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ABSTRACT

The warehouse location problem has assumed numerous formulations, and solu-

tions have been devised using a variety of mathematical techniques. The develop-

ment of this effort is examined and relevant models presented for evaluation.



I. Introduction

The warehouse location problem has many variations, so we state at the outset

those characteristics we would ideally like a location model to possess. We then

proceed to examine presently proposed models in relation to our ideal.

A good description of the problem is given by Feldman [7]. He states:

The warehouse location problem involves the determination of
the number and sizes of service centers (warehouses) to supply
a set of demand centers. The objective is to locate and size
the warehouses and determine which demand centers are supplied
from which warehouses so as to minimize total distribution
costs. This distribution cost is the total transportation
cost, which is assumed linear, plus the cost of building and
operating the warehouse.

Atkins and Shriver [1] propose several "ideal analysis requirements desired

by management." Using their list as a basis, we will consider as requisite for

a location model the following characteristics.

1. No restrictions on te number of possible locations to be considered.

2. Explicit consideration of production and/or storage capacity limitations.

3. Explicit consideration of locational impact on inventory requirements,
customer service, and demand patterns.

4. Explicit accounting for possible economies of scale involved in ware-
house costs.

5. Finally the model must achieve an optimal location pattern based on the
above considerations in the shortest possible time and at minimum cost.

There are clearly wide disparities between our "ideal" model and what treat-

ment methodologies are realistically capable of handling. We will explore these

differences to ascertain how good various models are in spite of such differences.

Most location models are of the uncapacitated type, thus violating (2) above.

This is a serious assumption to make, but the computation problems involved have

often required it. Except where we specifically discuss capacitated models, it

is assumed that all models are of the uncapacitated type , unconstrained in pro-

duction or storage capacity.



The third characteristic mentioned brings to light the crucial interactions

involved in a logistics distribution system. The total system nature of the prob-

lem needs considerations, for decisions in one part of the distribution system

invariably have effects elsewhere. Matthews, et al. [16] describe a firms logis-

tic system, the management of its physical distribution activities, as composed

of the following major activities.

1. Warehousing: The managerial problems associated with the storage
of goods. The major problem involved in warehousing for the in-
dividual firm is determining the number and locations of distribu-
tion points.

2. Inventory Control: The determining of the optimal trade-off between
inventory levels and customer service.

3. Transportation: Selecting the means of transportation, routing ship-
ments, scheduling and consolidation of shipments, and providng for an
information system.

Interactions in such a system essentially imply tradeoffs between the various

elements in the system. For example, transportation costs may be cut through use

of a less expensive transportation mode, but at the expense of system flexibility

and responsiveness to customer requirements, greater inventories, and larger in-

vestment requirements. How to weigh these tradeoffs is a crucial question.

In a competitive economy, producers must make their products conveniently

available to their customers. This requires inventories at a sufficient number of

locations to provide for prompt service. But the ecisions regarding inventories

and inventory locations simply cannot be made separate from the decisions concern-

ing transportation modes to effect these deliveries. These decisions interact to

determine the characteristics the system will ultimately have and are therefore

mutually dependent.

Incorporating system interactions into a location model in an explicit form

is difficult. One of the criticisms of early models, and of some recent ones as

well, is the failure to include any of these interactions.
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Finally we would hope that a means to deal with economies of scale in ware-

housing costs is included. Frequently the assumption is made that there is only

a fixed charge associated with opening a warehouse. This is clearly not enough

for our needs, for distinct differences are frequently involved in warehousing

costs, depending on location.

II. Models and Techniques

We examine models based on the following classifications: (1) heuristic;

(2) simulation; and (3) algorithmic (branch and bound, mixed integer programs).

