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Abstract

In recent years, new and powerful research into "condition numbers" for convex
optimization has been developed, aimed at capturing the intuitive notion of problem
behavior. This research has been shown to be important in studying the efficiency of
algorithms, including interior-point algorithms, for convex optimization as well as other
behavioral characteristics of these problems such as problem geometry, deformation
under data perturbation, etc. This paper studies measures of conditioning for a conic
linear system of the form (FPd): Ax = b, x E Cx, whose data is d = (A, b). We
present a new measure of conditioning, denoted pd, and we show implications of lid
for problem geometry and algorithm complexity, and demonstrate that the value of

= id is independent of the specific data representation of (FPd). We then prove
certain relations among a variety of condition measures for (FPd), including ld, pad, Xd,
and C(d). We discuss some drawbacks of using the condition number C(d) as the sole
measure of conditioning of a conic linear system, and we then introduce the notion of a
"pre-conditioner" for (FPd) which results in an equivalent formulation (FPj) of (FPd)
with a better condition number C(d). We characterize the best such pre-conditioner and
provide an algorithm for constructing an equivalent data instance d whose condition
number C(d) is within a known factor of the best possible.
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Pre-conditioners and measures of conditioning

1 Introduction

The subject of this paper is the further study and development of a new measure of
conditioning for the convex feasibility problem in conic linear form:

(FPd) : Ax = b, x E Cx, (1)

where A E £(X, Y) is a linear operator between n- and m-dimensional spaces X and Y,
b E Y, and Cx C X is a closed convex cone, Cx X. We denote by d = (A, b) the data for
the problem (FPd) (the cone Cx is regarded as fixed and given), and the set of solutions of
(FPd) by

Xd = X: Ax = b, x E Cx}.

The problem (FPd) is an important tool in mathematical programming. It provides a very
general format for studying the feasible regions of convex optimization problems (in fact,
any convex feasibility problem can be modeled as a conic linear system), and includes lin-
ear programming and semi-definite programming feasibility problems as special cases. Over
the last decade many important developments in linear programming, most notably the
theory of interior-point methods, have been extended to convex problems in this form. In
recent years, largely prompted by these developments, researchers have developed new and
powerful theories of condition numbers for convex optimization, aimed at capturing the
intuitive notion of problem behavior; this body of research has been shown to be impor-
tant in studying the efficiency of algorithms, including interior-point algorithms, for convex
optimization as well as other behavioral characteristics of these problems such as problem
geometry, deformation under data perturbation, etc.

In this paper, we (i) establish the connection of the condition number C(d) to some of
the measures of conditioning arising in recent linear programming literature, (ii) we develop
a new measure of conditioning Md that is invariant under equivalent data representations of
the problem, and (iii) we develop a theory of "pre-conditioners" for improving the condition
number of (FPd). We begin by briefly reviewing the developments in the theory of measures
of conditioning in recent literature as well as provide an overview of the issues addressed in
this paper.

The study of the computational complexity of linear programming originated with the
analysis of the simplex algorithm, which, while extremely efficient in practice, was shown by
Klee and Minty [17] to have worst-case complexity exponential in the number of variables.
Khachiyan [16] demonstrated that linear programming problems were in fact polynomially
solvable via the ellipsoid algorithm. Under the assumption that the problem data is ratio-
nal, the ellipsoid algorithm requires at most O(n 2L) iterations, where n is the number of
variables, and L is the problem size, which is roughly equal to the number of bits required
to represent the problem data. The development of interior-point methods gave rise to
algorithms that are theoretically efficient as well as efficient in practice (unlike the ellipsoid
algorithm). The first such algorithm, developed by Karmarkar [15], has a complexity bound
of O(nL) iterations, and the algorithm introduced by Renegar [25] has a complexity bound
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Pre-conditioners and measures of conditioning

of O(V/-L) iterations, which is the currently best known bound for linear programming.
Many interior-point algorithms have also proven to be extremely efficient computationally,
and are often superior to the simplex algorithm.

Despite the importance of the above results, there are several serious drawbacks in an-
alyzing algorithm performance in the bit-complexity framework. One such drawback is
the fact that computers use floating point arithmetic, rather than integer arithmetic, in
performing computations. As a result, two problems can have data that are extremely
close, but have drastically different values of L. The analysis of the performance of al-
gorithms for solving these problems will yield different performance estimates, yet actual
performance of the algorithms will likely be similar due to their similar numerical proper-
ties. See Wright [40] for a detailed discussion. Secondly, the complexity analysis of linear
programming algorithms in terms of L largely relies on the combinatorial structure of the
linear program, in particular, the fact that the set of feasible solutions is a polyhedron and
the solution is attained at one of the extreme points of this polyhedron.

A relevant way to measure the intuitive notion of conditioning of a convex optimization
(or feasibility) problem via the so-called distance to ilI-posedness and the closely related
condition number was developed by Renegar in [26] in a more specific setting, but then
generalized more fully in [27] and in [28] to convex optimization and feasibility problems
in conic linear form. Recall that d = (A, b) is the data for the problem (FPd) of (1). The
condition number C (d) of (FPd) is essentially a scale invariant reciprocal of the smallest data
perturbation Ad = (AA, Ab) for which the system (FPd+Ad) changes its feasibility status.
The problem (FPd) is well-conditioned to the extent that C(d) is small; when the problem
(FPd) is "ill-posed" (i.e., arbitrarily small perturbations of the data can yield both feasible
and infeasible problem instances), then C(d) = +oo.

One of the important issues addressed by researchers is the relationship between the
condition number C(d) and the geometry of the feasible region of (FPd). Renegar [26]
demonstrated that when a feasible instance of (FPd) is well-posed (C(d) < oo), there exists
a point x feasible for (FPd) which satisfies lxii < C(d). Furthermore, it is shown in [9]
that under the above assumption the set of feasible solutions contains a so-called "reliable"
solution: a solution x of (FPd) is reliable if, roughly speaking, (i) the distance from to
the boundary of the cone Cx, dist(x, OCx), is not excessively small, (ii) the norm of the

solution ilxll is not excessively large, and (iii) the ratio -distllCx is not excessively large.
The importance of reliable solutions is motivated in part by considerations of finite-precision
computations. The results in [9] also demonstrate that when the system (FPd) is feasible,
there exists a feasible point x such that

di1111C = clO(C(d)), dist(x, aCx) = c 2 (C d) ) = c3 0(C(d)), (2)
dist(:, aCx) C(d)

where the constants cl, c2, and c3 depend only on the "width" of the cone Cx (to be
formally defined shortly), and are independent of the data d of the problem (FPd) (but may
depend on n).

The condition number C(d) was also shown to be crucial for analyzing the complexity
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of algorithms for solving (FPd). Renegar [28] presented an interior-point algorithm for
solving (FPd) with the complexity bound of O(vln(C(d))) iterations, where 0 is the
complexity parameter of a self-concordant barrier for the cone Cx. In [10] it was shown
that a suitably modified version of the ellipsoid algorithm will solve (FPd) in O(n2 ln(C(d)))
iterations. (The constants in both complexity bounds depend on the width of Cx.) In [5],
a generalization of a row-action algorithm is shown to compute a reliable solution of (FPd)
in the sense of (2). The complexity of this algorithm is also closely tied to C(d).

The recent literature has explored many other important properties of the problem (FPd)
tied to the distance to ill-posedness and the condition number C(d). Renegar [26] studied
the relation of C(d) to sensitivity of solutions of (FPd) under perturbations in the problem
data. Pefia and Renegar [24] discussed the role of C(d) in the complexity of computing
approximate solutions of (FPd). [8] and Pefia [23] addressed the theoretical complexity
and practical aspects of computing the distance to ill-posedness. Vera [39] considered the
numerical properties of an interior-point method for solving (FPd) (and in fact, a more
general problem of optimizing a linear function over the feasible region of (FPd)) in the
case when (FPd) is a linear programming problem. He considered the algorithm in the
floating point arithmetic model, and demonstrated that the algorithm will approximately
solve the optimization problem in polynomial time, while requiring roughly O(ln(C(d)))
significant digits of precision for computation. For additional discussion of ill-posedness and
the condition number, see Filipowski [6, 7], Nunez and Freund [21], Nunez [20], Pefia [22, 23],
and Vera [36, 37, 38].

As the above discussion hopefully conveys, the condition number C(d) is a relevant and
important measure of conditioning of the problem (FPd). Note that when (FPd) is in fact
a linear programming feasibility problem, C(d) provides a measure of conditioning that,
unlike L, does not rely on the assumption that the problem data is rational, and is relevant
in the floating point model of computation.

Nevertheless, there are some potential drawbacks in using C(d) as a sole measure of
conditioning of the problem (FPd). To illustrate this point, note that the problem (FPd)
of (1) can be interpreted as the problem of finding a point x in the intersection of the cone
Cx with an affine subspace A C X, defined as

A = {x : Ax = b} = {x : x = xo + XN, N E Null(A)),

where x0 E X is an arbitrary point satisfying Axo = b, and Null(A) is the null space of A.
Notice that the description of the affine subspace A by the data instance d = (A, b) is not
unique. It easy to find an equivalent data instance d = (A, b) such that

{x : Ax = = Ax = b} = A

(take, for example, b = Bb and A = BA, where B is any nonsingular linear operator
B: Y -+ Y). Then the problem

(FPj): Ax = b, x E Cx
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is equivalent to the problem (FPd) in the sense that their feasible regions are identical; we
can think of the systems (FPd) and (FPd) as different but equivalent formulations of the
same feasibility problem

(FP): find x E An Cx.

