply allows us temporarily to clear fractions.) Let

K be chosen so that KA E Z, i = 1,..., L, and Kca(lv, v), Ka(lv, uv) E Z, for all
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u, v E V. Consider a collection of matchings C consisting of KAI copies of matching

mi, i = 1,...,L. We interpret these matchings as incidence vectors of matchings

0 E IRIEI in the original graph G. These matchings will be transformed progressively

to forests, and finally to trees, by the following procedure. For each node u E V,

(1) For each forest E C, if u is unmatched in then add edge lu to (i.e., change

1,u from 0 to 1);

(2) For each node v V, v / u, if node v has not yet been processed, then add

edge lu to Ka(lu, uv) forests E C that contain edge uv, and add edge lv to

the remaining Kc(lv, uv) forests E C that contain edge uv (i.e., for every

forest d containing edge uv, either change 1lu or q1,v from 0 to 1, but not both).

Step 2 is possible because edge uv is contained in exactly

Kx,,, = Ka(lu, uv) + Kca(lv, uv) (13)

forests of C. Furthermore, when it teminates, the procedure has transformed each

matching of C into a tree: for each original matching, Step 1 has attached every

isolated node to the root, and by the observation (13), Step 2 has attached every

2-node component to the root.

Let us denote the tree completions of C by r1 ,..., r. We claim that

K

x = yZ(1/K)rt. (14)
i=l

For e E E, clearly x, = = (1/K)r,, by the definition of the original matchings of C.

For any u E V, Steps 1 and 2 imply that KJ 1 = Ka(lu, u) + K EVEv (1 u, uv),

and thus

Xlu = Ea(lu,uV) + (lu, )
vEV

K

= (1/K) tu,
i=1

showing that (14) holds for the vector component corresponding to edge lu; thus (14)

holds. Therefore, to prove Theorem 1 it is sufficient to prove Lemma 1.
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Figure 4: A feasible solution to this bipartite minimum-cost flow problem solves the
ca-allocation problem. S is the set of root-edges of G; T is the set of all non-root edges
of G and all non-root vertices of GC, with demands based on the values of x that need to
be allocated to 2-capacitated trees.

Proof of Lemma 1

Finding the desired allocation is equivalent to finding a feasible solution to the

bipartite flow problem shown in Figure 4: the "supplies" s, for the set S of supply

nodes correspond to the root-edge weights xl,, and the "demands" de or d, for the

set T of demand nodes correspond to weights of edges e E E and to one minus the

sum of the weights of edges incident to node v, respectively. First, we note that

E S= Zxv = (n-1)-x(E)
vEV vEV

= (1- X ) + (E)
vEV uEV

= d+ E dU,
VEV uvEE

i.e., total supply equals total demand. The bipartite flow problem is feasible if and

only if the maximum flow problem in Figure 5 has value x(E \ ) = n - 1 - x(E).

Equivalently, we can show that the minimum cut has capacity x(E \ E). Let c*

denote the capacity of the minimum cut. Evaluating the cut around the sink shows
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Figure 5: A maximum flow equal to x(E) through this graph is equivalent to the
minimum cost flow problem being feasible.

that

c* <(E\E)= dv+ E du
vEV uvEr

Thus, we need to show that no cut c has capacity c < EvEvd, + EuEr duV.

By a slight abuse of notation, we equate the vertices of the auxiliary bipartite

graph in Figure 4 with the edges and vertices of the original graph G. Consider an

arbitrary cut in the graph {{s} U (S \ Y) U (T \ Z); {t} U Y U Z} (see Figure 6). We

may assume without loss of generality that

uv E Z lv E Y, lu E Y; (Al)

v E Z , = v E Y,

since otherwise the capacity of the cut is infinite. In addition, we can make the

following assumptions, which are not restrictive:

luEY = uEZ;

lu, lv E Y , uv E Z.

Conditions (A2) are not restrictive because adding these additional vertices to Z can

only decrease, not increase, the capacity of the cut. For notational purposes, we

10
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Figure 6: A diagram of the minimum cut in the bipartite graph. The horizontally striped
vertices are the set Y, the vertically striped vertices the set Z. Note that the cut can
contain no infinite-capacity arcs.
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ZE

ZV

Figure 7: Network decomposition corresponding to a minimum cut.

partition Z as Z = ZV U ZE, according to whether an element of Z represents a

vertex or an edge, respectively, in the original graph G; that is,

ZV = {v E V: v E Z}, and ZE = {e E : eE Z}.