First, however, let us define a mathematical model of the problem from which to

proceed. It is a general model that will be modified to describe other formulat-

tions. We let

Dk = demand requirements at demand concentration center k

dij = distance from factory i to warehouse j

djk = distance from warehouse j to demand point k

sj = unit shipping costs from factory i to warehouse j

Sjk = unit shipping costs from warehouse j to demand point k

F. = fixed cost associated with opening a warehouse

Tj = throughput of warehouse j

Then for every possible (i,j,k) combination let

Cijk = dijsij + djksjk

Due to the uncapacitated assumption descri bed earlier we can let

Cjk = mn (dijsij) + djkjk

since flow of goods will always be along the least cost route.
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If we describe warehousing costs as composed of both a fixed and variable

component as in Figure 1, then we can set cjk = ck +j.

fj(Tj)

Fj

X;k.--

Ti
Figure 1

Now the total cost of supplying the demand points becomes

z = c.kDk + Y.F
j k j J J

where Y. 0 if warehouse j is closed ), and we wish to minimize z.
1 if warehouse j is open

If we further let Xjk = the fraction of Dk supplied from warehouse j, then

our objective function becomes

(I) min z = ckXjk + z F.Y.
jk kjk j J

s.t. z Xk = 1

0 Xjk Yj 1

Yj =0 if warehouse j is closed
I if warehouse j is open

While only of historical interest, one of the earliest models was that pro-

posed by Balinski and Mills in the form of an integer program (see [2]). They

proposed an approximating technique for solving problem (I) above. Instead of

addressing explicitly the fixed cost and throughput costs of operating a warehouse,

they approximated the warehousing cost function by the average unit cost of opera-

ting at some high level of throughput. They set A = D and then let
A^~~~~~~~~ k

Cjk Cjk + A+ Fj
A

jk +F. /A
so Cjk = Cjk 3 Fj/A

Then the formulation becomes a simple transportaton problem.
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(II) min z j CjkXjk

jk

jk

Since this will not satisfy the integer requirements of (I), it will obviously

provide a lower bound on the objective function of that problem. They then evalu-

ate the objective function of the original problem with the Xjk's determined from

(II) and show the optimal solution to (I) is somewhere between these two values.

Kuehn and Hamburger in a critique of the Balinski-Mills formulation question

the closeness to optimality of their solution. Kuehn-Hamburger conclude that

(1) the Balinski-Mills model is not well designed to handle decreasing marginal

cost functions generally assumed for warehouse locations problems, and (2) the ex-

istence of fixed costs tend to increase deviation from optimality by locating more

warehouses than necessary.

Prior to the Balinski-Mills model another approximation technique appeared.

This was due to Baumol and Wolfe [3]. Their model was the first attempt to treat

the non-linearities of the warehousing cost function, while applying linear pro-

gramming to allocate warehouse territories. They assumed a strictly concave cost

function which does not allow a fixed component, as in Figure 2. They approxi-

mated this function by piecewise linear approximations to the degree of accuracy

desired.
tIT )

Figure 2 J
T _
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Their algorithm involved an iterative procedure including solution of an

ordinary transportation problem at each stage. Again it was shown that their

model tended to locate more than the optimal number of warehouses. In spite of

this the Baumol-Wolfe model is noteworthy in that it introduced non-linearities

into the cost function, recognized the need to supply the model with a list of

potential sites, and noted the fallacy of constant demand unaffected by warehouse

(i.e., the iteractions described earlier).

Heuristic Techniques

Kuehn and Hamburger [11] prefer to describe heuristic programming an an

approach to problem solving where the emphasis is on working towards optimum solu-

tion procedures rather than optimum solutions. Heuristic techniques are most

often used when the goal is to solve a problem whose solution can be described

in terms of acceptability characteristics rather than by optimizing rules. In

general,heuristics may be thought of as rules of thumb selected on the basis that

they will aid in problem solving.

Heuristics were a logical development to follow the earlier formulations of

the warehouse problem. The main problem faced is combinatorial in nature. Exces-

sively long searches and infeasible storage requirements were characteristic of

the problems facing model builders. Heuristics were designed to provide a re-

duction in search requirements. Furthermore, in combinatorial problems of this

sort, there is frequently not a sharp global maximum or minimum, so that a "good"

solution found by using heuristics is often very close to optimum.

Kuehn and Hamburger were among the first to apply heurstic programming tech-

niques to the warehouse problem. They describe its advantages in the solution of

this class of problems as (1) providing considerable flexibility in the specifica-

tion (modeling) of the problem to be solved, (2) useful to study large scale prob-

lems, that is, complexes with several hundred potential warehouse sites and several
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thousand shipment destinations and (3) economical in use of computer time.

