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ABSTRACT

A basic result in ordinary (Lagrange) convex programming is the

saddlepoint duality theorem concerning optimization problems with

convex inequalities and linear-affine equalities satisfying a

Slater condition. This note shows that this result is equivalent

to the duality theorem of Fenchel.



Among the most powerful tools in mathematical programming are the
saddlepoint duality theories for both Fenchel and ordimary (Langrange)
convex programs. The purpose of this note is to exhibit the equivalence
of these two theories by showing that each can be used to develop the other.

The connection between Fenchel and Lagrange duality is certainly not
surprising since each is based upon separating hyperplane arguments.
Previously, Whinston [7] has shown how the Lagrangian theory can be derived
from Frenchel's results when optimizing over R™ in the absense of equality

constraints. Both theories also can be obtained from Rockafellar's. general
perturbation theory. The full equivalence between these theories, though,
has not been stated in the open literature and seems to be unknown to

most of the mathematical programming community. In fact, a number of recent
comprehensive books in convex optimization including Luenberger [3] ,
Rockafellar [5] and Stoer and Witzgall [6] do not explicitly mention or

exploit this equivalence, but rather develop the two theories separately.

The Fenchel and Lagrange convex programs can be stated as

Fenchel Lagrange
v=inf {f;(x)-fy(x)} v=inf {f,(x):g(x) go,h(x)=o}
xeClnCZ xeCq

Each Cj is a convex subset of Rp; fy(x) and f (x) are convex functions
defined respectively on C, and C; 3fo(x) is a concave function defined on
Cys gmo — R® is convex and h:R®— RY is linear-affine.

The saddlepoint dual problems are:

Fenchel Dual Lagrange Dual
d=max {fg(ﬂ) - fi(ﬂ)} d=max inf {L(x;T,a)}
'rreRn T20 Xe Co
acRY

TeRD



where

£1(m)= - inf {f;()-1x} , £5(n) = inflnx-£,(x))
xeC1 xeC2

are respectively conjugate convex and conjugate functions and
L(x;m,a) = f(x)+ng(x)+ah(x)

is the Lagrangian function. Note that the dual problems are formulated as
maximizations. We shall consider conditions to insure that these maxima are

attained.

* *
Recall that fl(n) = 4 and/or fz(n) = -» are possibilities. Such values
for w will be inoperative for the maximization in the Fenchel dual and thus

that problem is frequently written with wsCIﬂC; instead of meR® where

*.-.: n.g* *= 1. * -
C1 {meR .fl(n)<+w} and 62 {meR .fz(w)> o},

Two of the most useful and delicate theorems connecting these primal~dual

pairs are (for any convex C, ri(C) denotes its relative interior):
Theorem 1: If wv>-» and ri(Cl)r|ri(C2)# 4 , then v=d.

Theorem 2: Assume ¥>-= and the Slater condition that there exists an

xoeri(Co) such that g(x°)<o and h(x°)= o. Then v=d

The first theorem is Fenchel's original duality theorem [2] and the second is
a consequence of a result due to Fan, Glicksberg and Hoffman [1] (see Chapter
28 of [5] or Chapter 6 of [6]). When there are no inequality comstraints,
theorem 2 remains valid by omitting the reference to g(x) in the Slater
condition. v=d is equivalent to saying that the Kuhn-Tucker condition is

satisfied: there exists m™0 and & such that ;EL(X,%,&) for all xeCy

Below we show that either theorem 1 or 2 can be used to derive the other.

The following elementary result concerning relative interiors will be useful.
Lemma 1: Let C= {y°,yl,y2)eR1+m+r : y?afo(x),ylzg(x) and y2=h(x) for some xeC,}.
If x°eri(Co), y°>fo(x°), yl>g(x°) and y2=h(x°), then y=(y°,y1,y2)eri(c).

