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Abstract

We propose a new algorithm for solving integer programming (IP) problems that is

based on ideas from algebraic geometry. The method provides a natural generalization of

Farkas lemma for IP, leads to a way of performing sensitivity analysis, offers a systematic

enumeration of all feasible solutions, and gives structural information of the feasible set

of a given IP. We provide several examples that offer insights on the algorithm and its

properties.

1 Introduction

In this paper we introduce a new approach for solving integer programming problems (IPs).

Our results are inspired from the observation that we can view any 0-1 IP as a system of

quadratic equalities. We apply ideas from algebraic geometry to provide an algorithm for the

problem that has several implications. Conti and Traverso (1991) introduced a very different

approach for solving IPs that was also based on ideas from algebraic geometry. Nevertheless,
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unlike the approach in Conti and Traverso (1991) (see also Tayur, Thomas and Natraj (1995)

or Thomas (1995)), our approach uses a specific right hand side b, and is directly motivated

by 0-1 integer programming problems. We believe that our approach is computationally

promising especially as a proof technique for infeasible IPs. In particular, our algorithm

may be viewed as a generalization of Farkas lemma as well as a way of performing sensitivity

analysis for IPs. Moreover, preliminary computational results indicate that our algorithm

shows promise for problems that are either infeasible or have a small number of feasible

solutions.

To make our results more accessible to the reader we will first focus on the 0-1 feasibility

integer programming problem. Later in the paper we will illustrate how to extend our results

for solving 0-1 as well as general integer optimization problems.

Definition 1 Given a m x n matrix A, and a m-vector b, the 0-1 feasibility integer

programming problem is the problem of deciding whether there is a n-vector x with 0-1

coordinates such that

Ax = b, (1)

x E {0, 1} n .

This problem can be rewritten equivalently as the following system of equations,

Ax = b,

xj2 = j, j=1,...,n.

The contributions of this paper are as follows:

1. We provide an algorithm for the 0-1 IP feasibility problem that systematically enu-

merates all feasible solutions or shows that none exists .

2. We extend the algorithm for solving general IP optimization problems.

3. We establish that the algorithm leads to a strong duality theory for IPs, in the sense

that it provides a certificate for infeasibility.
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4. We address the reverse problem, i.e., given a set of integer points in {0, l}n we provide

an underlying IP.

5. We show that our method leads to a way of performing sensitivity analysis.

6. We report examples that illustrate that our method is computationally promising.

The paper is structured as follows. In Section 2, we review definitions and basic results

from algebraic geometry to make the paper self contained. In Section 3, we present our

algorithm for the 0-1 IP feasibility problem, and illustrate through examples several of

its properties. In Section 4, we extend our approach to the feasibility and optimization

problems of general IPs. Section 5 illustrates the application of our algorithm for sensitivity

analysis for IPs. A technical result is included in the appendix.

2 Preliminaries

In order to make this paper self contained, we review in this section some basic definitions

and results from an introductory text on computational algebraic geometry by Cox, Little

and O'Shea (1997). The interested reader may consult this book for further details.

In this paper we work over an algebraically closed field k, which is the field of complex

numbers C. The polynomial ring over this field is represented by k [x1 , ... , xn].

Definition 2 Given polynomials fl,..., f, E k[xl,..., xn], the set V(f, ... , f,) such that

V(fl,...,fs) := {(al,..., an) kn fi(al,..., an) = 0 Vi},

is an affine variety defined by fi,..., fs.

The notion of ideals is closely connected to the notion of affine varieties.

Definition 3 A subset I of k[xl,. .. Xn], is an ideal if

(i) 0 E I;

(ii) if f, g E I, then f + g E I;

(iii) if f E I, andh E k[xz,...,xn], then hf E I.
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Remark:

Given polynomials fi,, . , we define < fi, ... , f > as the set that consists of all polyno-

mials that are obtained by i=l hifi, with hi E k[xl,... ., Xn]. It is not difficult to see that

< fi,..., fs > is an ideal. We call this "the ideal generated by fl,..., fs."

Definition 4 Given a term order (that is, a total order, such as lexicographic) on the

monomials in k[x, ... , xn], we define as the leading monomial of a given polynomial to

be the monomial with the highest term order.

We are now ready to introduce the notion of a Groebner basis.

Definition 5 A set of polynomials Q := ql, ... ,qt} is a Groebner basis generating an

ideal F :=< fi,..., fs >, if it has the property that all the leading monomials of F can be

generated by the leading monomials of the polynomials in Q.