Their heuristic program is discussed in detail in their paper [ll], and else -

where. We present their description of the major features in the technique.

The program consists of two parts: (1) the main program, which
locates warehouses one at a time until no additional warehouses
can be added to the distribution network without increasing total
costs, and (2) the bump and shift routine, entered after pro-
cessing in the main program is complete, which attempts to modify
solutions arrived at in the main program by evaluating the profit
implications of dropping individual warehouses or of shifting them
from one location to another. The three principal heuristics
used in the main program are:
1. Most geographical locations are not promising sites for a

regional warehouse; locations with promise will be at or
near concentrations of demand.

2. Near optimum warehousing systems can be developed by locating
warehouses one at a time, adding at each stage of the analy-
sis that warehouse which produces the greatest cost savings
for the entire system. (The use of this heuristic reduced
the time and effort expended in evaluating pattersn of ware-
house sites.)

3. Only a small subset of all possible warehouse locations need
to be evaluated in detail at each stage of the analysis to
determine the next warehouse site to be added.

A detailed flow diagram of their program is included in Figure 3.

Taken together the three heuristics provide substantial savings in computa-

tion time. Kuehn and Hamburger assert that use of these heuristics make the use of

actual cost data computationally efficient, thereby avoiding errors associated with

using, for example, air miles as a basis for shipping costs. Solution of large

scale problems involving several factories, multiple products, and more than a

thousand concentrations of demand now becomes feasible.

Kuehn and Hamburger's formulation has been demonstrated to give solutions

close to optimum in most instances. It is both fast and efficient. Kuehn and

Hamburger assert it is capable of handling realistic complexities of the type de-

scribed earlier (capacity restrictions, interactions, economies of scale). Un-

fortunately they do not show how their program might be adjusted to handle these

problems. It is notwithstanding an important contribution on which much additional

work is based.
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FLOC DIAGRAM

R. Read in:
a) The factory locations.
b) The I potential warehouse sites.
c) The number of warehouse sites (N) evaluated in detail

on each cycle, i.e.. the size of the buffer.
d) Shipping-costs between factories, potential warehouses

and customers.
e) Expected sales volze for each customer.
f) Cost functions associated with the operation of each

warehouse.
g) Opportunity costs associated with shipping delays, or

alternatively, the effect of such delays on dmand.

2. Determine and place in the buffer the D1 potential ware-
house sites which, considering only their local demand,
would produce the greatest cost savings if supplied by
local warehouses rather than by the Warehouses currently
servicing then.

3. Evaluate the cost savings that would result for the total
system for each of the distribution patterns resulting
from the addition of the next warehouse at each of the N
locations in the buffer.

4. Eliminate from further consideration any of the N sites
which do not offer cost savings in excess of fixed costc.

5. Do any of the N sites offer cost savings in excess of
fixed costs?

Yes 6.

7.

Locate a warehouse at that site
which offers the largest savings.

:ave all potential warehouse sites
been either activated or eliminated?

I Yes

8. Bump-Shift Routine
a) Eliminate those warehouses which have become uneconomical

as a result of te placem.ent of subsequent warehouses.
Each customer formerly serviced by such a.warehouse will'
now be supplied by that remaining warehouse which can
perform the service at the lowest cost.

b) Evaluate t econr-i - c k!ift;iu eac.- warlouse located
above to other otential itee ;:!se !cca-- ccr._catra-
tions of demand are now serviced by that warehouse.

Stop

1-"_ _

I -

Figure 3. Heuristic Program of Kuehn and Hamburger
Source: Management Science (July, 1963)

-- _ 

---- 1
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Shortly after Kuehn and Hamburger's paper, A.S. Manne [15] proposed a some-

what similar approach for solving a class of fixed charge problems. His assump-

tions were very stringent, assuming a single product, single time period, no un-

certainty in demand forecast, and no capacity limitations. He acknowledged at the

outset that "it remains to be seen whether the performance of this technique is

seriously downgraded as a result of introducing more realistic assumptions."