Let B be the subset of edges from E containing exactly one endpoint in ZV,

B := e = uv: u E ZV, v ZV} nE

(see Figure 7). A simple counting argument, coupled with our assumptions (Al) and

(A2), shows that

z >: uV = x(B)
VEZV uEV

+ 2(ZE) = x(B) + 2 >C de.
eEZE

Interpreted differently,

- lZv -I Zv + E x,,
VEZ v uEV

- IZV - E (1 - E u,)
vEZv uEV

= JIZV- d.
Combining these two equations giZV

Combining these two equations gives

x(B)= IZVl- E
vEZV

dv-2 C de.
eEZE

12
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Next, we observe that the tree constraint (4) applied to the vertex set V \ ZV

yields

(16)

Recalling equation (1) and the fact that E(V \ Z V ) U B U ZE U Y = E (see Figure

7), we have

(17)x(E(V \ Zv)) = (n-1)-(x(B) + X(ZE) + x(Y)).

Combining (17) and (16) and rearranging terms yields

x(Y) > ZvI - x(B) - x(ZE).

Finally, substituting for

E Sv = x(Y)
vEY

Thus

problem

the capacity of

(Figure 6) is

x(B) using (15) and for x(ZE) using E de, we have
eEZE

> IZV - ZV- Ev d-2 de) - de
vEZ v eEZE eEZ E

= E d + E de.
vEZV eEZE

the cut {{s)}U(S\Y)U(T\Z); {t}UYUZ} in the max-flow

E Sv+ E d, + 5 de
vEY vEV\ZV eE7'\ZE

> E d+ : d+ E d, + E de
vEZV eEZE vEV\zv eEE\ZE

= d+ : de.
vEV eEr

The capacity of this cut is indeed greater than or equal to c* = E dv + 5 de, as we
vEV eEE

wished to show, thus concluding the proof of Lemma 1.

Our previous remarks now imply that, indeed, Q C P, and so we have established

Theorem 1. Q.E.D.

We also note that for N > 4 constraints (1) through (5) provide a non-redundant,

as well as complete, characterization of P. This fact is easy to prove by observing that

for each inequality of (2) through (5), some vector not in P satisfies every constraint of

(1) through (5) except for the given constraint, and thus no constraint of (2) through

(5) is redundant.

13

(E(V\ ZV)) <IV\ ZVI- =n-1- IZVI.



4 The Two-Capacitated Forest Polytope

The polytope Q is a face of the polytope that is given by replacing equation (1) with

the inequality

x(E) < n-1 (18)

in the polyhedral description of Q. This new polytope, given by (2), (3), (4), (5),

and (18) is the intersection of the forest polytope on G (given by (5), (6), and (18))

and the matching polytope on G (given by (7), (8), and (9)). In the discussion to

follow, we prove constructively, using Theorem 1, that this polytope's extreme points

correspond to the incidence vectors of the 2-capacitated forests of G. Let us call

the new polytopes P* and Q*, corresponding respectively to the 2-capacitated forest

polytope and the polytope given by (18) and (2) through (5). We wish to show that

P* = Q*. Clearly P* Q*; we need to show that Q* c P*.

Let x be a point in Q* and suppose that x(E) < n-1. To prove that Q* C P*, first

we will show that for some vector y > O, x(E) + y(E) = n - 1, and x + y is contained

in Q(= P); thus x + y can be written as a convex combination of 2-capacitated trees,

by Theorem 1. Then we will show that from the convex combination of 2-capacitated

trees for x + y, we can construct a convex combination of 2-capacitated forests for x.

Lemma 2 Given a vector x that lies in Q*, with x(E) < n - 1, there exists a vector

y > 0 such that x + y lies in Q.

Proof We will actually show something stronger: we can select the vector y > 0

so that the strictly positive components of y correspond only to root edges (edges

incident to vertex 1).

Claim 1 Let x E Q* with x(E) < n - 1. Then for some root edge lu and e > 0,

increasing the weight of xlu by e does not violate any of the constraints (2) through

(4).

Actually, we will prove the contrapositive of the claim: if, for every root edge 1 u, some

constraint containing x1 is tight for x, then x(E) = n - 1. Suppose that for every

root edge some inequality is tight at equality. These tight inequalities are necessarily
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of the form x(E(T)) < ITI - 1 for some T 1, since these are the only constraints

from among (2) through (4) for which root edges have non-zero coefficients. For each

root edge lu, we choose such a tight constraint, and let T, denote the corresponding

vertex set T. Next consider
n

A := U E(Tu).
u=2

Define

A 2 = E(T 2 ), A 3 = A 2 U E(T 3),... ,An = An- U E(Tn) = A.

To prove that x(A) = n-l, we use induction on the sets Au. The inductive hypothesis

is that, for any u, if the set Au spans the vertex set Nu, then x(Au) = INul - 1. Since

A spans V, the inductive hypothesis for u = n says that

x(A) = x(A,) = VI -1 = n - 1.