Since the condition number C(d) is, in general, different from C(d), analyzing many of the
properties of the problem (FP) above in terms of the condition number will lead to different
results, depending on which formulation, (FPd) or (FPj), is being used. This observation is
somewhat disconcerting, since many of these properties are of purely geometric nature. For
example, the existence of a solution of small norm and the existence of a reliable solution
depend only on the geometry of the feasible region, i.e., of the set A n Cx, and do not
depend on a specific data instance d used to "represent" the affine space A.

An important research direction, therefore, is the development of relevant measures
of conditioning of the problem (FPd) that depend on the affine space A rather than on
a particular data instance d used to represent it, and allow us to analyze some of the
properties of the problem independently of the data used to represent the problem. The
recent literature contains some results on developing such measures when (FPd) is a linear
programming feasibility problem. In particular, two condition measures, Xd and Cd, were
used in the analysis of interior-point algorithms for linear programming (Vavasis and Ye [33,
34, 35]). These measures, discussed in detail in Section 4, provide a new perspective on the
analysis of linear programming problems; for example, like the condition number C(d), they
do not require the data for the problem to be rational. Also, they have the desired property
that they are independent of the specific data instance d used to describe the problem, and
can be defined considering only the affine subspace 4. Further analysis of these measures
in the setting of linear programming feasibility problems can be found in Ho [12], Todd,
Tunqel and Ye [30], and Tungel [32].

In this paper we define a new measure of conditioning, pd, for feasible instances of the
problem (FPd) of (1), which is independent of the specific data representation of the prob-
lem. We explore the relationship between Ad and measures Xd, d, and C(d) (in particular,
we demonstrate that the measure ad is directly related to Ad in the special case of linear
programming). We show that 1Ad < C(d), i.e., Ad is less conservative, and that for any data
instance d equivalent to d, Ad < C(d). We also demonstrate that many important proper-
ties of the system (FPd) previously analyzed in terms of C(d) can be analyzed through lAd
(independently of the data representation).

On the other hand, some properties of (FPd) are not purely geometric and depend on
the data d. Therefore, it might be beneficial, given a data instance d, to construct a data
instance d which is equivalent to d, but is better conditioned in the sense that C(d) < C(d).
We develop a characterization of all equivalent data instances d by introducing the concept of
a pre-conditioner and provide an upper bound on the condition number C(d) of the "best"
equivalent data instance d. We also analyze the complexity of computing an equivalent
data instance whose resulting condition number is within a known factor of this bound.
To this end, we construct an algorithm for computing such a data instance and analyze its
complexity.
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Pre-conditioners and measures of conditioning 5

An outline of the paper is as follows. Section 2 contains notation, definitions, assump-
tions, and preliminary results. In Section 3 we introduce the new measure of conditioning Ad

for (FPd), establish several results relating Ad to geometric properties of the feasible region
of (FPd) and analyze the performance of several algorithms for solving (FPd) in terms of
/pd. In Section 4 we study the relationship between Ad and other measures of conditioning,
completely characterizing the relationship between C(d) and pd, as well as Ud and Xd in the
linear programming setting. In Section 5, we develop the notion of a pre-conditioner for the
problem (FPd), establish an upper bound on the condition number C(d) of the best equiv-
alent data instance d, and construct and analyze an algorithm for computing an equivalent
data instance whose condition number is within a known factor of this bound. Section 6
contains some final conclusions and indicates potential topics of future research.

2 Preliminaries

We work in the setup of finite dimensional normed linear vector spaces. Both X and
Y are normed linear spaces of finite dimension n and m, respectively, endowed with norms
11xII for x E X and IIyII for y E Y. For E X, let B(±,r) denote the ball centered at x
with radius r, i.e., B(x,r) = x E X : x - ±11 < r}, and define B(V,r) analogously for
y E Y. We denote the set of real numbers by R and the set of nonnegative real numbers by
R+. The set of real k x k symmetric matrices is denoted by SkXk. The set SkXk is a closed
linear space of dimension n = (+. We denote the set of symmetric positive semi-definite
k-by-k matrices by Skxk. SXk is a closed convex cone in Skxk. The interior of the cone
S+xk is precisely the set of k-by-k positive definite matrices, and is denoted by Skk

We associate with X and Y the dual spaces X* and Y* of linear functionals defined on
X and Y, respectively. Let c E X*. In order to maintain consistency with standard linear
algebra notation in mathematical programming, we will consider c to be a column vector
in the space X* and will denote the linear function c(x) by ctx. Similarly, for f E Y* we
denote f(y) by fty. Let A: X - Y be a linear operator. We denote A(x) by Ax, and we
denote the adjoint of A by At : Y* - X*.

The dual norm induced on c E X* is defined as

IIcllI = max{ctx : x e X, Ilxl < 1}, (3)

and the H6lder inequality ctx < llcl l*lxll follows easily from this definition. The dual norm
induced on f E Y* is defined similarly.

We now present the development of the concepts of condition numbers and data per-
turbation for (FPd) in detail. Recall that d = (A, b) is the data for the problem (FPd).
Let

D = d = (A, b): A EL(X, Y), b Y}

denote the space of all data d = (A, b) for (FPd). For d = (A, b) E D we define the product
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norm on the Cartesian product L(X, Y) x Y to be

lldll = II(A, b)l = max{llAIl, llbll},

where lbll is the norm specified for Y and IIAll is the operator norm, namely

hAil = max{llAxll: Ixll < 1}.

We define
F = {(A, b) E D : there exists x satisfying Ax = b, x E Cx}

to be the set of data instances d for which (FPd) is feasible. Its complement is denoted by
yc, the set of data instances for which (FPd) is infeasible. The boundary of F and of Tcc
is precisely the set B = -= aY-c = cl(yF) n cl(C), where OS denotes the boundary and
cl(S) denotes the closure of a set S. Note that if d = (A, b) E B, then (FPd) is ill-posed in
the sense that arbitrarily small changes in the data d = (A, b) can yield instances of (FPd)
that are feasible, as well as instances of (FPd) that are infeasible. Also, note that B 0,
since d = 0 E B.

For a data instance d = (A, b) E D, the distance to ill-posedness is defined to be:

p(d) inf{Adll d + d B} = inflld - dl d E F if d (4),
inf{id-dll :d Y} ifdEyC, (4)

see Renegar [26, 27, 28]. The condition number C(d) of the data instance d is defined to be:

C(d) = (5)
p(d)

when p(d) > 0, and C(d) = oo when p(d) = O. The condition number C(d) is a measure
of the relative conditioning of the data instance d, and can be viewed as a scale-invariant
reciprocal of p(d), as it is elementary to demonstrate that C(d) = C(ad) for any positive
scalar a. It is easy to show that p(O) = 0, and hence C(d) > 1.

If C is a convex cone in X, the dual cone of C, denoted by C*, is defined by

C* = {z E X* : z tx > 0 for any x E C}. (6)

We will say that a cone C is regular if C is a closed convex cone, has a nonempty interior,
and is pointed (i.e., contains no line). If C is a closed convex cone, then C is regular if and
only if C* is regular.

We will use the following definition of the width of a regular cone C:

Definition 1 If C is a regular cone in the normed linear vector space X, the width of C is
given by:

= maxx,r 11 11 :B(x,r) CC
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-c measures the maximum ratio of the radius to the norm of the center of an inscribed ball
in C, and so larger values of Trc correspond to an intuitive notion of greater width of C.
Note that rc E (0, 1], since C is pointed and has a nonempty interior, and -c is attained
for some (, f) as well as along the ray (ax, ar) for all a > 0. By choosing the value of a
appropriately, we can find u E C such that

hIull = 1 and rc is attained for (x,r) = (u,T c). (7)

We now pause to illustrate the above notions on two relevant instances of the cone C,
namely the nonnegative orthant ~R and the positive semi-definite cone SkXk. We first
consider the nonnegative orthant. Let X = JRn and C = WR. Then we can identify X* with
X and in so doing, C* = R+ as well. If lxll4 is given by the Loo norm Ilxil = maxj=l,...,n IxjI,
then the width of C is Tc = 1 and u = e. If instead of the Loo norm, the norm ix Ill is the
Lp norm defined by

IIxIIp = ( xjP)

for p > 1, then for x E C it is straightforward to show that u = (n-) e and c = P.

Now consider the positive semi-definite cone, which has been shown to be of enormous
importance in mathematical programming (see Alizadeh [1] and Nesterov and Nemirovskii
[19]). Let X = Skxk, and so n = kk), and let C = SkX k . We can identify X* with X,

and in so doing it is elementary to derive that C* = SkXk, i.e., C is self-dual. For x E X,
let A(x) denote the k-vector of eigenvalues of x. For any p E [1, oo), let the norm of x be
defined by

\1

Ixll = Ilxllp = lAj(x)P 

(see [13], for example, for a proof that lxllp is a norm). It is easy to show that u = (k- ) I

and the width of C is rc = k- . If lixil is given by jlxii = maxi=l,...,k IAil, then u = I and
TC = 1.

Another important parameter of a regular cone C is the norm approximation coefficient:

Definition 2 If C is a regular cone in the normed linear space X, define the norm approx-
imation coefficient by

6c dist(O, aconv(C(1), -C(1)), (8)

where C(1) {x £ C: 11x11 < 1}.