One of the central results in the area of algebraic geometry due to Hilbert is the following.

The book by Cox, Little and O'Shea (1997) provides a proof and further details.

Theorem A (Hilbert Basis Theorem)

Every ideal has a Groebner basis which has a finite number of elements.

Given an ideal F generated by polynomials fi, ... , f and a term order, we can compute

the Groebner basis of F using Buchberger's algorithm (see Cox et. al. (1997) for further

details).

We use I(V) to denote the ideal that contains all polynomials that vanish on a given

variety V and V(I) to denote the variety V(rl,..., rs) where R := (rl,..., rs}, is a Groebner

basis of the ideal I.

Definition 6 Given I :=< fi,..., f >c k[xl,..., n], the lth elimination ideal II is

the ideal in k[xl+l,. ..,x,n] defined by I n k[xl+l,.. , n].

In the remainder of this paper we will use the following results from Cox, Little and

O'Shea (1997).
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Lemma A

If fl,.,fs E k[Xl,...,xn], then < fl,...,fs > C I(V(fl,...,fs)), although equality

need not occur.

Theorem B (The Elimination Theorem)

Let I C k[xi, . , xn] be an ideal and let G be a Groebner basis of I with respect to lex order

where xl > x2 > . .. > n. Then, for every O < I < n, the set

Gi = G n k[l+,.. Xn]

is a Groebner basis of the Ith elimination ideal II.

Theorem C (The Extension Theorem)

Let I =< fl,..., fs >C k[xl, ... , x,] and let I be the first elimination ideal of I. For each

1 < i < s, we can write fi in the form

fi = gi(2,... ,Xn)X i + terms in which xl has degree smaller than Ni,

where Ni > 0 and gi E k[x 2 ,...,xn] is nonzero. Suppose we have a partial solution

(a2,...,an) E V(I1). If (a 2,...,an) 1 V(gl,...,gs), then there exists al E C such that

(al, . .. , an) E V(I).

Corollary D

Let V(fl,..., f,) C Cn, and assume that for some i, fi is of the form

fi = cxlN + terms in which xl has degree smaller than Ni,

where c E C is nonzero and N > O. If I1 is the first elimination ideal, then in Cn - l

7ir(V) = V(I1),

where 7rl is the projection on the last n - 1 components.

Lemma E

Let V = V(fl,..., fs) and rl : Cn Cn - 1 be a projection map which sends (al, ... , an) to
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(al+, ... , a,). Let Ii =< fi,..., f > n k[xi+l..., n] be the th elimination ideal. Then,

in Cn - l, we have

i7r(V) C V(I).

3 An algorithm for the 0-1 feasibility IP

In the previous section we laid the foundation for presenting an algorithm for solving the

0-1 feasibility IP (1). We consider the following polynomials in k[x, .. ., n]

n

fi = Z aijxj-bi, i= 1,..., m
j= 1

gj = xj -xj, j =1,,2n.

We let V := V(fl,... fm,g,. . . ,gn) be the variety they define.

If we let k be the field of complex numbers, then 1V is the feasible set of the 0-1 IP with

matrix A and right hand side b. (The data is assumed to be in R.) This is based on the

simple observation that either V is empty, or if there is an element, it is actually in R7 (it

is in fact integral).

We consider the ideal I := I(V) and the ideal J :=< fi,.. . , . . >. The algo-

rithm we propose enumerates all feasible 0-1 solutions, or detects that no feasible solution

exists.

Algorithm A.

Input: Matrix A and vector b.

Output: All feasible solutions (al,..., an) to Problem (1).

1. Find a Groebner basis G of J using lex order x1 > x2 > ... > xn. If G = {1}, then

the 0-1 IP has no feasible solutions. Exit.

2. If G $: {1}: Consider for 1 < 1 < n - 1, the sets G = G n k[xl+l,..., xn]. Starting

from = n - 1, and working sequentially:
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* Find an in V(Gn_1).

* Extend an to (an-l, an) such that (an-l, an) E V(Gn_2).

* Find a2 such that (a 2, ... , an) E V(G1).

* Find al such that (al,..., an) E V(G).

We next show that the algorithm correctly solves 0-1 feasibility IPs (Problem (1)).

Theorem 1 Algorithm A either provides all feasible solutions for Problem (1), or provides

a certificate of infeasibility whenever the Groebner basis G = {1}.