Manne's algorithm is called the Steepest Ascent One Point Move Algorithm, SAOPMA.

Manne points out that the uncapacitated structure of his formulation makes it an

easy matter to calculate the Xjk's of problem (I) given any set of warehouses

that are fixed open or closed (Yj = 1 or 0). Demand center k is simply supplied

by that warehouse with the minimum value of Cjk.

Manne adopts two heuristics comparable to Kuehn and Hamburger. He assumes

that one need consider only a small subset of all possible locations sets from

which to select the final solutions. He assumes further that you can get a reason-

ably good solution by only considering the status of one particular warehouse at a

time. Here, however, his algorithm diverges from that of Kuehn and Hamburger.

A geometric insight into the problem is helpful. Each of the possible com-

binations of open or closed warehouses may be considered as one of the vertices

of a unit hypercube (i.e., for n possible locations, there are 2n possible ware-

house locations vectors (Y1,Y2 ....,Yn) where each Yj can take on values of either

O or 1). As mentioned previously, for a given vertex it is trivial to allocate

the demand concentrations among the open warehouses and to compute the associated

value of the objective function at that vertex. For large n, the 2n possible com-

binations make complete enumeration impossible. As is the case with other heur-

istics, SAOPMA attempts to reduce the number of vertices examined before a good

solution is obtained.

�^____I_ _^· ____ _I _
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SAOPMA starts at an arbitrary lattice point or vertex and evaluates all pos-

sible one point moves to adjacent vertices. It selects that move which offers

the greatest total cost reduction, or terminates if no improvement is found. By

a one point move is meant a single element alteration the n-element location

vector. (For example, take n = 3. If we are at vertex(l,0,l) warehouses 1 and

3 are open. Possible one point moves are to (0,0,1), (1,1,1), and (1,0,0), but

no others.)

Manne provides an interesting economic interpretation of the model, but we

shall not delve into that here. He concludes from his computational exprerience

that SAOPMA is capable, under the present assumptions, of obtaining solutions

within 2-6% of optimum.

More recently, Feldman, Lehrer, and Ray (FL&R) [7] proposed extensions of

the work done by Kuehn and Hamburger, Manne, and others. They comment that pre-

vious attempts to explicitly consider economies of scale were represented by

fixed charges associated with opening a warehouse as in our problem (I) formula-

tion. FL&R, however, are concerned with problems where the economies of scale

affect warehousing costs over the entire range of warehouse sizes. Therefore,

they consider the problem (I) where the warehousing cost is a strictly concave

function as in the Balinski-Mills model (Figure 2). To do this they develop ad-

ditional heuristics for assigning customers to those warehouses that have been

opened. This assignment for the non-linear cost functior fj(Tj) is no longer a

trivial assignment, as in the case f(Tj) = Fj + xjTj.

FL&R were able to incorporate allowances for different regional warehousing

costs, a more realistic assumption than had previously been provided for. They

also developed two solution routines for their problem. The first is an add

routine, similar to Kuehn and Hamburger in which warehouses are added one at a

time. The other is a drop routine in which all warehouses are initially assumed



11

open and are then closed one at a time. They justify the development of separ-

ate routines on the basis of practical considerations. Only infrequently is a

distributor interested in designing a system from the ground up. Often the prob-

lem facing management is how to consolidate present facilities. Use of a par-

ticular routine will clearly depend on the specifics of a problem. A further

justification for the drop routine is the problem of handling infeasible routes,

routes for which no transportation costs are specified or to which one may wish

to assign infinite costs.

FL&R describe their heuristic for handling the non-linear warehousing costs

in the following manner:

The approach taken is to evaluate, for each customer the total in-
cremental cost, including transportation and operating components,
associated with shipments from each of the potential suppliers. For
the problem we are considering the transportation aspects are trivial;
unit costs are presumed independent of a shipment size. Incremental
warehousing costs, on the other hand, are usually a decreasing func-
tion of warehouse throughput.

