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ABSTRACT

This paper considers a one-product, one-machine production/inventory

probelm. Demand requests for the product are governed by a Poisson

process with demand size being an exponential random variable. The

production facility may be in production or idle; while in production,

the facility produces continuously at a constant rate. The objective is

to minimize system costs consisting of setup costs, inventory holding

costs, and backorder costs. Given a two-critical-number policy, the

problem is analyzed as a constrained Markov process using the compensation

method. The policy space may then be searched to find the optimal policy.
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1. Introduction

The intent of this paper is twofold:

a) to analyze a one-product production/inventory problem assuming

stochastic demand, and

b) to illustrate the use of Greents function methods for the study of

constrained Markov processes.

The production/inventory problem of concern has one product subject

to Poisson demand requests with the size of each demand request being

exponentially distributed. This product is produced on a single machine,

which may be either setup and in production, or shutdown. System costs

consist of setup costs, inventory holding costs, and backorder costs.

This production/inventory problem differs from the pure inventory problem

in that replenishment of inventory occurs continuously in the production

context; for a pure inventory system, replenishment occurs in batches or

lot sizes. Such problems are prevalent in continuous processing plants,

such as in the chemical or glass industry, which are very capital-intensive

and conducive to long production runs during which the product is continu-

ally added to inventory.

Heyman [4 ] and Bell [1] have considered a special case of this

production/inventory problem in which positive inventory is now allowed,

and a linear penalty or waiting cost is incurred for backorders. Both [4 ]

and [1] find optimal policies by way of a square root formula analogous

to the economic order quantity. Sobel [9 ] examines a more general

production/inventory problem, and demonstrates that the optimal policy

must be a two-critical-number policy; however, no computational method

is given for finding this policy. Gavish and Graves [ 3] have analyzed

the production/inventory problem where the demand is a Poisson process
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with unit requests. Their analysis relies on concepts from queueing theory.

The problem of the current paper is distinct from that in [ 3] in that

the size of the demand requests is exponentially distributed; the method-

ology used to analyze the problem is also different.

The second purpose of this paper is to illustrate the use of Green's

function methods. In particular, a compensation method is used to study

a spatially-homogeneous Markov process which has been restricted by

boundaries. This methodology has been developed by Keilson and is detailed

in [ 5], [ 6]. These methods provide the means to study inhomogeneous

Markov processes which are induced from a homogeneous Markov process by

putting restrictions or modifications on the homogeneous process.

This paper is organized as follows: In Section 2, the compensation

method using Green's functions is presented. Section 3 defines the problem

of interest. In Section 4, the compensation method is applied to the

production/inventory problem to find the ergodic probability density for

the underlying inventory process. In Section 5, the results of Section 4

are used to determine an expected cost function which can be searched to

find the minimum cost policy.



-3-

2. The Compensation Method

This section introduces the use of Green's functions and compensation

densities for studying a special class of ergodic processes which arise

from modifying spatially-homogeneous processes. The mathematical ideas

have been developed more completely elsewhere (see below). The basic

ideas will be presented in simplified form without full mathematical care

to permit the presentation to be self-contained. The processes are assumed

to be temporally homogeneous throughout; i.e., the laws governing changes

are described by parameters and distributions unchanging in time. A

spatially-homogeneous process is a process whose transition probability

distribution depends only on the distance or space that is measured

between the transition states. That is, the process {XH(t)} is spatially

homogeneous if the probability distribution

PH(x,y,t) = Pr[XH(t) < y I XH(O) = x] is such that

(1) PH(X,y,t) = PH(O,y-x,t) = GH(Y-x,t)

where GH(w,t) is the probability distribution for the change in H in an

interval of length t.