The norm approximation coefficient 6c measures the extent to which the unit ball B(O, 1) C
X can be approximated by the set conv(C(1), -C(1)). As a consequence, it measures the
extent to which the norm of a linear operator can be approximated over the set C(1):

7
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Proposition 3 Suppose A E L(X, Y). Then IIAIl < max{llAxll x e C(1)}.

Proof: As a direct consequence of Definition 2, B(O, 6c) C conv(C(1), -C(1)). Therefore,

IIAII = max{llAxll : x E B(O, 1)} < max{llAxll: x E conv(C(1), -C(1))}.

Since IIAxll is a convex function of x, the maximum above is attained at an extreme point
of the set conv(C(1), -C(1)) (see Theorem 3.4.7 of [2]), and we can assume without loss of

generality that it is attained at some point x E C(1), establishing the proposition. I

Lemma 4 Suppose C is a regular cone with width Trc. Then

-c 2(9)
1 + Cr 2

Proof: Let x E X be an arbitrary vector satisfying I1]ii < 7C . To establish the lemma
we need to show that GE conv(C(1), -C(1)).

Let x = (1+rc) If u is as in (7), u + Tcx E C and u - Tcx E C. Furthermore,

u + cx -u + Cx
E C(1) and E -C(1),

1+ C 1 + c

and so

c 1 +cx -u+cx
= - 1 ut'c+ )c ++ E conv(C(1),-C(1)). I1 +C 1 + -'c 2 1 + 'c

We will assume throughout this paper that the system (FPd) of (1) is feasible. At this
point, we make no further assumptions on the cone Cx and the norms on the spaces X and
Y, unless stated otherwise (we will make some additional assumptions in Sections 4 and 5).

When (FPd) is feasible, p(d) can be expressed via the following characterization:

p(d) = max{r : B(0, r) E 7d}, (10)

where
1d -L{bO- AX: > O, x E Cx, 10 + 11xl _I 1} c Y. (11)

Note that 0 E 7 d whenever (FPd) is feasible, and p(d) > 0 precisely when 0 E int R/d. This
interpretation, presented by Renegar in [28], will serve as an important tool in developing
further understanding of the properties of the system (FPd).

The next result follows from the definition of '7 d and Proposition 3.

Corollary 5 Suppose d = (A, b) E D and Cx is regular. Then Ildll <I max{lhll : h e

7Ifda.
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3 The symmetry measure A'd

In this section we define a new measure of conditioning of (FPd), P/d, which we refer to
as the "symmetry measure", and we establish some of its properties relevant in the analysis
of (FPd). We begin by recalling the symmetry of a set with respect to a point:

Definition 6 Let D C Y be a bounded convex set. For y E int D we define sym(D, y) to
be the symmetry of D about y, i.e.,

sym(D, y)=supt I y + v E D = y-tv E D}.

If y E OD, we define sym(D, y) = 0.

This definition of symmetry is similar tD that given in [28]. Observe that sym(D, y) E [0, 1],
with sym(D, y) = 1 if D is perfectly symmetric about y, and sym(D, y) = 0 precisely when
y E OD. Moreover, the definition of sy::n(D, y) is independent of the norm on the space Y.
The following lemma will be used lateI on:

Lemma 7 Suppose D is a compact convex set with a non-empty interior, and let y E int D.

Then there exists an extreme point w of D such that sym(D, y) = symw (D, y) = sup{t I y-
t(w- y) E D.

Proof: Define f(w) = symw(D, y) = sup{t I y - t(w - y) E D}. It follows that f(w) is
a quasi-concave function on D. This implies that the minimum of f(w) is attained at an

extreme point of D, see for example [21, Section 3.5.3. 1

To define the symmetry measure of the problem (FPd) recall that if (FPd) is feasible,
0 E 7Rd, where 7Rd is defined in (11). Hence, the following quantity is well-defined:

Definition 8 Suppose the system (Fd) is feasible. We define

I 1

A sym(d, 0) (12)

when sym(7-d, 0) > 0 and PId = +oo waen sym(7td, 0) = 0.

From the above definition, Iud > 1 and 11d = +oo precisely when 0 e ald, i.e., precisely
when (FPd) is ill-posed.

3.1 The symmetry measure and geometric properties of solutions of (FPd)

We now establish two results that characterize geometric properties of the feasible region
Xd of the system (FPd) in terms of pd. Theorem 9 establishes a bound on the size of a

9
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solution of (FPd) in terms of Ad; this result is similar to the bound in terms of the condition
number C(d) in [26]. Theorem 10 demonstrates existence of a reliable solution of (FPd).
This is similar to the result (2) presented in [9], however, here the bounds on the size of the
solution, its distance to the boundary of the cone Cx and the ratio of the above quantities
are established in terms of Ad rather then C(d). Also, unlike for the condition number
C(d), we can establish a converse result for d, namely, if the feasible region possesses nice
geometry, i.e., contains a reliable solution, then Ad can be nicely bounded by a function of
the parameters associated with the reliable solution. This result is proven in Theorem 11.

Theorem 9 Suppose Ad < c. Then there exists x E Xd such that IIxII < pd.

Proof: By the definition of Ad, - b = -sym(7d, O)b E 7/Fd, since b E 7 d. Therefore there

exists (0,x) satisfying 0 > 0, x E Cx, 101 + IxII < 1, and b - Ax = b. Let =-:d ' 0-

Then x E Xd and jj::oI = x p- pd.

Theorem 10 Suppose Cx is a regular cone with width T, and that Ad < oo. Then there
exist x and r > 0 such that

i. E Xd,

2. jIj1_ < 2 d + 1,

3. dist(, Cx) >r r >2d

f~ll < 2pd 1
4 Tr 

where r is the width of the cone Cx.

Proof: Let u be as in (7). Then b - Au E d. From the definition of Pd we conclude

that - (b - Au) E Rd, whereby there exists (0, ) E R+ x Cx, 101 + 11Il < 1 satisfying

b - = (b- Au).

Let = + U It is easy to verify that 1 E Xd, so that condition 1 of the theorem is
satisfied. Moreover, = 2d 2 + , establishing condition satisfied. Moreover, 115 112Ad~-+ul < 2Pd + 1, establishing condition 2.

Next, let r = 2pO+1. Since B(u, ) C Cx and 6e Cx, we conclude that B (u + 2 Pdx, T) C

Cx, and therefore B 2 d 0 +l, 2d+i = B (x,r) C Cx. Also, since 0 < 1, r > es-2Ad+1~d I __ 2/d+1:
tablishing condition 3. Finally,

II.i| II 2 dxt+uI 2d0+l 2 d + 

r 2 Pd0 + 1 T -

implying 4 and concluding the proof of the theorem. I
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We conclude from Theorems 9 and 10 that, much like for the condition number C(d), if
the symmetry measure Ad is small, the feasible region Xd possesses nice geometry, namely,
it contains a point of small norm, and also contains a reliable solution. We now establish
a converse result: if the feasible region Xd possesses nice geometry, namely it contains a
reliable solution, then Ad is small.

Theorem 11 Suppose Cx is a regular cone and there exists ~ E Xd and r > 0 such that
dist(, aCx) > r. eta = max{Ik1II, , i}. Then Ad < 1 +27.

Proof: Let 6 = jjx[J + 1 and 7r = min{r, 1}. We first show that sym(7d, 0) > .

Let y E Rd. From the definition of 'fd, y = bO - A: for some (0,5) E R+ x Cx,
I01 + 11511 < 1. Therefore

(-y) =a+ (-b + Ax) + ,+ (b-A ) = b - A + 1 -6+ir 6 + 17r +7r 6+w 6+ir I

Let 0 = -F+ and = +. Since r < 1 and 0 < 1 we have 0 > 0. Moreover, since6+ir +r
<r < r and 1111 < 1 we have I E Cx. Finally, 101 + 11IIl < i1 (1 + rjLIIjt + Ilil) < 1, and
therefore-- 5- Y E d for an arbitrary y E 7 d, establishing that sym('7d, 0) > A. Hence,

1 6+ir 1 II I
Ad = s < == 1+ < i + max{y, 1} + 7 < 1 + 27.

sym(d,0)- 7r min{r, 1 min{r, 1 -

The last inequality follows from the observation that r < [111 (since Cx is pointed and so

Iill > dist(, OCx) > r) and so 7 > > 1. I
The result in Theorem 11 is quite specific to /Ad; no such result is possible for the

condition number C(d). In fact, the example following Remark 19 in Section 4 shows that
C(d) can be arbitrarily large even when 7 is fixed.

3.2 The symmetry measure and the complexity of computing a solution
of (FPd)

In this subsection we present complexity bounds for solving (FPd) via an interior-point
algorithm and via the ellipsoid algorithm, and we show that the complexity of solving (FPd)
depends on ln(/d) as well as on other naturally-appearing quantities. For this subsection,
we assume that the space X is an n-dimensional Euclidean space with Euclidean norm

lx11 = 11x112 = Ix/ for x E X. All of the developments of this section can in fact be
adapted for the case when the norm in the space X is an arbitrary inner product norm. We
have chosen the Euclidean norm to simplify the exposition. We also assume that Cx is a
regular cone with width r, and the vector u of (7) is known.

When the cone Cx is represented as the closure of the domain of a self-concordant
barrier function, a solution of (FPd) can be found using the barrier method developed by

11
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Renegar, based on the theory of self-concordant functions of Nesterov and Nemirovskii [19].
Below we briefly review the barrier method as articulated in [29], and then state the main
complexity result.