Proof: Lemma A implies that

J C I = I(V).

Consequently, V C V(J).

Consider the elimination ideals J1,..., Jn-1, where Jk = J n k[xk+l,... xn]. If we find

the Groebner basis G of J using lex order (via Buchberger's algorithm), then Theorem

B implies that Gk := G n k[xk+l ... Xn] is a Groebner basis of Jk, further implying that

V(Gk) = V(Jk). Observe that one of the following two cases holds:

(a) The Groebner basis G = {1}. Then the ideal J coincides with k[xl,..., xn] indicating

that V(J) is empty, since we are working on an algebraic closed field. Therefore, V is an

empty set implying that we have an infeasible integer program.

(b) The Groebner basis G {1}. In this case, we notice that Gn-1 has elements Xn- 1 or

Xn or - Xn belonging to it. This follows from the observation that Jn- 1 is a polynomial

ideal in one variable, namely a subset in k[Xn] and therefore, needs only one generator. We

interpret this to mean that points 1 or 0 or both 0 and 1 are partial solutions respectively.

That is, we get a an in V(Jn-1). Subsequently we obtain an-1 by extending the partial

solution an to (an-l, an) E V(Jn- 2). That is, we take a partial solution in V(Jk) and extend

it to a partial solution in V(Jk-1) and so on. By Theorem C, this is always possible as
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the appropriate leading co-efficients (starting from fi and gj) in our setting are constants.

Continuing in this way and applying Theorem C, we can obtain a solution (a,..., an) in

V(J).

We are interested, however, in a point of V. It is easy to see that Lemma E implies that

the projection rk of V to the last n - k coordinates, satisfies 7rk(V) C V(Ik). We notice

that a repeated application of Corollary D indicates that

irk(V) = V(Ik),

and therefore, (a2,...,an) E V(J1 ) obtained by the Algorithm A is in ri(V). We can find

a point in V using any one of the fi. ·

Remark:

It is important to observe that using different a from V(Jn_1), we can find all solutions

to the given 0-1 integer program.

We next illustrate the use of Algorithm A. All computations in this paper have been

done using an implementation of Buchberger's algorithm in Mathematica on a personal

computer.

Example 1. Consider the IP

X + 2x2 + 33 + 44 + 5x 5 + 15x6 = 15, xj E {0, 1} Vj.

The ideal we consider is

J =< xl + 2x 2 + 3x 3 + 4x4 + 5x5 + 15x6 - 15, x - xl,x2- 2 ,..., - 6 >

A Groebner basis of J (with lex order) is

G = {X6 - X6, X5 + X6 - 1, x4 + X6 - 1, X3 + X6 - 1, 2 + X6 -1, X + X6 - 1}

Therefore, we have G5 = {x - x6 }, indicating that a6 = 1 and a 6 = 0 are both partial

solutions. Starting from a6 = 1, we get al = a 2 = ... = a 5 = O. Starting from a6 = 0,
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we get al = ... = a5 = 1. Therefore, we have two feasible solutions: (0,0,0,0,0,1) and

(1,1,1,1,1,0).

An interesting feature of the Groebner basis, for example, is the interpretation of the

term X5 + x6 - 1. This implies that in all solutions exactly one of X5 and X6 is equal to

1. This example illustrates the structural information that the Groebner basis contains

regarding a 0-1 IP.

The next example amplifies the observation that Algorithm A captures logical interac-

tions between variables.

Example 2. Consider the IP

x + 32 + 23 + 24 + 45 + 4X6 = 4, xj E {0, 1} Vj.

A Groebner basis is

G = {x- 6 ,x 5 x6 , - 5 , x4 x5 , 2 - 4 , 3 - X4 ,X 2 + x4 + X5 + X6 - , l1 + x 4 + 5 + x 6 - 1}.

The element x3 - X4 implies that both variables should always have the same value in any

feasible solution. Other elements are interpreted accordingly.

3.1 On the structure of the reduced Groebner basis obtained from Algo-

rithm A

We have illustrated that algorithm A finds a Groebner basis and therefore, all the feasible

solutions of Problem (1). Nevertheless, for a given ideal the Groebner basis is not typically

unique. However, we may use the notion of the reduced Groebner basis (see Cox et. al.

(1997)) which is unique for a given ideal. Some computer algebra packages find a reduced

Groebner basis, while others do not. The reduced Groebner basis has some advantages.