Consider a spatially-homogeneous process which is modified such that

certain transitions are restricted. A typical restriction would be to

limit the process by boundaries on the state space. For example, the

queue length process for an M/M/1 queue with finite waiting room K may

be thought of as the homogeneous random walk in continuous time on the

lattice of all integers (negative and positive) restricted to the state

space 0,1,...,K by censoring transitions leaving this state space. This

point of view was introduced by J. Keilson and developed in a series of

papers [5], [6], [7], [8].
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For such a modified process {X(t)}, the presentation of ideas is

clarified by working with spatial densities rather than distribution

functions even though the densities may sometimes exist only in a general-

ized sense. Thus let F(y,t) = Pr[X(t) < y] and let f(y,t) dy F(y,t)

be its p.d.f. For X(t) we may write its transition density as

p(x,y,t) = d Pr[X(t) < y X(O) = x]. We may then relate p(x,y,t) to
dy

the homogeneous transition density pH(x,y,t) = y PH(x,y,t) by

(2) p(x,y,t) = pH(x,y,t) + d(x,y,t)

where d(x,y,t) is defined by (2) to denote the transition restrictions.

Let f (y,t) = P(O,y,t) and gH(Y't) = d GH(Y,t) = H(O,y,t). Then for

any A, 0 < A < t, we have

(3) f (yt) = f f (x,t-A)p(x,y,A)dx.

Substituting (2) and (1) into (3) gives

(4) f0(y,t) = f (x,t-A)gH(y-x,A)dx + f f (x,t-A)d(x,y,A)dx

= f(y,t-A) gH(yA) + co(A,y,t)

where c (A,y,t) = f (x,t-A)d(x,y,A)dx. The asterisk * denotes convolu-

tion over the state variable, and c(A,y,t) is a compensation density.

The compensation density, as defined in (4), represents the difference in

probability flow over (t-A,t) between the modified process and the homo-

geneous process. Note that the compensation density c (A,y,t) is localized

wherever restrictions have been made to the homogeneous process. We also

note from (2) that f d(x,y,t)dy = 0, and hence from (4) that the total

compensation mass f c (A,y,t)dy is zero. By repeated substitution, when

t = NA, (4) may be rewritten as
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N
(5) fo(y,t) = Z c (A,y,t-iA) * gH(Y,iA).

i= 0

Here c (A,y,O) is defined to be f (y,O) = 6(y), and gH(Y,O) = 6(y), the

Dirac delta function. As A - 0, define c (y,t) such that a Taylor's
0

expansion of the co ( A,y,t) about A - 0 gives c(A,y,t) = Aco(y,t) + o(A).

Substituting this into (5) and taking the limit as A -+ 0, we may replace

the summation by integration:

(6) fo(y,t) = t co(y,t-T) * gH(y,T)dT.

When the modified process {X(t)} is ergodic, the density f (y,t) converges

to the ergodic probability density f(y); furthermore, from (6), the

compensation density co(y,t) must also converge to c(y). Hence we have

(7) f00(y) = co (y) * g(y)

where g(y) = f gH(y,t)dt is the ergodic Green density for the homogeneous

process {XH(t)}.

Equation (7) can now be used to determine the ergodic distribution

for the modified process. The value and justification of this formulation

is the ease with which the Green density and compensa-

tion density may be found. The compensation density, and thence the

ergodic density, is found by exploiting the simplicity in structure of

the more simple underlying spatially homogeneous process. To identify

the compensation density, (7) is used with the facts that the compensation

density has zero total mass, and the modified process is restricted to

a limited state space. In the following sections we present a model for

which both the Green density and the compensation density can be identified.
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3. The Production/Inventory Problem

The problem of interest is a single-machine, one-product production

scheduling problem. Demand requests for the product are a Poisson process

with the size of the demand requests distributed as an exponential random

variable. Demand either is serviced from inventory or is backordered.

The inventory holding cost rate and the backorder cost rate are assumed

to be linear in the respective inventory and backorder levels, and

these costs are accumulated continuously. A single machine or production

facility is dedicated to the one product. The machine may be either setup

and in production, or shutdown and idle. If the machine is setup, produc-

tion into inventory is continuous at a constant production rate. It is

assumed that variable production costs are constant, and that a fixed

setup cost is incurred whenever the production facility is turned on.

The production rate is greater than the average demand rate so to avoid

the infinite backorder possibility. It is also assumed that setups and

shutdowns do not consume any production capacity.