The version of the barrier method that we will use is designed to approximately solve a
problem of the form

z* = inf{ctw : w E S n L}, (13)

where S is a bounded set whose interior is convex and is the domain of a self-concordant
barrier function f(w) with complexity parameter Vf (see [19] and [29] for details), and L is
a closed subspace (or a translate of a closed subspace). The barrier method takes as input
a point w' E int S n L, and proceeds by approximately following the central path, i.e., the
sequence of solutions of the problems

Z() = inf r. ctw + f(w),
WEL

where i > 0 is the barrier parameter. In particular, after the initialization stage, the method
generates an increasing sequence of barrier parameters 77k > 0 and iterates wk E int S n L
that satisfy

ctk- < Z < ctk, k = , 1, 2,... (14)
5rl -

It follows from the analysis in [29] that if the barrier method is initialized at the point
w' E int S n L, then it will take at most

( F~ In(Of(z* * Z) (15)

O (sln sym(S n L, w')

iterations to bring the value of the barrier parameter 71 above the threshold of 7 > To while
maintaining (14) (here, z, = sup{ctw: w E S n L}). This implies the main convergence
result for the barrier method:

Theorem 12 ([29], Theorem 2.4.10) Assume S is a bounded set whose interior is con-
vex and is the domain of a self-concordant barrier function f (w) with complexity parameter
Of, and L is a closed subspace (or a translate of a closed subspace). Assume the barrier
method is initialized at a point w' E int S n L. If 0 < e < 1, then within

O (~ lnQ(e sym(S n L, w') ))

iterations of the method, all points w computed thereafter satisfy w E int S n L and

ctw - *
< .

*--z

In order to find a solution of (FPd) we will construct a closely related problem of the
form (13) and apply the barrier method to this problem. This construction was carried

12
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out in [28], where the complexity of solving (FPd) was analyzed in terms of C(d). The
optimization problem we consider is

z*= infso,,t t
s.t. b - A = t(b - Au)

x int Cx (16)
11xl < 1
0<0<1
-1 < t < 2.

We will use the barrier method to find a feasible solution (0, , t) of (16) such that t < 0,

and use the transformation x = 2 to obtain a solution of (FPd).

Let z. be the optimal value of the problem obtained from (16) by replacing "inf" with
"sup". Let f(x) be the self-concordant barrier function defined on int Cx and let d] be the

complexity parameter of f(x). Then the set S {(0, x, t): x E int Cx, xI1x < 1, 0 < 0 <
1, -1 < t < 2 is convex and bounded, and is the domain of the self-concordant barrier
function

f(w) = f(, x, t) = f(x) - ln(1 - lxI112) - lnO - ln(1- 0) - ln(t + 1) - ln(2 - t)

with complexity parameter /9f < + 5 (see, for example, [28] or [29] for details). If we

define L {(0, x,t): b0- Ax =t (b - ½Au) }, then the problem (16) is of the form (13),

and we can apply the barrier method initialized at the point w' = (0', x',t') = (, u, 1).

The following proposition provides bounds on all of the parameters necessary in the analysis
of the complexity of the barrier method via Theorem 12:

Proposition 13 z < 2, -1 < z* < - 1, sym(S n L, w') > 12T

Proof: The upper bound on z. and the lower bound on z* follow from the last constraint
of (16).

Let y = lb- Au E -d. From the definition of Ad we conclude that -A- R Ed, so

there exists (0,x) such that 0 > O x E Cx, I0 + lxIl < , b- Ax =- ( b- Au).

Therefore (0,x, -1/I'd) is in the closure of the feasible set of (16), and so z* < 1

To establish the last statement of the proposition, we appeal to Proposition 3.3 of
Renegar [28], where it is shown that w' defined above satisfies

sym(S n L, w') > sym (Cx(1), u , where Cx(1) = {x : x Cx, Ilxll < 1}.

Since B (u, ½T) c Cx(1), it is easy to verify that sym (Cx(1), u) > , establishing the

proposition. I

13
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Theorem 14 Suppose the barrier method for problem (16) is initialized at the point (, 2u, 1) .
Then within

o (Fin l d

iterations any iterate (0, x, t) of the algorithm will satisfy t < 0, and therefore x = 2 is

a solution of (FPd).

Proof: First note that for any iterate (0, , 1) of the algorithm, 0 > 0 and E int Cx.
Therefore, it is easy to check that when t < 0, x is well-defined and is a solution of (FPd).

It remains to verify the number of iterations needed to generate an iterate such that
t < O. Let = 1 Applying Theorem 12 and substituting the bounds of Proposition 13
into the complexity bound, we conclude that after at most

O( fln (e sym( n L, wl ) ) ) (a ln ( ))

iterations of the barrier method, any iterate (0, , i) will satisfy

1 1
< (z* - *) + * < (2 - (-1)) - o0,

- 3Pld Yd

from which the theorem follows. I

When the cone Cx is represented via a separation oracle, a solution of (FPd) can be
found using a version of the ellipsoid algorithm (see, for example, [3] and [11]). Below is a
generic theorem for analyzing the ellipsoid algorithm for finding a point w in a convex set
S C Rk given by a separation oracle.

Theorem 15 Suppose that a convex set S C ~Rk given by a separation oracle contains a
Euclidean ball of radius r centered at some point Z,, and that an upper bound R on the
quantity (C112 + r) is known. Then if the ellipsoid algorithm is initiated with a Euclidean
ball of radius R centered at w ° = 0, the algorithm will compute a point in S in at most

[2k(k + 1) ln(R/r)l

iterations, where each iteration must perform a feasibility cut on S.

The main problem with trying to apply Theorem 15 directly to (FPd) is that one needs
to know the upper bound R in advance. Because such an upper bound is generically
unknown in advance for (FPd), we approach solving (FPd) by considering finding a point
in the following set:

A
S={(,x):O>0, xECx, bO-Ax=0}, (17)

14
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which is a convex set in the linear subspace T = {(0, x) : b - Ax = 0} of dimension
k = n + 1 - m. Observe that it is easy to construct a separation oracle for S in the linear
subspace T provided that one has a separation oracle for Cx. We will use the ellipsoid

algorithm to find a point (,) E S (working in the linear subspace T), and we use the
obvious transformation x = x to transform the output of the algorithm into a solution of

(FPd).

Proposition 16 Let S be as in (17). Then there exists a point (0,x) E S and r > 0 such
that

B((0,x),i) n {(0, x): bO - Ax = O} c S, 11(,)II + P < 3, and > -.

Proof: Let y = b - Au E 7-d. From the definition of Ad we conclude that -- E td,

whereby there exists (0, x) such that

0l + 1 <1, 0 > 0, >0 ECx, b-A = -(b- Au).

Letw = (0,) -(+ 21d + u) andr = 2-- . Then cZ E S, B(zc, )n{(,x): bO-Ax=Let dj = (, i2) +- 2Ad 2A

ThCSe.fllwing theoe i a =i/(a 2c9d) 2d - 1 + 1 2d Pp 2otd -

The following theorem is an immediate consequence of Theorem 15 and Proposition 16:

Theorem 17 Suppose that the ellipsoid algorithm is applied in the linear subspace T to
find a point in the set S, initialized with the Euclidean ball (in the space T) of radius R = 3
centered at (0°, x °0) = (0, 0). Then the ellipsoid algorithm will find a point in S (and hence,
by transformation, a solution of (FPd)) in at most

[2(n-m+ l)(n -m+2)n( I 6n-d)

iterations.

4 Symmetry measure and other measures of conditioning for
(FPd)

4.1 Symmetry measure and the condition number

In this subsection we establish a relationship between Ad and C(d). As demonstrated in
Theorem 18, if an instance of (FPd) is "well-conditioned" in the sense that C(d) is small,

15
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then ld is also small. This relationship, however, is one-sided, since d may carry no
upper-bound information about C(d). In particular, in Remark 19 we exhibit a sequence of
instances of (FPd) with C(d) becoming arbitrarily large, while ld remains fixed.

Theorem 18 d < C(d).

Proof: If p(d) = 0, then C(d) = oo, and the statement of the theorem holds trivially.
Suppose p(d) > O. Since B(O, p(d)) C 7 d, we conclude that for any v E 7 ld, - pv E R7-d.
Therefore

i = sym(Hd, 0) > inf p(d) > (d)
d - VEId vI - Ildll C(d)'

proving the theorem. I

Remark 19 lad may carry no upper-bound information about C(d).

To see why this is true, consider the parametric family of problems (FPd), where de =
(A, b):

b=[°] adA=[e 1 1 -i ] 

Cx = R' and Ilxll = Ixll for x E X and IlYll = IIY112 for y E Y. Consider the values of the
parameter e E (0, 1]. The set 7'd is symmetric about 0, so ALd, = 1 for any value of e. On
the other hand, p(de) = e and lldell = 1 + e. Therefore,

1Fj+e 2 1
C(d,) >-,

and so C(d) can be arbitrarily large, while Ald remains constant. Furthermore, letting
= (1, 1, 1, 1) and r = 1, we see that y in Theorem 11 has fixed value = 4 for any

E (0, 1].