From a theoretical perspective, we can show the following properties.

Properties:

When Algorithm A uses the a reduced Groebner basis, then the following hold:

1. If the solution of Problem (1) is unique, then all the reduced Groebner basis elements
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are of the form xi - ai with ai E {0, 1}.

Although this is an intuitive property, we also provide a formal proof in Appendix A (The-

orem 3).

2. The reduced Groebner basis applied with the lexicographic term order to Problem (1),

has the following diagonalized structure:

(i) The first element is either xn, Xn - 1 or x - Xn.

(ii) There are several terms of up to second degree polynomials only involving

variables Xn, Xn-1

(iii) For i = 2,..., n-1, there are several terms involving variables n, , Xn_ ... , Xni.

These observations follow from the fact that we are dealing with elimination ideals as well

as the fact that we are restricted to 0-1 IPs.

The following example illustrates Property 1.

Example 3.

Consider the following 0-1 feasibility integer programming problem.

X1 + X2 + X3 = 2,

X1 + X2 = 2,

x2 + x3 = 1,

Xi E f0, 1, i = 1,...,3.

This problem has the unique feasible solution xl = x2 = 1, X3 = O. Furthermore, Algorithm

A yields this solution through the reduced Groebner basis G = {x 3, -1 + x2, -1 + xl}.

To illustrate property 2 as well as the importance of using the reduced Groebner basis we

provide the following example.

Example 4.

Consider the 0-1 feasibility IP

x1 + 22 + 3x3 + 44 + 6x 5 = 6, j C {0, 1) Vj.
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A Groebner basis of J (but not the reduced one) in this case is

G' = {X5 - X5, X4 X5 ,X4 - X4, X3 + X4 + X5 - 1, x2 - 144x3X4x5 + 24X3X4

-26X3 - 24X4X5 - 26X4 - 25X5 + 25, X1 + 22 + 33 + 4X4 + 6X5 - 6}.

We notice that triplets such as X3X4X5 can be part of a polynomial in a Groebner basis.

Moreover, we obtain polynomials with very large coefficients. However, we notice that the

reduced Groebner basis for lex order is

G = {X 2 - X5, X4X5, X2 - X4, X3 + X4 + X5 - 1, X2 + X5 - 1, xl + X4 + X5 - 1}.

Algorithm A enumerates all 0-1 solutions:

(0,0,0,0,1), (0,1,0,1,0), (1,1,1,0,0).

Although this example indicates that the degree of no term exceeds two, this is just a

coincidence. It is possible to construct examples where the reduced Groebner basis has

terms with degree larger than two. The following example illustrates this fact.

Example 5.

Consider the following 0-1 feasibility IP

X1 + x2 + x3 + X5 + 2x6 = 2

X2 + X4 + X7 = 1

X3 + X4 + x8 = 1

xiE {0,1}, i= 1,...,8.

The reduced Groebner basis G for the term order x8 > X7 > X6 > 5 > X1 > X2 > X3 > X4

is

G= {X2 - X 4, X - X3, X2X4, X2-2, XlX2X3, -Xl - X2 + 2x1X2 - X3 + 2X1X3 + 2X2X3 + X5,

X2 - X1, -1 + X1 + X2 - X1X2 + X3 - X1X3 - X2X3 + X6, -1 + X2+

X4 + 7, -- 1 + X3 + X4 + X8}.

Notice that there is a third degree polynomial in the reduced Groebner basis of this example,

that is, XlX2X3.
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3.2 On the relation of Gaussian elimination and Algorithm A

Gaussian elimination for the n x n linear system Ax = b provides a diagonalized system of

equations in which variable xn appears only in one equation, variables xn and xn1 appear

in another, and so on. In this sense, the properties we described in Section 3.1 are the

generalization of Gaussian elimination for 0-1 IPs.

Example 6. Consider the IP

2X1 + 2x2 + 3X3 + 2X4 = 5

Xl + X2 + 2X 3 + X4 = 3

xj2=xj, j=1,,4

The reduced Groebner basis is

xG = { X4 X3 - 1, X2X4, X2 - X2, X1 + 2 + 4 - 1}.

The diagonalized structure of the properties in Section 3.1 is (x4 - X4), ( 3 - 1), (X2X4,2 -

x2), and (X1 + X2 + X4 - 1).