The state space for this system is characterized by the pair (I,k)

where I is the inventory level (negative inventory being backorders),

and k = 0,1 denotes whether the facility is idle (k=O) or producing (k=l).

A stationary decision policy is defined by the function d on the state

space such that d(I,k) = 0 is a decision to shutdown, while d(I,k) = 1

is a decision to produce. In order for the policy to have finite cost,

we must have d(I,O) < d(I,l); this rules out the paradoxical possibility

of shutting down the facility at a given inventory level if the facility

is setup, but setting up the facility if it is idle. Given that

d(I,O) < d(I,1), it is easy to see that any stationary policy, which

results neither in infinite backorders nor infinite inventory, will revert
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* **
to a two-critical-number policy (I ,I ) such that the facility is setup

when inventory falls below I and is shutdown once inventory reaches I

** *
(I > I ). Consequently, any decision policy may be restated in terms

* (I ** ) as
of (I ,I ) as

d(I,O)

(8)

d(I,1)

1 for I < I

0 for I > I

(1 for I < I

O for I > I

Figure 1 gives a graphical representation of the state space and the

possible transitions. While the machine is on, the inventory grows at a

constant rate (--) subject to random demand requests (') which behave

as an exponential jump process. Once the inventory reaches I**, the machine

is shutdown. Here, inventory is depleted by random demand requests, until

the level drops below I and the machine is setup again.

machine on
k=l

machine off
k=O

' Inventory

I I
I * - I 1 *

I I

I I

I I
I' ~ThN C> C> C>

i

i

0 I

Figure 1: State Space Representation

I** Z
.I

_ _ _

I - - I

I
I

!
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In the framework of Figure 1, the process can be thought of as two

spatially-homogeneous processes, corresponding to the machine on or off,

which are modified and connected into one process by boundary restrictions

and transitions. The theory of Green's functions and the compensation

method can be applied to this process. Compensation densities are located

around the boundaries (I* and I ) so that the potential flow across these

boundaries is annihilated and transferred. That is, when the machine is

on, flow beyond I is annihilated and transferred to the machine being

off; for the machine shutdown, the compensation mass redirects flows that

will reduce inventory below I , to the corresponding state with the machine

on. The next section details the development of this application.
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4. Ergodic Analysis of Production/Inventory Problem

This section applies the theory reviewed in Section 2 to the one-product

production/inventory problem of Section 3. First, the Green's functions

for the homogeneous processes corresponding to the machine on and off will

be found. The compensation densities are then identified based on the

Green's functions and on the problem structure as depicted in Figure 1.

Equation (7) is then applied to find the ergodic probability density for

the system.

Consider first the spatially-homogeneous process (t) on the state

space {(I,1)} when the machine is on and switching at I is ignored. At

any time t, the state of the process is the net inventory level, that

being the difference between total production and the accumulated demand

requests. Note that no restrictions are placed on this inventory level.

Assuming that (0) = 0, and a constant production rate of one unit/time

unit, we have

(9) 4(t) = t - S(t)

where S(t) is the accumulated demand at time t. If demand requests arrive

at Poisson rate , and the size of the request is an exponential random

variable with mean (1/p1), then S(t) has a probability density fs(y,t) in

the generalized sense, such that

o -Xt k
(10) f ,t = e (k)fs(yt) = k!

k=O

where a(y) = 0 for y < 0, a(y) = pe- y for y > 0, a(k)(y) is the k-fold

convolution of a( ), and a () (y) = 6(y). The assumption that the demand

rate is less than the production rate gives / < 1.

The time-dependent probability density for the process X (t) given



that X(O) = 0, is

(11) P(x=0O,y,t) = g(yt)

= fs (t-y,t)

Therefore the ergodic Green's density can be expressed as

+ _ oo or

(12) g () = fO gH(y,t)dt

= f fs(t-y,t)dt

To solve (12), it is convenient to use the bilateral Laplace transformation.

Let

(13) 7+(s) = _ e-Syg(y)dy

1 0<s< -
X[1-o(-s)] + s

where a(s) = _J e Sa(x)dx = p/(p+s). Substituting into (13) we obtain

(14) Y+ (s) s-s

(P/P-X) + (X/-X)
s b-s- 

This transform can now be inverted with uniqueness when normalized, to give

(see Widder [10])

(15) g+ (y) :e (P )Y for y < 0,

- for y > 0.