So far, we have made no assumptions on the norm on the space Y; in fact, it can be
easily seen that ld is invariant under changes in the norm on Y (this is not true for C(d)).
We conclude this section by providing another interpretation of the relationship between
the measures ud and C(d). As Theorem 20 indicates, when the space Y is endowed with
the appropriate norm, then ld and C(d) are within a constant factor of each other. To see
this, denote

Td= -- d n d. (18)

Then T d is a convex set that is symmetric about 0, and 0 E int d when lad < oo00. Therefore
we can define the norm II1 ] on Y to be that norm induced by considering Td to be the unit
ball, namely:

IAll min{: y E c7 } (19)
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Theorem 20 Suppose Cx is regular and d < oo. If the norm on Y is given by (19), then
p(d) = 1 and C(d) < , where 6 is the norm approximation coefficient of the cone Cx.

Proof: The characterization of p(d) in (10) easily implies that p(d) = 1. It remains to
establish the bound on the condition number C(d). We have

C(d) = = ldll < max{llyll : y E Ed < t
p(d) 6 6

The first inequality above follows from Corollary 5. To verify the second inequality above,
suppose that y E d. Then y E E7-d because Ad > 1, and - E ld by the definition of

Pd. Therefore, y E Ed, and so dYI < 1 which implies that max{lyll : y E ld} < Pd.
This inequality is sufficient to prove the theorem; one can however show that max{liyl:

Y E d} = d- I

4.2 Relationships between the symmetry measure and other measures of
conditioning for linear programming

In the special case when Cx = n, the problem (FPd) becomes a linear feasibility
problem, and can be written as follows:

(FPd): Ax = b, x > 0, (20)

where x E Rn, b E Rm and A E Rmxn. We assume in this subsection that (FPd) has a

strictly positive solution x°, i.e., Ax ° = b and x° > 0, that the norm on X is IIxll = llxl1,
and that the norm on Y is Ilill Y Il11l2.

Complexity analysis of linear programming sometimes relies on the complexity measures
a(.) and X(.). These measures are quite specific to the special case of linear programming, as
opposed to C(d) and ld which apply to more general conic problems. In this subsection we
state both previously known as well as new results relating all of these condition measures,
which in total provide a complete characterization of the relationship between these four
measures of conditioning.

For simplicity of notation, we define an "expanded" matrix A [b; -A] E Rmx(n+l).

Notice that 11AII = max{lbO - Axll : I(0, x)I1 < 1} = Ildll.

We first review a slight variant on a(.) called Cd, which was introduced and used in the
complexity analysis of an interior-point algorithm for solving (FPd) by Vavasis and Ye [33]:

od j min max{e w: Aw = 0, etw = 1, w > 0},
1j=l,...,n+1 w 3

where ej, j = 1, n + 1 denotes the jth unit vector and e E Rn+l is the vector of all
ones. Note that while the above does not coincide with the usual definition of a, it does
under our assumption that (FPd) has a strictly positive solution.

17
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We also review a slight variant on X(.) called Xd, which has been used by Vavasis and
Ye [34, 35] and Megiddo et al. [18] in the complexity analysis of another interior-point
algorithm:

Xd= sup{llAt(ADAt)-lAD D E (n+ x(n+l), D diagonal}.

An alternative characterization of Xd is

Xd = max{llB-1 Al : B E B(A)}, (21)

where B(A) is the set of all bases (i.e., m x m non-singular sub-matrices) of A (see [30] for
the proof of the equivalence of these characterizations).

It has been established by Vavasis and Ye [33] that ad and Xd are related by the inequality

1
ad >

Xd+ 1

On the other hand, Tuncel in [31] established that in general ad may carry no upper-bound
information about Xd- Specifically, he provided a family of data instances de such that for
any e > , d, = , but d, > e1, and so Xd, can be arbitrarily large.

Theorem 18 and Remark 19 established a relationship between Ad and C(d). Below we
establish relationships between the other pairs of measures d, C(d), Xd, and d, or provide
examples that show that no such relationship exists, in the spirit of [31].

Remark 21 C(d) and Xd may carry no upper-bound or lower-bound information about each
other.

To establish the above result, we provide two parametric families of matrices A, such that by
varying the value of the parameter e > 0 we can make one of the above measures arbitrarily
bad while keeping the other measure constant or bounded.

First consider the family of matrices A = For 0 and sufficiently

small, p(de) = . Furthermore, lidell = 1+ 2, and so

E2 +1 1
C(de) = + -- ·- - +oo as e - 0.

On the other hand, it is easy to establish using (21) that X(de) = v/2 for any e > 0.

To establish the second claim of the remark, consider the family Ae = [1 - 1] with
0 < e < 1. We have: lidell = 1, p(de) = 1, and so C(de) = 1 for any e as above. On the other
hand it is easy to establish using (21) that for any e E (0, 1), Xd = -4 +oo as -+ 0.

In the following proposition we establish an exact relationship between the measures d

and Crd.

18
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Proposition 22 Suppose the system (FPd) of (20) has a positive solution. Then ad =
1

l+1 d

Proof: Observe that we can redefine ad as follows:

ad = min aj, where a max{ew: Aw = 0, etw = 1, w > 0}.

From Lemma 7, there exists an extreme point f of

d = {bO-A: (,x)> 0, 11(0,x)lli < 1} = Aw: w > 0, etw< 

such that ± = symv(Rd, 0) = sup{t : -tt E 7ld}. Since the set of extreme points of the

set R
7 d is contained in the set {Al, ... ,An+l} where Aj E fim is the jth column of the

matrix A, we can characterize /d as

1 _ mm 1 1 'x -Il-i

- min -, where - sup{t:-tA E lEd}.
Ad j=l,...,n+l j Aj

We will now show that for any j,

1 + j (22)

Without loss of generality we can consider j = 1 and the corresponding column Al of A. If
A1 = 0, then al = 1 and 1 = +oo, and (22) holds as a limiting relationship. Suppose that
A l / 0, and therefore /1 > 0 and al < 1.

By definition of pi, -~A 1 E 1d, i.e., there exists a point p > 0, etp = 1 such that

-AAl = Ap. Define w p+e Then w > 0, etw = 1 and Aw = 0. Therefore,

O1 >Wl > 1+

Suppose now that w is a solution of the linear program defining al. Then wl = al. Let
= 1-i (w -1el). Then p > 0, etp = 1 and Ap = -lal Therefore, 1> a and so

al < 1 . Combining this with the bound in the previous paragraph, we conclude that
rl = -1, and by similar argument, aj =+ 1, =1, 1 .n +

Suppose now that d = -j for some j. That means that aj < i for any index i, or,
equivalently, 1 < 1 and hence j > pi for any index i. Therefore, Ad = j and hence+-7V - - /i+/

d 1+l d·

The following two remarks, which are easy consequences of Proposition 22, establish the
remaining relationships between the four measures of conditioning.

Remark 23 Ad < Xd. However, Ad may carry no upper-bound information about Xd-
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Remark 24 ad C '1 However, Cd may carry no upper-bound information about C(d).

In light of Proposition 22, lid can in fact be viewed as a generalization of the Vavasis-
Ye measure Cd to a general conic linear system. Related to this, Ho in [12] provides an
argument indicating that extending Xd to general conic systems is not possible.

5 Pre-conditioners for conic linear systems

In this section we continue the development of the properties of the measure of condi-
tioning d introduced in Section 3. We return to the issue of measures of conditioning of
(FPd) that are "data-independent," first mentioned in Section 1, and we show that similar
to Xd and ad, M/d is in fact independent of the particular data d used to characterize the
feasible region Xd of the problem (FPd). We also present a characterization of all data
instances d equivalent to d (in the sense that Xd = Xj), by introducing the concept of

a pre-conditioner, and we provide an upper bound on the condition number C(d) of the
"best" equivalent data instance d. We conclude by analyzing the complexity of computing
an equivalent data instance whose condition number is within a known factor of this bound,
by constructing an algorithm for computing such an instance and analyzing its complexity.

Recall that for a feasible instance of the system (FPd) we have defined the symmetry
measure 1/d = sym(d,) where d = (A, b) E 2) is the data instance defining the system

(FPd), and
d= {bO- Ax: 0 > O, Cx, 10I + I1x11 < 1.

Let B mxm be a given non-singular matrix, and consider the data instance Bd B. d =
(BA, Bb), which gives rise to the system

(FPBd): BAx = Bb, x E Cx. (23)

Notice that since B is non-singular, the systems (FPd) and (FPBd) are equivalent in the
sense that Xd = XBd; for this reason we say that the data instances d and Bd are equivalent
as well. We can view the systems (FPd) and (FPBd) as different formulations of the same
feasibility problem (FP): find x E A n Cx, where A is the affine subspace

A ={x: Ax = b = {x : BAx = Bb}. (24)

However the condition numbers of the two systems, C(d) and C(Bd), are, in general, not
equal.

On the other hand, consider the symmetry measures of the two systems, /d and /sBd.
Observe that

A
7-Bd = BbO - BAx: 0 > 0, x E Cx, + IIjx 1 = B(-ld),

20



Pre-conditioners and measures of conditioning

i.e., the set '7 Bd is the image of the set d under the linear transformation defined by
B. Therefore, sym(tBdA, 0) = sym(Wd, 0), and Ad = Bd, since the symmetry of a set is
preserved under non-singular linear transformation, and so we can think of Ad as depending
on the affine space A defined in (24), which we write as PA. We record this formally as:

Proposition 25 Let d = (A, b) E D, let B E Rmxm be a non-singular matrix, and define

A {x: Ax = b}. Then d = Bd = A.