3.3 An interpretation of Algorithm A as Farkas lemma for 0-1 IPs

Farkas lemma, which is the central idea of duality in linear programming, provides a certifi-

cate of infeasibility for a linear programming problem. What is a certificate of infeasibility of

a 0-1 IP ? An obvious (and very inefficient) certificate is the enumeration of all possible 2n

vectors. Nevertheless, Algorithm A provides a potentially certificate in a more efficient way.

If the 0-1 IP is infeasible, then G = {1}. In other words, the certificate is the computation

of the Groebner basis.

Example 7. Consider the following example:

2x1 + 2x2 + 4x3 + 6x 4 = 11, xj E {O, 1}.

Clearly, this is an infeasible IP, as the lhs is an even integer, while the rhs is an odd one.

In this case G = {1}.
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3.4 Constructing an IP from a given set of points in {O, })n

To this point, this paper has addressed the problem of finding the feasible points of a 0-1

feasibility integer programming problem (Problem (1)). In this subsection, we will address

the reverse problem. That is, we will establish how to construct a 0-1 feasibility integer

programming problem for a given set of integer points in {0, 1}n .

Theorem 2 Suppose we are given a set of points S in {0, l}n representing the feasible

space of some 0-1 IP. We can provide an underlying IP and construct a Groebner basis of

an ideal I such that V(I) = S.

Proof:

Given a subset S of points in 0, 1}n we can enumerate the points Pi = (1, ... Pn) in

{0, 1)n , for i = 1,... m, that do not lie in the set S. The following inequality describes a

set of points in Rn that excludes only point Pi,
n
Z(xj -pj) 2 >1.
j=l

Therefore, we can describe the set S through the following set of quadratic inequalities,
n

-(xj _ p)2 > 1, i =,...,m,
j=1

2xj-xj = O, j=l,...,n.

Nevertheless, the observation that the variables xj are 0 or 1, allows us to rewrite this as a

set of linear inequalities combined with separable, quadratic equalities for each variable as

follows
n

-[xj(1-2p) +pj] > 1, i=l, . , m,
j=l

xj-=O, j=1,...,n.

Introducing a binary expression for the excess variables corresponding to each inequality

yields the following set of linear equalities with integer variables,

n Flog n- 

[xj( - 2pi) +pi] - E 2kxn+l+(i_l)Flognl+k = 1, i = 1,...m,
j=1 k=O
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j - Xj =0, Vj.

The previous representation formulates the set of points S in the form of Problem (1). For

this new representation we can apply Buchberger's algorithm to find a Groebner basis. N

Theorem 3 in Appendix A also provides an alternative construction.

4 Optimization of IPs

In this section, we will generalize our results of Section 3 for solving general integer pro-

gramming problems. In the next subsection, we will illustrate how to solve 0-1 IPs.

4.1 Optimization of 0-1 IPs

We consider the optimization problem

minimize c'x

subject to Ax = b

Xj2 = Xj, Vj.

The largest objective function value is Z = Ej:c,0oCj. Let ZLP be the value of the

LP relaxation. Clearly, ZLp1 Zip < Z. This observation allows us to apply binary

search on ZIp and solve the optimization problem as follows. We add the polynomial

h : jn= 1 cjxj - C to the generators of J, for specific values of C in the range [ZL1, Z].

We thus need to apply Algorithm A at most log(Z - ZLp1) times.

A more direct method is as follows. We work in k[xl,..., X , y]. Let

n

h :=y - cjxj
j=1

and we look at V := V(fi,..., f, g,... ,gn, h). Following the same approach as the one

for feasibility, with lex order x1 > x 2 > ... xn > y, we notice that the Groebner basis C

of J :=< fi, ... , fm, 91, g , gn, h > is either {1} (indicating infeasibility) or we will have C

intersected with k[y] which leads to a polynomial in y. We interpret this polynomial in y
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as follows: Every root of the polynomial is a feasible cost of the IP. Therefore, we can find

the minimum root, and work upwards to get the associated xj values.

Example 8.

Consider the IP:

minimize x1 + 2x2 + 3x 3

subject to x1 + 2x2 + 2x3 = 3

x2 = xj j = 1, ,3.

The reduced Groebner basis of

J =< y - -xl - 3X3 ,2x 2 -+ 4x 3 - 6, x- 2 l, x2 - x2, x - x3 >

is

G = {12 - 7y + y 2 ,3 + 3 - y,-4 + x2 + y, 1 -x1).