Similarly, the spatially-homogeneous process X(t) when the machine

is off can be examined. Here, XH(t) again corresponds to the net inven-

tory level at time t, given no restrictions on the inventory range.

Assuming X H(0O) = 0, we have

-10-
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(16) XH(t) = - S(t).

Following the analysis of the process for the machine on, a similar develop-

ment yields the following results:

(17) PH(X=O,y,t) = gH(y,t)

= f (-y,t)

(18) g (y) = OS gH(y,t)dt

o f f(-y,t)dt
0 S

(19) Y (s) = _o e-sYg-(y)dy

1 1' for s < 0AXs

(20) g(y) = 6(y) + U(-y)

where U(-y) = 1 for y < 0, U(-y) - 0 for y > 0.

Having found the Green's densities for the two homogeneous processes,

we now must determine the appropriate compensation densities so to be able

to apply equation (7). Here it will be useful to refer to Figure 2. The

modified process is characterized by a two-critical-number policy (I ,I ).

In Figure 2, the state space for the modified process is illustrated; it

is convenient to translate the state space by I . That is, x=0 corresponds

** ** * *
to inventory I , while x = -8 = -(I -I ) is an inventory of I . For

the modified process when the machine is on, the machine is shutdown when

the inventory reaches I (x=0); consequently, a negative compensation mass

-CA6(x) must be placed at x=0 to offset the probability flow to the positive

x-axis. A corresponding positive mass cA6(x) is placed at x=0 for the machine

off, to represent the probability flow from shutting the machine down. When

the machine is off, the machine is set up once inventory drops below I (x- -);
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+cBb (x)

machine on

k=l

machine off

-cA 6 (x)

+CA6 (x)

Figure 2: State Space Representation of Compensation Method

to absorb this flow, a negative compensation density [-cBb(x)] is applied for

x < -6. This compensation density appears as a positive probability flow

[cBb(x)] for the machine on to represent the transition from turning

the machine on. Note that the compensation densities applied to the process

when the machine is off are symmetric to those for the process when the

machine is on. It will soon be seen that b(x) = pe (x+O) on (-o,-) and

cA = cB. The form of b(x) might have been expected since b(x) acts to

annihilate the overshoot to (-.,-6) when the machine is off.

We can now use equation (7) to find the ergodic probability densities

for the modified process of interest. Define f (x) to be the probability

density for the machine off; from (7) we have

f (x) = g (x) * [CAS(x) - cBb(x)]

l

I

I
I

I

(21)
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-(s) = _ 0 e-SXf -(x)dx

= y (s) [cA - CB(S)]

where (s) =

(23)

foo esxb(x)dx. Substituting (19) into (22) we have for s < 0:

A CA`P CBs(S) CBpB(s)
(s) s = I + sX

Inverting (23) we obtain

(24)
CA cL BAB 

f-(x) = x - [1-U(x)] h- b(x) - CBP(x)f -~~- 6 (X) + x XA B x

where U(x) = 0 for x < 0 and U(x) = 1 for x > 0, and B(x) = m b(y)dy.

As x + -, we must have cA = cB Ad b(y)dy to ensure that f (x) vanishes;

if b(x) is normalized to have unit mass, then cA = cB = c. Now since

f-(x) has positive mass only on the interval [-0,0], b(x) must be found

such that f (x) = 0 for x < - and for x > 0; that is knowledge of the

underlying state space for the modified process can be used to identify

the appropriate compensation density. These conditions translate to the

following two equations:

(25) b(x) + B(x) = 0

(26) p - b(x) - B(x) = 0

for x > 0

for x < -0

The solution to (25), (26) is

(27) b(x) = peB (o+x ) for x < -e

for x > -0

Therefore, we can rewrite (24) as

(22)

= 0
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(28)

f (x) - c 6(x) =

0o

for x < -e

for - < x < 0

for x > 0

Thus the ergodic probability density when the machine is off is uniform

over the interval [-0,0] with a probability mass point at x = 0.