The next proposition shows that so long as the data instance d is not ill-posed, then any
other data instance d giving rise to the same feasible region can be characterized as d = Bd
for some non-singular matrix B.

Proposition 26 Suppose Cx is a regular cone. Let d = (A, b) E D and d = (A, b) E D be
such that Xd = Xd. If C(d) < 00o, then there exists a pre-conditioner B such that d = Bd.

Proof: (outline) Let x0 E Xd = X be a feasible point such that x0o E int Cx. (Such a
point must exist via Theorem 10 and Theorem 18.) Consider the two affine subspaces:

Ad x : = xo + xN, N E Null(A)} and Ad z{x: = xo + xN, N E Null(A)}.

Then Ad n Cx = Xd = X = Ad n Cx, and since both affine spaces Ad and Ad contain a
point in the interior of the cone Cx, we conclude that Ad = A, and therefore there exists a
non-singular matrix B E gmxm such that A = BA. It is also easy to establish that b = Bb,

and so d= Bd. I

In Section 3 we analyzed some of the properties of the problem (FPd) in terms of Pd =

/PA. In particular, in the analysis of reliable solutions of (FPd), as well as the complexity
of an interior-point algorithm and the ellipsoid algorithm for solving (FPd), we essentially
replaced the dependence on C(d) by the data-independent measure PA4. Now suppose a
feasibility problem can be represented via two equivalent data instances d and d, and suppose
that C(d) << C(d). If one were to predict, for example, the performance of the interior-point
algorithm for solving (FPd) by analyzing its complexity in terms of the condition number,
the bounds would be overly conservative if the problem is described by the data instance d.
However, the analysis of the performance of the algorithm in terms of PA would yield the
same bound, regardless of the data instance used.

On the other hand, the condition number C(d) is a crucial parameter for analyzing
properties of (FPd) which depend on the representation of the problem (FP(.)) by a specific
data instance d, such as sensitivity of the feasible region to data perturbations, numerical
properties of computations in algorithms for solving (FPd), etc. Therefore, it might be
beneficial to pre-condition the system (FPd), i.e., find another data instance d = Bd for
which C(d) < C(d), and work with the corresponding system (FP-) which is better behaved.
In this light, we can view the matrix B above as a pre-conditioner for the system (FPd),
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yielding the pre-conditioned system (FPj) with d = Bd, and Proposition 26 implies that
any data instance d for which Xj = Xd can be obtained by pre-conditioning d with an
appropriate B.

In the remainder of this section, we characterize a so-called best pre-conditioner, which
is a pre-conditioner that gives rise to a condition number that is within a constant factor
of the best possible, and we construct and analyze an algorithm for computing a pre-
conditioner that yields a condition number that is within a known factor of this bound. For
the remainder of this section, we assume that the space Y is the m-dimensional Euclidean
space Rm with Euclidean norm Ilyll = IIYI2 = ~V . We assume that the cone Cx is a
regular cone with width r and norm approximation coefficient . We also assume that
m > 2 (in fact, the case m = 1 is trivial since in this case /uA and C(d) are within a factor
of of each other, and the issue of pre-conditioning is essentially irrelevant).

5.1 Best pre-conditioners and a-roundings

The main result of this subsection, Theorem 30, demonstrates the existence of a pre-
conditioner B such that C(Bd) is within the factor of the lower bound of pA4. In order
to develop the tools to prove this result, we first review the concept of an a-rounding of a
set.

For any matrix Q E S++ we define EQ to be the ellipsoid EQ = {y E Y ytQ-ly < 1}.

Definition 27 Let S C Y be a bounded set with a non-empty convex interior. For a E
(0, 1], we call an ellipsoid EQ an a-rounding of S if

aEQ C S C EQ.

We refer to the parameter a as the tightness of the rounding EQ.

If the set S above satisfies S = -S (i.e., is symmetric about 0) then S possesses a -

rounding, i.e., there exists an ellipsoid EQ such that 1EQ C S C EQ (see John [14]). In

particular, the ellipsoid of minimum volume containing S (often referred to as the Ldwner-
John ellipsoid of S) is a -rounding of S.

The following lemma allows us to interpret pre-conditioning of the system (FPd) by B
as constructing a c(B -rounding of the set '7 d.

Lemma 28 Let B E Rmxm be a (non-singular) pre-conditioner for the system (FPd),
and let C(Bd) denote the condition number of the pre-conditioned system (FPBd). Let
Q = Bdll2 (BtB)- 1 . Then

C(Bd)EQ C_ fid C EQ.
C (Bd) -
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Proof: First, observe that Q E S++m, since B is non-singular. To prove the first inclusion,
let h E 1c-EQ, i.e., htQ-lh < 1c Using the definition of Q we have: ht(BtB)h <

lBlld 2 = p(Bd)2 , that is, IIBhl < p(Bd). This implies that Bh E 7iBd, and hence, h E td.

Next, suppose h E 7 d, and so Bh E 7Bd. Then IIBhll < IjBdll, and therefore

htQ-lh = ht (IBd2(BtB) h )h= IIBhll2 < 
IIBdII2

i.e., hE EQ. I

Lemma 29 Let Q S++m m be such that EQ is an a-rounding of the set Td of (18). Let

B = Q- . Then B is a pre-conditioner for the system (FPd) such that

C(Bd) < < 
a6 -aT

Proof: We establish the result by providing bounds on the distance to infeasibility p(Bd)
and the size of the data I[Bdll of the system (FPBd). First, we will show that p(Bd) > a.
Let v e Y satisfy {lvji < a. Then

(B-lv)tQ-1B-lv = (B-lv)t(B - B)(B-lv) = llv112 < a 2 ,

and therefore B-lv E aEQ C d C_ d. Therefore, v E HlBd, and so p(Bd) > a.

Next, recall from Corollary 5 that IjBdll < - max{ v : v E -Bd}. Let v E W7 Bd. Then
y = B-lv E ld, and 1 y E -d n ld = d C EQ. Hence Iv112 = ytBtBy = ytQ-ly < A2

whereby IIBdll < 

Combining the obtained results, C(Bd) = IIBdl < < 2A. 
p(Bd) - - ra

Theorem 30 Suppose (FPd) is feasible and C(d) < +oo. Then there exists a pre-conditioner
B such that

HIA < C(Bd) < 6 A- (25)

Proof: By definition, 7d is a bounded convex set symmetric about 0. Since C(d) < oo, 7d
has a non-empty interior. Therefore, there exists Q E S++m such that EQ is a -rounding

of Td. Applying Lemma 29 with a = m we obtain (25). I
Remark 31 The upper bound in (25) is tight for any m.

We verify this remark by example. Consider the system (FPd) with n = 2m, Cx = 2+m
j1j11 = IxI~ (so that 6 = 1) and the data d = (A, b) as follows:

b = 0 and A = [el, -el,...,em, -em],
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where ei is the ith unit vector in Rm. Then f-ld = Td = conv{iei, i = 1, ... , m}, and it
can be easily verified that 1lA = 1, p(d) = , and dl = 1, and therefore C(d) = gV'.

Suppose B is an arbitrary pre-conditioner. Using Lemma 28, we can construct a c(B-~-
rounding of the set T d. However, it is impossible to construct an a-rounding of the set
conv{(ei, i = 1,... , m} with a > 1, see, for example, [11]. Therefore, C(Bd) > VI for
any pre-conditioner B.

5.2 On the complexity of computing a good pre-conditioner

In this subsection we address the complexity of computing a good pre-conditioner for
the problem (FPd). Specifically, we present an algorithm that computes a pre-conditioner
B for which

C(Bd) < am (26)

Recall that in Lemma 29 it was shown that a tight rounding of the set 7d gives rise
to a good pre-conditioner for the system (FPd). In Theorem 30 we relied on the existence
of a -rounding of the set Td to establish the existence of a pre-conditioner B such that

M'A < C(.1d) < v MiA, i.e., C(Bd) is within the factor of ~ of the lower bound. In

general, we are not able to efficiently compute a -rounding of the set 7d (see [11] for
commentary on the difficulty of computing an approximate b-rounding of a set S that

does not have an efficient half-space representation). However, the algorithm presented in
this subsection will compute an ellipsoid which is a 4 -rounding of 7d (also called a weak
L6wner-John ellipsoid for 7d). In particular, the algorithm of this subsection will compute
a matrix Q E S+m such that

1-Eq _ d C EQ, (27)
4m EE

which can be used to obtain a pre-conditioner B satisfying (26) via Lemma 29. We denote
this algorithm as Algorithm WLJ for "Weak L6wner-John".

In order to be able to efficiently implement the algorithm described in this section, we
restrict the norm lixll for x E X to be the Euclidean norm l[ll = 1lx112 (as well as maintain
the assumption that IlYll = IlYll2 for y E Y). We further assume that the interior of the
cone C: is the domain of a self-concordant barrier f*(-) with complexity parameter *.
The width of the cone Cx is denoted by T*, and we assume that we know and are given
the vector u. E C: for which Ilu*ll = 1 and B(u*,r*) C C: as in (7). Finally, we assume
that an upper bound d on Ildll is known and given, or is easily computable. One could, for
example, take

d= /vmax{llbb12, A1112,..., IIAmll 2},
where Aj is the jth column of the matrix A. Then d approximates lldll within the factor of

A, i.e., vod lldll < d.
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The algorithm WLJ is a version of the parallel-cut ellipsoid algorithm, see [11]. A generic
iteration of this algorithm can be described as follows. At the start of each iteration, we
have a matrix Q E S+m+xm such that 7d C EQ. We compute the eigenvalue decomposition
of the matrix Q. In particular, we compute the eigenvalues 0 < A1 < A2 < ... < Am of the
matrix Q and their corresponding (orthonormal) eigenvectors al, ... , am. Then the axes of

A
the ellipsoid EQ are vi = -vai, i = 1,..., m. We denote V [vl,..., Vm] E Rmxm. It is
elementary to verify that Q = VVt.