The two roots of the polynomial 12 - 7y + y2 are y = 3 and y = 4. Thus the minimum

value is y = 3, and the corresponding solution is (1, 1, 0).

We next illustrate that we can simplify the calculation of Algorithm A if we have partial

information on the optimal cost.

Example 9.

Consider the IP:

minimize x1 + 2x2 + 3x3 + 3x4

subject to 1 + +X 223 + 4 = 3

2
x = xj, j=1,...,3.

A Groebner basis of J =< xl + 2X2 + 3x 3 + 3x 4 - y, 2xl + 2X2 + 4x3 + 2x4 - 6, x2 - X, x2 -

X2,3 - X3,4 - X4 > is

G= {120 - 74y + 15y 2 - y3, -20 + 2x4 + 9y -y 2, -6 + 6x 3 + y - x 3y,

X3 - x3, -23 - x 2 - 3 - 3 +0y-y 2, 32 - 2x1 - 23 - ly + 2 },
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which suggests that all feasible y's are y = 4, 5, 6, i.e., the roots of the first equation of the

Groebner basis. If however, we have additional information that 4 < y < 5, we can add the

polynomial (y - 4) (y - 5) and rerun algorithm A, to obtain the solution:

G= {20-9y+y 2, -1+x3, -4-x 2 +y, 5-xi-y).

A natural question is to compare the performance of Algorithm A to branch and bound.

Our next example addresses this issue.

Example 10.

We consider the class of integer programming problem

minimize xn+l

subject to 2xl + 2X2 + - + 2Xn + Xn+l = n

Xi E {, 1}.

It is easy to show that any branch and bound algorithm that uses linear programming

relaxations to compute lower bounds, and branches by setting a fractional variable to either

zero or one, will require the enumeration of an exponential number of subproblems when n is

odd (see Bertsimas and Tsitsiklis (1997)). It is thus interesting to observe the performance

of Algorithm A. Applying Algorithm A to this problem we obtain the reduced Groebner

basis very quickly:

G = Xn+-1, xj - xj,j = 1,...,n, Exj 2
j=1

In this particular class of examples, Algorithm A is stronger than branch and bound.

4.2 Optimization of general IPs

An arbitrary IP, in which the variables are only restricted to be nonnegative integers, can be

reduced in a standard way to the 0-1 case as follows: If xj C {0, 1, . . ., Uj} with Uj known,

then for each j, we write xj = log Uj- 1 2Px, with the auxiliary variables xj taking values
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either 0 or 1. We then substitute the above expression for xj in the objective function and

the constraints. Alternatively, we can include the polynomial

h = xj(xj - 1)... (xj - Uj)

to the ideal J and apply Algorithm A. The next example illustrates an application of this

idea. Instead of considering Xj E {0, 1, 2}, we consider without loss of generality the case

xj E {-1, 0, 1}, i.e., x = xj.

Example 11. We consider the IP

2x1 - 2x2 + X3 = 1

3x1 + X2 + 2X3 = 1

xj E {-1,0, 1}.

Then, we apply algorithm A on the ideal J =< 2xl - 2x2 + X3 -1, 3x 1 + X2 + 2 3 - 1, X -

xl, x23 - x2, 33 - X3 > . The reduced Groebner basis is

G = {1 - X3, -1 - X2,-1 - X1}.

The general case of xj nonnegative integer can be reduced to the bounded case as follows.

Papadimitriou and Steiglitz (1982), prove that if the IP Ax = b, xj E Z + has a solution,

then it has a solution with x E {0, 1,..., M) n, where M = n(mama,,) 2m+3 (1 + bmax), with

amax = max laij , and bmax = max Ibi .

4.3 IPs with inequality constraints

In this subsection, we will illustrate how to solve IPs with inequality constraints. The key

idea in showing this, is to convert the given IP into an IP with linear equality constraints

and integer variables.

Consider the general IP problem
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minimize c'x

subject to aix < bi, i = 1,..., m

xj integer, j =1,...,n.

For each inequality i = 1, m, we will introduce a nonnegative integer slack variable

si, which is less than bi. Nevertheless, we can rewrite a binary expression of these variables

as before. This observation allows us to convert our problem into an IP with linear equalities

and integer variables.

The following example illustrates this.

Example 12. We consider the IP

X1 + X2 + X3 < 2,

X2 + X3 + X4 < 4,

i E {0, 1}, i = 1,...,4.