Having determined b(x), we can now use equation (7) to find the

ergodic probability density when the machine is on, f+(x).

(29) f+(x) = g (x) * [-c6(x) + cb(x)]

Substituting (15) and (27) into (29), we obtain

(30) f+(x) = c(p ) e( ) ( + x ) - c( ) e )x

= c (jP-) - X e

= 0

for x < -e

for - < x < 0

for x > 0.

The constant c car, be found by setting the total probability mass for

the modified process to one. That is, we have

f f+(x)dx + f-(x)dx = 1(31)

which results in

(32)
A( - A)C --
u(l + e)

This section has derived the ergodic probability density for the

modified process which models the production/inventory system of interest.

This ergodic density assumes a policy (I ,I ) where = I - I To

find the optimal values for (I ,I ), the results of this section can be

used to write an expected cost function which is to be minimized over the

parameter values. This is done in the next section.

.
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5. Policy Determination for Production/Inventory Problem

In this section, an expected cost expression is formulated, and a

discussion is given for its optimization. In the previous section, the

ergodic densities for the modified process were found for when the machine

is off and is on. Here it will be useful to combine these two densities

into one density, and to transform this density back to an inventory scale.

* **
For a given policy (I ,I ), if we let (x) be the ergodic probability

density of having an inventory level of x, then we have

(33) r(x) = f (x-I ) + f (x-I) .

That is, using the fact that 0 = I - I ,

* **(34) T(x) = c( B) e ()(I -x) - c( _ ) e x) for x < I

* C2 *-X)

**6(x-I ) + %(B-k) c _ e for I < x< I= 0 for x > I

for c given by (32).

Assuming a linear inventory holding cost rate h per time unit, a

linear backorder cost rate b per time unit, and a fixed setup cost K, the

expected cost rate per time unit for a policy (I ,I ) is given by

**

(35) C(I ,I ) = cK + b of (-x) (x)dx + h fI x 7(xdx

where both the constant c and the density function T are functions of the

* ** **
policy parameters (I ,I ). In (35) it is assumed that I > 0; provided

that b > 0, the optimal policy must have I > 0. Setups occur at rate c

since c reflects the rate of probability flow from the machine being off

to being on. Instead of assuming that the backorder cost depends on the
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length of time an item is backordered, it may be that the backorder cost

is a linear function of the expected number of items backordered; in

this case, the backorder cost term in (35) is replaced by b _o ° r(x)dx.

For I > 0 (<I**), expression (35) may be written as

* ** 1 pI*
(36) C(I ,I ) = cK + ch [-+ (-i) ((I ) + 2 (-) J

2 (B-k :(X)2

c(h+b) _ e-(Q) ]

(u-X)3

Alternatively, equation (36) can be expressed as a function of I and

8=1 -I:

* * *
(37) C(I ) cK + ch + 1 +

(A)2 ,(~-,) (_2 2 ;(p-;)

(p_X)3

For a given , C(I , is convex with respect to I . Conse-

quently, given , the optimal value of I , ignoring integer restrictions,

satisfies the following:

* A

(38) I = max(0,I), where

(39) eh (Ih ) ]p-X)(+.2 ) 
t X[P- (h- ) e

Using (38), (39), the cost expression (37) may be easily searched over

* ** ** *
values for to find the best policy (I ,I ) where = I - I and

I > 0. If the integer restrictions on the policy parameters cannot be

ignored, then (38), (39) finds the best continuous value for I , which

must be rounded either up or down to give the best integer value.
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* **
For I < O (0>1 ), the evaluation of (35) gives

2 2
** ** ** 1*I

(40) C(I ,I ) = cK + ch 1 ( ** I*) -I+ 1 2(I**I )

F) (-X) A) (2 2 (-X)

c(h+b) (7%[- 1 _*] + )* Xe

(,P-) P-X (itX) 2X trp>2 

or equivalently,

(41) C(I ,0) = cK + ch l 2 + A( I* - + J
X (-X) (U-X) 2 2 (-A)

(ia-A)7= - I ) +

Unfortunately this cost expression is not convex, and a two-dimensional

search must be used to find the best policy assuming I < 0. Note that

to ensure that I > 0, for a given value of e we need search only over

-8 < I < 0.