The algorithm then checks if the scaled axes 4mv i are elements of 7d, for i = 1,..., m.
If so, then the algorithm correctly asserts that

4EQ = d 4 EQ C conv if vi, i =, m C 7dC EQ, (28)

and the algorithm terminates. On the other hand, if the algorithm finds an axis v = ±vj for
some j for which 1 vj 7d, then it finds a parallel cut separating the two points :k2vj
from the set Ed, i.e., it produces a vector s such that

stvj = 1 for some vj, and Td C EQ y -2 < sY 1< (29)

This cut is then used to find an ellipsoid EQ which satisfies

E D [EQ n { : -2 sty< s 2 \)]T

and for which
vol(E) 1 3

(30)
vol(EQ) - 2

The formula for Q is:

m_ I 1_ m_(4_ _ 4-1 Q_ ) (31)

where
= 8tQs = IIVtsll2 > stvj = 1, (32)

see formula (3.1.20) of [11], for example.

In order to implement this algorithm, it necessary to be able to check if the re-scaled
axes 4 1vi are elements of 7Td, for i = 1,..., m, and if not, it is then necessary to produce
the vector s describing the parallel cut of (29). These two tasks are accomplished in a
subroutine called Weak Check, which is outlined as follows, and for which a more complete
description is furnished in Appendix A.

Subroutine Weak Check
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Given the axes vl, . , of an ellipsoid EQ D 7Td, either

(i) verify that ±4vi E 7 d for all i = 1,..., m, or

(ii) find a vector s such that

tvj = 1 for some vj, and d C [EQ n fl{y 2 2 ] (33)

The formal description of algorithm WLJ is as follows:

Algorithms WLJ (Weak Lwner-John)

* Initialization: The algorithm is initialized with the matrix Q0 = P~I.

* Iteration k > 1.

Step 1 Let Q = Qk. Compute the eigenvalues 0 < A < A2 < ... < Am of Q and the
corresponding (orthonormal) eigenvectors al, ... , am. Define the axes of EQ by
vi = ai, i =1,..., m.

Step 2 Call subroutine Weak Check with the input (vl,...,vm). If the subroutine
verifies that vi E , i = 1,..., m, then return B = Q-2 and terminate.

Otherwise, subroutine Weak Check returns a vector s. Define Q by (31).

Step 3 Let Qk+l = Q, k +- k + 1, go to Step 1.

To complete the description of algorithm WLJ, one must specify the specific details of
subroutine Weak Check. The purpose of subroutine Weak Check is to verify if the re-scaled
axes + 4%vi, i = 1,...,m, are contained in 7d, or to produce a parallel cut otherwise.

This is accomplished by examining the following 2m optimization problems (P,~), where
V = -tvi, i = ,...,m:

(P,) bv = max, 34
s.t. v E d .

It is easy to verify that vi E 7d for all i = 1,..., m precisely when

OQ min > 1- (35)

(Here minvi qv stands for min{bv, -vl, .. ., v,,, -v,,m } in order to shorten the notation).

We will therefore implement the subroutine Weak Check by means of approximately solving
the 2m optimization problems (34) and checking if condition (35) is satisfied. To solve
the optimization problems (34) for every value of v = ivi, i = 1, ... , m we will apply the
barrier method of [29] to a version of the Lagrangian dual of (Pie ). The formal description
of this implementation is presented in Appendix A, where the following complexity bound
is proved:
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Lemma 32 Subroutine Weak Check will terminate in at most

*JA* V ))
(36)

iterations of the barrier method. Upon termination, it will either
± 1 vi E Td for all i = 1,..., m, or will return a vector s such that

stvj = for some vj, and T C EQn fY: -2 < sty

correctly verify that

(37)

Note that the skewness of the ellipsoid EQ, which is square root of the ratio of the largest
to the smallest eigenvalue of Q, comes to play in the complexity bound of subroutine Weak
Check.

We now proceed to analyze the complexity of algorithm WLJ. We first prove the volume
reduction bound of (30) in Lemma 33. We then prove the main complexity of algorithm
WLJ in Theorem 34.

Lemma 33 Let Q be an iterate of algorithm WLJ, and let Q be defined by (31). Then

vol(E ) 1 3

vol(EQ) - 2

Proof: Let R E mxm be an orthonormal matrix such that RQbs = IIQsjel = iVel.
Then Q can be expressed as

(38)

Therefore,

det(Q) = det ( 1-4 )(m (1 
(= m (- 4m)) (1- 4m -))1 det(Q).

We conclude that

det(Q) m (1I_1
det(Q) (m-1 4m m(4- 1))4m - 1

mm(4m- 1)m-1 1 4m - 1 I-1
(m - )m-1 (4m)m 4- 4m - 4 

<-e 4E < -e
- 46 - 4

1 ( 4-1 )m -1
--4-~ 1 4(m_-1)

27

m= 1 1 'r(1-1 
cj= m-l1 - - Q2t ele R2 

M - 1 4mJ 4m~" m - I R~ 

1 ,, m(4C - 1) t 1R 
Q2Rt i eel RQ

MV*
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The last inequality follows since the function te - t is an increasing function for t E [0,1],
and from (32) we have 0 < < . Finally,

vol(E~) det() < le 
vol(EQ) - det(Q) - 2

Theorem 34 Suppose C(d) < oo. Then algorithm WLJ will terminate in at most

(m n (p(d))(m* (39)r

iterations of the barrier method. It will return upon termination a pre-conditioner B such
that

HA < C(Bd) <

Proof: First observe that the matrix Q0 = X2I used to initialize the algorithm is a valid
iterate, since for any point y E Td, Ill < lldl < d, and so Td C EQo.

Suppose algorithm WLJ has performed k iterations, and let Qk be the current iterate.
Since Td C EQk, we conclude that

vol(Td) < vol(EQk) < ( es) vol(EQo) = (-e8) dnvol(B(O, 1)).

On the other hand, since B(O, p(d)) C T7, we have vol(Td) > vol(B(O, p(d)) = p(d)m vol(B(O, 1)).

Therefore, p(d)m vol(B(0, 1)) < dm ( e)k vol(B(O, 1)), and algorithm WLJ will perform
at most Id 1 10 40,

K<mIn (7 5n < m In (40)
p(d) -n 2-.375- 3 p(d)

iterations.

To bound the skewness of the ellipsoids generated by algorithm WLJ, note that all such
ellipsoids contain the set Td, and therefore, contain B(O, p(d)). This implies that for any
ellipsoid encountered by the algorithm, Al > p(d)2.

We now estimate the change in the largest eigenvalue of the ellipsoid matrix Qk from
one iteration of the algorithm to the next. Suppose Q and Q are two consecutive iterates
of the algorithm. Then from (38) we conclude that

m 1m 1 m
IIQI < Il l Q m (1- 4 = Am- 1 (- m Am- < Amem1

Hence, at any iteration k,

10m

: AO pe-1=c~m-<~ ddd) ''a
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the last inequality following from (40). Therefore, throughout the algorithm, the skewness
of all ellipsoids generated by the algorithm is bounded above by

_m [_ (m--1 ) (41)

1 < p(d) < p(d)) (41)

Using (41) we conclude from Lemma 32 that any call to subroutine Weak Check will
perform at most O (mV in ( m pd)) iterations of the barrier method. Combining this
with (40), we can bound the total number of iterations of the barrier method performed by
algorithm WLJ by

(·2\/~-~l2 (p(d) (*)

Finally, the inequalities P4A < C(Bd) < 4 follow from Theorem 18, (28), and Lemma

29. I

Remark 35 Note that the skewness of the ellipsoids does not necessarily degrade at every

iteration. In fact, the last ellipsoid of the algorithm has the very nice property that + <
4A/VC (d).

To see why this remark is true, notice that the axes of any ellipsoid of the algorithm
will satisfy Ilvi 11 > p(d) for all i, and so V7 > p(d). Also, the last ellipsoid of the algorithm
satisfies 14vi E Td C B(O, Ildll) for all i, and so lvill < 4v'illdj, whereby V _ < Fill1dll.

To further interpret the complexity result of Theorem 34, suppose for simplicity that
d = l[dl, i.e., the size of the data ldll is known. Then algorithm WLJ will perform at most

0 (m2Vl n2 (C(d)) In (m*))

iterations. We see that the condition number C(d) of the initial data instance d plays a
crucial role in the complexity of the algorithm WLJ which aims to find an equivalent data
instance whose condition number is within a given factor of the best possible. In particular,
if the original data instance d is badly conditioned, i.e., C(d) is large, it might take a
large number of iterations to find a "good" pre-conditioner as above. Another interesting
observation is that the complexity of algorithm WLJ does not depend on A. This result,
which may seem counterintuitive at first, is actually explained by the fact that, in order
to obtain a pre-conditioner, algorithm WLJ has to work with the set Td, rather then 7d,
which is symmetric about 0 regardless of the geometry of 7 d.