We introduce slack variables sl and s2 for the first and second constraint respectively.

Furthermore, we rewrite these variables as sl = x5 + 2x6 and s2 = X7 + 2X8 + 4x9, with

X5,... ,x 9 E {0, 1}).

Therefore, we rewrite the IP as

X1 + x 2 + X3 + x5 + 2x 6 = 2,

X2 + X3 + X4 + X7 + 2X8 + 4 xg = 4,

Xi2-X i = O, i = 1,...,9.

We are now able to solve this problem using Algorithm A, as we have shown in the previous

subsections.
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5 Sensitivity analysis of IPs

Our results in this paper also allow us to perform sensitivity analysis for integer program-

ming problems. That is, they allow us to address the problem of finding the optimal objec-

tive function value as a function of one of the right hand side coefficients bi. To achieve this

we work in k[xl,..., xn, y, bi] with lex order xl > ... > xr > y > bi, and find the Groebner

basis G. We find that either (i) G = {1} indicating that there is no value of bi for which

the problem is feasible, or (ii) G n k[bi] is a polynomial in bi, and each of the roots of this

polynomial represents a value for which the problem has a feasible solution. In this case,

G n k[y, bi] are polynomials in y and bi, and so we have an explicit representation of the

value function.

Example 13.

Consider the IP

minimize xl + 2x2 + 3x3

subject to 2x1 + 2x2 + 4x3 = b

xj2=j, j=1,...,3.

Suppose we are interested to find the optimal solution value as a function of b, when

4 < b < 6.

A Groebner basis of

J =< x + 2x2 + 3x3 - y, 2x + 22 + 4x 3 - b, (b- 4)(b- 5)(b- 6), X2 - X, X2-x 2 ,x 2 _ x3 >

is

G = {24 - 10b + b2 , 18-3b-6y+by, -14-b+9y- y 2, -4 + b + 4x 3 - bx 3,

3-3x3 -y+X 3Y, - 3 +X, -b-2x 2 -2x 3 +2y,b-x - 3 - y},

which implies that for b = 4, y = 3, and the two solutions are: (0,0,1) and (1,1,0).

For b = 5, there is no solution, and for b = 6, the feasible y are roots of the equation

-20 + 9y - y2 = 0, i.e., y = 4 and y = 5.
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6 Conclusions

In this paper we used ideas of algebraic geometry to present a method for solving integer

programming problems. We started by presenting a method for solving the 0-1 feasibility

integer programming problem, which we subsequently extended to solving general integer

optimization problems. For the feasibility problem, our method provides a systematic enu-

meration of all feasible solution. Our results may be viewed as a natural generalization of

Farkas Lemma to integer programming and allow us to check easily whether a given problem

is infeasible. Our results also lead to a way of performing sensitivity analysis. Finally, we

also addressed the reverse problem, that is, how to provide an IP formulation for a given

set of integer points in {0, 1}n .

We have experimented with several integer programming problems of up to 25 variables.

We have used a general purpose implementation of Buchberger's algorithm in Mathematica

that does not exploit the particular structure of the IP. We are currently developing an

implementation of Buchberger's algorithm that is tailored for Algorithm A. We used a

personal computer with limited memory to perform the computation.

In preliminary computational work, we have observed that Algorithm A is computa-

tionally faster, when the problem is either infeasible or it has very few solutions. In such

situations, we have been able to solve problems with 25 variables using Mathematica on a

personal computer. The following is such an example.

Example 14. Consider the following 0-1 feasibility IP.

xi + xi+l = 1, i=1,...,24

xj=xj, j=1,...,25.

Algorithm A, gives the Groebner basis

G = {X1, X2- 1, X3,...,24- 1, X25),

which indicates that the unique solution is X2r-1 = 0, r = 1,... ,13, and x2k = 1, k =

1,...,12.
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Our goal in our future research is to explore the computational performance of Algorithm

A.
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APPENDIX A

We need the following additional definitions and results from Cox, Little, O'Shea (1997).

Definition 7 An ideal I is radical if f m E I for any integer m > 1 implies that f E I.

Definition 8 An ideal I C k[zl,..., n] is prime if whenever f,g E k[xl,..., n] and

fg E I, then either f E I or g E I.

Definition 9 An ideal I C k[xl,...,x n] is maximal if I Z k[xl,..., ,Xn] and any ideal J

containing I is such that either J = I or J = k[xl , Xn]. -

The following results are well known (see Cox et. al. (1997)).