The method for assigning customers to warehouses, based upon
both transportation and warehouse cost requires the determination of
some "reference level" for waretiouse size. For the purpose of pro-
viding these required reference levels we define each warehouse's
local customer set (LCS) as consisting of those customers to whom
the warehouse is closest on a pure transportation cost basis. The
warehouse can then be said to have a local volume that is the sum
of the individual demands in its LCS. The quantity thus determined
is taken as a preliminary measure of the extent to which a warehouse
is centrally located, and is used to get an idea of which portion
of the cost curve is most relevant to decisions involving this
warehouse.

Once local volumes have been established, warehouse-customer
allocation is independent of those made for all other customers. We
simply examine the incremental cost of supplying a given customer
from each of the available warehouses, assuming that these ware-
houses have, independent of the allocation in question, throughput
levels equal to their local volumes.
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Consider All Warehouses
To Be Potential Suppliers
Construct A Pattern Using
Local Volunes As An
Indicator of Warehcuse Size

Cycle
This Pattern At Least Two Times

, I f
Examine Present Suppliers
List Candidates For
Elimination

X - ' ~~~~~~~~~~~~~~~~.
Eval::ate The Elimination
Of Each Candidate

YES

1Has A Cost Reduction
Been Realized?

I
rES

Terminate

Figure 4. The Drop Approach of Feldman, Lehrer, and Ray
Source: Management Science (May, 1966)

Preserve The Pattern
Associated With The
Largest Cost Reductiorn H/

1
I

If We Are Using,
The Fastdrop Option
We preserve The
First, not The Best,
Cost Reducing Pattern

Has A Trial Elimination
Been Made of Every
Supplier?

Increase Buffer Size To
Accomodate All Suppliers

._L !

. _
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Use of the LCS concept identifies that portion of the warehousing cost

curve a particular warehouse is expected to operate on. Their "drop" routine

has some built-in characteristics that make it particularly attractive. After

the initial stage, in which the local volumes described above are used, they are

no longer required for subsequent analysis. At each stage of the solution a far

better indication of ultimate warehouse size exists -- the actual throughputs

characterizing the pattern in use at that time. Effective use is therefore made

of information available at each stage in proceeding toward an ultimate solution.

A detailed flow diagram of the drop approach is given in Figure 4 (page 12).

In testing their routines, FL&R found they were able to generate location

patterns (using problems tested earlier by K&H) that were in no cases higher

than those found by Kuehn and Hamburger. However, they also noted they were un-

able to obtain any large improvements, which speaks well for the simple heuris-

tics we have previously discussed. There may not be much to be gained by con-

ducting elaborate searches as is often proposed.

They then testeditheir codes on larger problems with both a cost curve of the

form f(Ti) = Fj + xjTj (Figure 1), and with a cost curve of the form (Figure 5),

f j( Tj T <- t1

= F. + j2 Tj T t
3 j2 J

They found that the "optimal" solutions obtained were very sensitive to the

form of the cost function used. They recommend that oversimplification of the cost

function be avoided in the formulation phase.
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F 
3

Sj2

Ti

1tl Figure 5

As mentioned previously the drop routine provides for its own updating of

the reference level used in determining which warehouses are to leave the solution.

The add routine does not do this. It seems in fact that FL&R propose to use the

reference level based on initial LCS throughout the entire add routine. It ap-

pears this may introduce distortions into the problem, in that at any given stage

one warehouse may be picked as superior to another based on LCS, when in fact it

is far from superior. Their problem testing, however, does not bear this out.

It would be informative to develop a means of updating the reference level in the

add routine.

The importance of FL&R's paper is for the complexities it adds in the alloca-

tion of demand phase of the problem. They treat the non-linear cost function by

approximating it, to the desired degree of accuracy, by a piece-wise linear curve.

Using reference levels based on the concept of a local customer set (LCS), they

develop suitable heuristics. They have provided a means for developing good loca-

tion patterns for rather complex problem formulation.
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Simulation

Simulation, as described by Shycon and Maffei [19] allows one to operate

some particular phase of a business on paper, or in a computer, for a period of

time, and by this means test various alternative strategies and systems. Shycon

develops a large scale simulation system to handle the problem of planning phy-

sical distribution for a multi-source, multi-product system. They attempt to

determine the number and locations of warehouses, and the assignment of demands,

the same problem we have been discussing. Rather than proceeding systmatically

from a starting point toward an optimum solution, their simulation provides a

means to look at proposed alterations in the distribution system. The decision

maker must supply these alterations and decide when he is satisfied with the solu-

tion obtained.