6 Conclusions

In this paper we have addressed several issues related to measures of conditioning for
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convex feasibility problems. We have discussed some potential drawbacks of using the con-
dition number C(d) as the sole measure of conditioning of a conic linear system, motivating
the study of data-independent measures. We have introduced the symmetry measure pA
for feasible conic linear systems as one such data-independent measure, and we have studied
many of its implications for problem geometry, conditioning, and algorithm complexity.

One research topic that is not addressed in this paper concerns the existence of data-
independent measures of conditioning for (FPd) that are useful when (FPd) is infeasible
and/or whether any such measures can be adapted to analyze the linear optimization version
of (FPd). Such measures might or might not be an extension of the symmetry measure
discussed in this paper.

Another potential topic of research stems from the importance of the inherent condi-
tioning of the problem data for certain properties of (FPd) such as sensitivity to data per-
turbations and numerical precision required for accurate computation in algorithms. The
complexity bound for computing the good pre-conditioner in algorithm WLJ is only reas-
suring in theory, as it would be unthinkable to use this algorithm in practice. Instead, much
as in the case for linear optimization, it would be interesting to explore heuristic methods
for pre-conditioning (FPd). The notion of a heuristic pre-conditioning/pre-processing stage
in an algorithm is well-established; most optimization software packages include some type
of pre-processing options, such as variable and constraint elimination or data scaling, for
improving condition numbers and other numerical measures in matrix computations. We
hope that the results in this paper may suggest future research on the analysis of heuristic
pre-conditioning techniques for solving linear and conic optimization problems.

A Implementation of subroutine Weak Check

In this appendix we present an implementation of the subroutine Weak Check. Recall
that each iteration of algorithm WLJ calls the subroutine Weak Check with input being
the axes vl, ... , Vm of an ellipsoid EQ D 7d. The purpose of Weak Check is to verify if the
re-scaled axes i are elements of 7d, for i = 1,..., m, and if not, to produce a parallel
cut vector s satisfying (33).

Consider the following 2m optimization problems (Pv), where v = ±vi, i = 1,..., m:

(PO,) qv = max = maxo,x,4 , b
s.t. qv E 7 d s.t. bO - Ax =v (42)

101 + II 11 1
0>0, x Cx.

It is easy to verify that vi E 7d for all i = 1,..., m precisely when

Q- =minOV > 1 (43)+vi - 4-'
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(Here min±vi k, stands for min{(l,,, - .. .. , V,-m } in order to shorten the notation.)
We will therefore implement the subroutine Weak Check by means of approximately solving
the 2m optimization problems (42) and checking if condition (43) is satisfied.

The approach we will use to solve the optimization problems (42) in the subroutine Weak
Check uses the barrier method of Renegar described in Section 3. Since no obvious starting
point is available for (42), we will solve (42) for all 2m values of v = +vi, i = 1,..., m by
considering its dual:

(P-y) v = mins,q, 'Y
s.t. IIAts - q < y

bts < (44)
q E C.
Vts = 1.

It is straightforward to verify that strong duality holds for (Pv) and (P 7v), and so

IQ = min 9q = min yv.
rvi rvi

In order to be able to apply the barrier method, we need the optimization problem at
hand to have a bounded feasible region. To satisfy this condition, we consider the following
modification of (44):

(Pv) = mins,q,7 7
s.t. IIAts - qjl < 

bts < 

IlVtsll 2m (45)
7< 7fd

q E CX
vtS = 1,

where d is the known upper bound on the norm of the data lldl, and V = [vl,..., Vm] E
Rmxm. The following two simple facts are useful in the derivation of the forthcoming
results. First, for all i = 1,... ,m, we have VI < Ilvill < x/m. Also, for any vector
s Y*, sll < 9. In the next proposition we show that solving (P%) instead of (Ply)
still yields a valid estimate of $Q.

Proposition 36 For any v, 7v < ,y. Moreover,

PQ = mIin fl = min v. (46)rkvi +vi

Proof: The first claim of the proposition is trivially true, since the feasible region of the
program (Pi%) is contained in the feasible region of the program (P 7 ).

To establish the second claim, note that

OQ = miny±v.i < mintv.±vi - +vi
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Suppose the minimum on the left is attained for v = vio, and let (, q,yv) be an optimal
solution of the corresponding program (Py7 ). Then we have

7v = max{llAts- Jll, bt }, q C, vt- 1.

We can further assume without loss of generality that IIAts - qII IIAtsIl, since q can
always be chosen to minimize the distance from Ats to the cone Cc. If the point (, 4, %Yv)
is feasible for the corresponding program (P%), then y, = av, and (46) follows. Otherwise,
let a = maxi vis > 1. We can assume without loss of generality that a = v for some j

(if vts < 0, we can re-define the jth axis of EQ to be -vj). Define (, q, ) = ( , aq, -Y)
Note that v§ = 1, 0 E C: and

m

IIVtsI = (vfs) 2 < V < 2V .
i=l

It remains to check if the upper bound constraint on a is satisfied. Observe that II.~ < V

(since IIVtsll < VI). Therefore

= max{llA ts - 4Ol, bts < max{llAtSll, bts} d. < d

Hence the vector (, qc, ) is feasible for (Pj ), and i,j < < yv _< yj < vi j, which implies

that 5vj = v, from which (46) follows. I
Now define

S = (sq,7) IlAts -qI < 7, bt s <y, Vt sI < 2v/m, 7< qE CE

and
Lv= (s,q,y): vts = 1).

Then Lv is a translate of a closed linear subspace and S is a bounded convex set. Recall
from the assumptions in Section 5.2 that f*(-) is a self-concordant barrier for the cone Cj
with complexity parameter 0*. Then the interior of the set S is the domain of the following
self-concordant barrier f(s, q, 7):

f (s, q, ) =f * (q)-ln( 2 - Ats -q11 2)-ln( - bts) - ln(4m -IVt1 2 ) -ln V -

whose complexity parameter is Vf < * + 5.

In order to use the barrier method to solve (Ps), we need to have a point (s',q', q') E
int S n Lv at which to initialize the method. The next proposition indicates that such
point is readily available when the vector u E CcX of (7) is known; the second part of
the proposition presents a lower bound on sym(S n Lv, (s', q', 7')), which is important in
analyzing the complexity of the barrier method.
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Proposition 37

(', q,') v 2du, 4-d 
(S 'q y IIVII2 IllV ' VA eintLv,

and

sym(Sn Lv, (s, q , )) > 13' * Am'

Proof: The first claim of the proposition is easily established by verifying directly that
(s',q', 7') strictly satisfies the constraints of (45). The derivation of the bound on the
symmetry in the second claim is fairly long and tedious, and is omitted. We refer the

interested reader to [4] for details. I

We now present the formal statement of the implementation of the subroutine Weak
Check:

Subroutine Weak Check

* Input: Axes vi, i = 1,..., m of an ellipsoid EQ D Td.

· for v = vi, i = 1,...,m,

Step 1 Form the problem (P%)

Step 2 Run the barrier method on the problem (Pa%) initialized at the point

v 2du. 4md~
(s', q , I')= = V )

until the value of the barrier parameter q first exceeds = A Let (s, q, -y)
be the last iterate of the barrier method.

Step 3 If < 2 , terminate, and return s. Otherwise, continue with the next value
of v.

* Assert that dvi E 7d for all i = 1,..., m.

Proof of Lemma 32: We will use (15) to establish the number of iterations of the
barrier method required by subroutine Weak Check. Subroutine Weak Check will apply the
barrier method to at most 2m problems of the form (Pa%). Note that

min > 0 and max <
(s,q,7)esnL - (s,q,y)ESnLv
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Therefore, applying (15) and Proposition 37, we see that each of the (at most) 2m applica-
tions of the barrier method will terminate in at most

< (VlIn (7d * 247i69 13/ [))
-/X1 5 ' ,

- (L In ' d5 .

iterations of the barrier method. Multiplying the above bound by 2m we obtain (36).

Suppose the subroutine Weak Check has terminated in Step 3 of an iteration in which
the barrier method is applied to the problem (Pj.). (This is without loss of generality; if
the termination occurs during the iteration which applies the barrier method to the problem
(P._v), we can re-define the jth axis of EQ to be -vj to preserve the notation.) Then the
last iterate (s, q, y) of the barrier method satisfies

IIAts - lj < ' <
bts < y< y 

IlVt sll < 2V
q E Cc, vs = 1.

The vector s above yields a parallel cut that separates + __ from 7d. To see why this is

true, let h E Td. Then h E 7 d, and hence h = b - Ax for some (0, x) 6 + x Cx such that
101 + IIxll < 1. Therefore

sth = st(bO - Ax) = O(bts) - xt(Ats) = 0(bts) - xt(Ats - q) - xtq

< (101 + llxIl)y < < /-= 2- -' 

Applying the same argument for the point -h E d, we conclude that Ath > -vi and
therefore the vector s returned by the subroutine Weak Check satisfies (37).

Next, suppose that the barrier method applied to (P%) has not terminated in Step 3
of the subroutine Weak Check, i.e., we have y > -. Then, using (14),

v _65 1 _ 6tf 1
5~ 2Vii 5 m-

Therefore, if the subroutine Weak Check has not terminated in Step 3 for any v = ±vi, i =
1,...,m, we conclude that q$Q = min±viy y > , and we correctly assert that + 4 vi E

d for all i = 1,..., m. I

...... _ __ ~ ~_1
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