If k is an algebraically closed field, then every maximal ideal of k[x,..., xn] is of the

form < x - al, ... , Xn - an > for some al,..., an E k.

Let I =< f, ... , fr > and J =< gl, . . ., gs >. Then the product I. J, also an ideal, is

generated by the set of generators of I and J:

I. J =< figj :1 < i < r, 1 j < s >.

Furthermore, V(I. J) = V(I) U V(J).

Definition 10 The Zariski closure of a subset of affine space is the smallest afine al-

gebraic variety containing the set. If S C k n, the Zariski closure of S is equal to V(I(S)).

Definition 11 An affine variety V C kn is irreducible if whenever V is written in the

form V = V1 U V2, where V1 and V2 are affine varieties, then either V1 = V or V2 = V. It

is easy to show that V is irreducible if and only if I(V) is a prime ideal.

The Ideal-Variety correspondence states that, for an arbitrary field k and variety S,

we have

V(I(S)) = S.
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We are now ready to state and prove Theorem 3 that is used to establish Property 1 in

Section 3.1. The proof of Theorem 3 is an alternative construction to the reverse problem

addressed in Section 3.4.

Theorem 2

Let S E kn denote the set of feasible solutions to some 0-1 IP. (Recall that S is a variety

and that we are working over a algebraically closed field k.) Then, we obtain

(a) The set I(S) := {f: f(a) = 0 Va E S} C k[xl, .. .,n] is a radical ideal.

(b) The Zariski closure satisfies V(I(S)) = S.

(c) Let S = UiP Si be a decomposition of S into irreducible varieties. Then

P

I(S) = I(UPLSi) = I I(Si)
i=l

where I(Si) =< xi - a -ali,..., ni-ani > for i = 1,.. ., P and

Si = {(ali,..., ani)} = V(xi-ali, ... , Xni-ani)

In fact, this decomposition is unique upto the order of the Si.

(d) There is finite basis of I(S) where the co-eJficients of the polynomials are in

{0, -1, 1}. In fact, this can be constructed sequentially if the elements of S are known.

Proof: (a) We can easily verify that indeed I(S) is an ideal. To prove that I(S) is also

radical, that is I = V, pick an f E v. (Note that I C V/ always.) Then, by definition,

fm = 0 for some m, for all a E S. Nevertheless, this implies that f(a) = 0, for all a E S,

indicating that f E I.

(b) It follows from the Ideal-Variety correspondence since S is a variety.

(c) Si is irreducible and Si = V(xli - ali,... xni- ani). This implies that I(S) is prime.

In fact, it is maximal, and therefore,

I(S) =< xli - ali,. . ,Xni - ani > ·

23



Observe that

S U S2 = V(flgj : 1 < I n;1 < j < n)

where fi := Xll - all and gj := j2 - aj2. Therefore,

I(S1) I(S 2) =< figj : <1 < I n; 1 < j < n >.

V(I(Si) I(S2 )) = V(I(S)) U V(I(S2)),

and part (b) above implies that

V(I(Si)) U V(I(S2 )) = Sl U S2.

Applying the above logic sequentially to S3,...,Sp implies the result. The uniqueness

follows from the fact that a minimal decomposition of a variety S into irreducibles S1, . . , Sp

is unique up to the order of the Si.

(d) It follows from part (c) and the fact that xi = xi and (1 - xi) 2 = (1-xi). ·

We illustrate the construction with the following example.

Example 15. Consider the set of integer points in {0, 1}3 ,

S= {(O, O, 1), (1, 0, 0)).

Let S1 = {(0,0,1)}, and S2 = {(1,0,0)). Observe that I(S1) =< X1,X2,3 -1 > and

I(S2) =< xl - 1, 2, 3 >. Therefore, I(S) is

< x- XllX2, XlX3,XX2- , ,2 , 22x3, -X3 - + 1, X2X,3 - , X3 >

which yields the following Groebner basis

I(S) =< xl + x 3 - 1, X3 - X3, X2, X21 - > .

Although this is a Groebner basis, it, however, is not the reduced Groebner basis. Never-

theless, if we assume that X3 > in term order, then we may remove - X3 to obtain

I(S) =< x3 + x - 1, 2, X2 - X > 

This is in fact the unique (for this term order) reduced Groebner basis.
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