The hypothesis is certainly true for u = 2, since A 2 = E(T2 ), N 2 = T 2, and by

assumption, x(E(T2 )) = IT21 - 1. Now assume that the inductive hypothesis is true

for u, and consider u + 1. Suppose that

INun T+ll = r

(Note that r > 1 because node 1 is in the intersection.) Then because x is feasible,

x(Au n E(Tu+)) < r - 1,

and thus

x(Au,+\Au) > ITu+11- r, (19)

since, by the definition of T+ 1, x(E(Tu,+)) = IT.+11 - 1. Now, INu+1I = INul +

]T+I - r, and by induction

x(Au) = INul- 1. (20)

Thus from inequalities (19) and (20) we have

x(Au+l) = x(Au+l\Au) + x(A,)

> (lT+11- r) + (Nul- 1)

= JN+I-1,

15



which completes the inductive step. Thus x(A) = n- 1, which implies x(E) = n- 1;

therefore we have established Claim 1.

Now, a simple inductive argument will prove Lemma 2. Since x(E) < n - 1, by

Claim 1 we can increase the weight of some root edge lu and remain feasible. Let el

be the largest amount that lu, can be increased without violating any constraints,

and set yl = fCXlu (XIu is the indicator vector for edge lu). Notice that, for x + yl,

some constraint involving edge lu is tight. Now either x(E) + yl(E) = n - 1, or we

can increase the weight of some other root edge v, v -/ u. As before, choose 2 as

large as possible and set y2 = E2Xlv so that x + yl + y2 violates no constraint. We

can continue in this manner for at most n - 1 iterations, since at each iteration we

eliminate some root edge from the set of root edges whose weights can be increased.

Thus eventually, for some k < n - 1, by (the contrapositive of) Claim 1 we have

k

x(E) + y(E) = n- 1,
i=l

and x+ Ei=li y is feasible for Q. Setting y = i= y completes the argument. Q.E.D.

We know from Theorem 1 that we can express x + y as given in Lemma 2 as a

convex combination of 2-capacitated trees,

L L

x+y= Aiti , Ai=1, A>0, (21)
i=1l i=l

for some L. We wish to express x as a convex combination of 2-capacitated forests,

M M

x= P / i i , i =1, > 0.
i=l i=l

As in the argument for Theorem 1, we assume for simplicity (so that we can tem-

porarily clear fractions) that all Ai and all ylv are rational. Let M be chosen so that

MAi E Z, i = 1,..., L, and Myl, E Z, for all u E V. Consider a collection C of

trees consisting of MAi copies of ri, i = 1,..., L. (Note that ICI = M.) Consider the

following procedure that transforms the 2-capacitated trees of C into 2-capacitated

forests. We label the elements of C by . For each u E V,
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if ylu > 0 then delete edge lu from Mylu forests of C that contain edge lu (i.e.,

change 1u from 1 to 0).

Clearly, these deletions are possible, since M(x + Y)lu > My,,l, and ME l Atir =

M(x + Y)lu. Furthermore, if we denote the new elements of C as X, ... , qM, we have

M

x = (lM)t,
i=l

i.e., x is a convex combination of 2-capacitated forests. Thus we have proved the

following theorem.

Theorem 2 The inequalities (2) through (5) and (18) provide a complete description

of the 2-capacitated forest polytope.

As in the case of the tree polytope, it is easy to show that, for n > 4, this character-

ization is non-redundant.

5 Concluding Remarks

The result presented in this paper for the 2-capacitated spanning tree is easily gen-

eralized to the case when the underlying graph is directed, and the desired structure

is a 2-capacitated branching [9].

In Section 1, we mentioned that Gamble and Pulleyblank have used a dual-based

approach to establish the polyhedral description of the forest cover polytope [6]. An

interesting open problem is whether the same approach could be used for the problem

we consider in this paper. Although their result seems to parallel ours, the forest

cover problem itself is algorithmically much simpler to solve than the 2-capacitated

spanning tree problem. Not surprisingly, the algorithm for the forest cover problem

indicates a simple tranformation of dual variables that establishes the polyhedral

characterization. For the 2-capacitated spanning tree problem, there does not seem

to be a straightforward dual-based approach.

Finally, we note that at least one generalization of this result is unlikely. Gamble

and Pulleyblank [7] have proved that the following question is NP-hard: given a graph
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G = (V, E) with costs on the edges, and a subset of vertices M C V, find a maximum-

cost acyclic subgraph whose induced subgraph on M forms a matching. The 2-

capacitated spanning tree problem is a special case of this problem with IV - M = 1.
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