Proof: The following condition ([5] theorem 6.4) characterizes the

relative interior of any convex set S:




zeri(S) 41if and only if for each z €S there is a

p>1 such that ﬁz+(1—u)§ €S,

From our hypothesis C 1s a convex set; given any sto and
§=(§°,§1,?2) with §9if°(x), ?%zg(x) and §2=h(x), we must find a
u>l such that wy+(1-u)yeCy. ’

By convexity and x%eri(C,) there is a A>1 such that
ux®+(1-u)xeC  for all 1<u<i. Since h(+) is linear-affine

uy2+ (- )7? = uh () (-1 (x)=h (ux®+ (1-1)x) @

and since both g(*) and f,(*) are continuous on ri(C,)
the definition of y° and yl! shows that

ny©+(1-u)y°>£, (ux O (1-u)x) | | N ¢)
and  wyl+(Q-0)Flsg (ux®H(1-p)x) (3

for some 1< y <A (1)-(3) dimply that uy+(1-u)yeC so that yeri(C)..

Theorem 3: Theorem 1 and Theorem 2 are equivalent.
Proof; (Theorem 2% Theorem 1) Letting C°=CGC2xR and x=(x1,x2,x3)

the Fenchel problem is restated as

v= inf'{fl(xl)-fz(xz):x1= x3,%2 = x3}
xeCo ,

This is an ordinary convex problem with the associations fo(x)=fl(xl)—

x1-x3 .
fz(xz) and h(x) = §2_:3 . Its Lagrangian dual problem is

E-? max inf {f

l(xl)-f2 (x2)+a1xl+azx2-(al+a2)x3} . )
aJeR® xeC, _ :

The hypothesis ri(Cl)nri(Cz)#ﬁ implies the Slater condition

- for this problem and consequently that v=d by Theorem 2. Since
x3eR’§ the infimum in the dual problem is -« whenever al#-az-
Therefore the dual maximization occurs for some w= -al=a2 and
the Lagrangian dual (4) can be written as the Fenchel dual,

. giving d=d=v to prove Theorem 1.




(Theorem 1 = Theorem 2). Letting C; be the set C of

Lemma 1 and letting

1
Cy = {(yo,yl,yz)sR by : yljp and y2=o} the Lagrange problem

is written as
v=inf {y%: y=(y°,yl,y%)ecfic,}

If x° is the Slater point of Theorem 1 and y°%>f,(x°), o>yl>g(x°),

y2=h(x°), Lemma 1 implies that
(y0,yl,y2)eri(cMNri(C,) .

Identifying fl(y)=y° and fy(y)=o, the Fenchel dual to this formula-

tion is

d=max {§réfc(y°-ﬂ°y°—ﬂ1yl—v2y2)+ inf (Pyotrlyliny2)}
1
70,7l n2 yeCy

and by Theorem 2, v = E. .

Since the second infimum is - if 7%o0 or ﬁ;>0

for some j=1,...,m and is o otherwise, this dual problem reduces to

d=Tax inf {y%-rlyl-n2y2} = max inf {£4(x)+rg(x)+oh (x) }=d
m<o  yeCq m>0 xeCq

m2 o

so that v = d to prove Theorem 2.



Observe that the sets Cl and C, wused above are those typically
constructed in a separating hyperplane approach to Lagrange duality. Also,
the approach utilized here can be applied to relate other versions of the
saddlepoint theories, for example when the dual problems do not have
optimizing solutions. Other extenéions can be obtained. For instance,

the problem

k
ve=min { I f; (AJx) : Adx e C; }
J ]
=1
where Cj are convex seta,'AJ are real matrices with n columms, and
fj is convex on Cj can be expressed in Lagrange form as

k .
min { I fj(ijj): Adid= Az}
XeC° j=1

where Cg= Clxczx...xckan and x=(x1,...,xk,§). Writing the Lagrange

dual and simplifying provides the dual problem

K k
d= nax { £ inf (f.(x) + mx) : z Al =0 }
T i=1 xeCj j=1

and v=d if there is an x°eR? with AJx© ¢ ri(Cj). When r=2 and Al
is the identity matrix this is the dual problem of Rockafellar [5]. These
duality correspondences can be carried even further by appending inequality

and equality constraints to the above formulation.
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