A series of test problems have been solved, and their solutions are

reported in Table 1. Here the policy parameters have been restricted to

be integer. The behavior of the optimal policy is as expected from standard

inventory theory. I , corresponding to a reorder point, increases as the

backorder cost rate increases. 0, corresponding to an order quantity,

increases as the setup cost increases. Finally, both parameters (I ,8)

increase as the machine utilization, equal to /p, is raised.
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Table 1: Computation Results

* expected

X h b K I cost rate

1 .5 1 2 25 -1 4 3.62

1 .5 1 2 50 -1 6 4.68

1 .5 1 6 25 0 5 5.20

1 .5 1 6 50 0 6 6.16

1 .5 1 10 25 1 5 6.09

1 .5 1 10 50 1 6 7.07

1 .9 1 2 25 -1 5 11.44

1 .9 1 2 50 6 7 11.74

1 .9 1 6 25 15 6 19.91

1 .9 1 6 50 15 7 20.22

1 .9 1 10 25 20 5 24,43

1 .9 1 10 50 19 7 24.74
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6. Conclusion

This paper has a dual purpose to analyze a specific production/

inventory problem and to illustrate the use of the compensation method.

The problem of interest is a simple single-machine, single-product

production/inventory problem. This problem is very similar to the standard

stochastic demand inventory problem, except for stock replenishment

occuring continually rather than in discrete batches. Whereas the inven-

tory problem has been well-studied, there has been little work on its

production/inventory analog.

Through the introduction of Green's functions and the compensation

method, the single-machine, single-product problem assuming continuous

review and Poisson demand arrivals with exponential demand requests has

been completely characterized on a continuous state space. A similar

analysis can be done on the lattice assuming a continuous review policy

with Poisson demand arrivals but with demand requests distributed as a

geometric random variable. The compensation method was vital to this

analysis; indeed it is a quite powerful methodology for making constrained

homogeneous processes tractable. It allowed the analysis to take advan-

tage of the structural simplicity of the underlying homogeneous processes

in characterizing the modified process.



-20-

References

1. Bell, C. E., "Characterization and Computation of Optimal Policies
for Operating an M/G/1 Queueing System with Removable Server",
Operations Research, Vol. 19, No. 1 (1971), pp. 208-218.

2. Buffa, E. S. and W. H. Taubert, Production-Inventory Systems:
Planning and Control, Richard D. Irwin, Inc., Homewood, Illinois
(1972).

3. Gavish, B. and S. C. Graves, "A One-Product Production/Inventory
Problem Under Continuous Review Policy", University of Rochester,
Graduate School of Management, Working Paper #7735, November 1977.

4. Heyman, D., "Optimal Operating Policies for M/G/1 Queueing Systems",
Operations Research, Vol. 16, No. 2 (1968), pp. 362-382.

5. Keilson, J., Green's Function Methods in Probability Theory,
Number Seventeen of Griffin's Statistical Monographs & Courses,
edited by M. G. Kendall, Charles Griffin & Company, Ltd., London
(1965).

6. Keilson, J., "The Role of Green's Functions in Congestion Theory",
in: W. L. Smith and W. E. Wilkinson, eds., Congestion Theory,
(University of North Carolina Press, Chapel Hill, NC, 1965),
pp. 43-71.

7. Keilson, J., "Markov Chain Models - Rarity and Exponentiality",
University of Rochester, Center for System Science, Report # CSS 74-01,
September 1974.

8. Keilson, J. and R. Syski, "Compensation Measures in the Theory of
Markov Chains", Stochastic Processes and Their Applications, Vol. 2,
No. 1 (1974), pp. 59-72.

9. Sobel, J. J., "Optimal Average Cost Policy for a Queue with Start-up
and Shut-down Costs", Operations Research, Vol. 17, No. 1 (1969),
pp. 145-162.

10. Widder, D. V., An Introduction to Transform Theory, Academic Press,
1971.