Simulation models are often very detailed and attempt to consider many of the

interactions in the system. They also require an enormous amount of data collec-

tion, substantial development time, and often large investment sums. The ques-

tion of how good are the results obtained is never clearly determined, for there

is often no standard to compare against. For the H.J. Heinz Company, the simula-

tion model provided a solution which offered some cost savings, but which was

only a small percentage (see [19]).

A much more recent development is the Distribution System Simulator (DSS) pro-

posed by Connors, et al. [4]. DSS produces a customized simulation model for a

large scale physical distribution system. The use of DSS as described by

Connors et al. is given below.

The user of DSS responds to a questionnaire which contains the
options that he can use to develop a model of his distribution
system. The user specifies the characteristics of the desired
model by answering true or false to questions expressed in English.
The options allow the analyst to take into account each of the
major factors involved in the operation of a distribution system:
the characteristics of customers' demand for products, buying
patterns of customers, order filling policies, replenishment
policies, redistribution policies, transportation policies,



distribution channels, factor locations, production capa-
bilities, and other significant elements. These options
are essentially nventory an product movement-oriented --
beyond this, DSS provides the capability, through user
functions, to incorporate other vehicle scheduling algorithms,
forecasting techniques, production schedules, and pricing
mechanisms which are outside the scope of the options.

DSS actually generates the computer program required to perform the simula-

tion, and specifies the data input to be provided by the user. It is a remark-

able software package for analyzing a distribution system.

Hax [8], however, comments that DSS has several serious failings. He des-

cribes these as follows:

(a) It fails to support plant and warehouse location decisions,
as well as decisions regarding expansions or improvements in
the production and distribution facilities. By approaching
the problem from a simulation point of view, instead of
using an optimization approach, DSS is hopeless in this
respect.

(b) It ignores entirely the production process and the very dif-
ficult questions affecting the production planning process
interacting with a complex distribution process. DSS treats
the manufacturing plants as a source of unlimited inventory,
which is naive and overly simplistic.

(c) It does not provide an integrative approach to the logistics
decision process. Essentially, DSS treats each stocking point
as if it were independent from the rest of the system. The
difficult problem faced in a multi-level, multi-item distribu-
tion situation is the optimum allocation of the total available
inventory among the various stocking points. Basic issues to
be resolved are: where to stock a given item, and what strat-
egies to use in the stock allocation, replenishment and tran-
shipment processes. A simulation approach to deal with these
issues seems highly inadequate to me.

Hax suggests that the customized approach of Connors is basically sound, but

needs development to include certain other issues, These issues include providing

a framework for a hierarchical system of decision making, concentrating in effec-

tive ways in which to accomplish the partitioning,linkage, aggregation, and dis-

aggregation of the decision process and to measure its overall performance.

Simulation of itself does not appear a most useful tool with regards to the

warehouse location problem. It has many other applications in which its capabili-

ties seem more appropriate.

�_� 111__111----1---·111I
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Branch & Bound Techniques

Branch and bound techniques ae algorithmic procedures designed to generate

optimal solutions. Many of the techniques currently available are based on the

branch and bound code of Effroymson and Ray (E&R) (see [6]). The Facilities Loca-

tion Planner (FLP), an analytic approach based on this technique, has been dev-

eloped into a computer procedure to aid management in analysis of decision alter-

natives (see [1]). Unfortunately, the FLP model fails to deal with complex

capacity limitations. This is mitigated somewhat by the fact that FLP is con-

sidered a long range investment planning aid in which such constraints are not

serious shortcomings.

Initially Effroymson and Ray formulated their problem by first using the

formulation of our problem (I), repeated here for convenience

min z = CjkXjk + z F.Y.
j k j JJ

2Xjkl
£ Xjk : 1

Xjk-Y j

Y =0, 1

Then added the following definitions, letting

Nk = set of warehouses that can supply customer k

Pj = set of customers that can be supplied by warehouse j

nj = number of elements in Pj

The branch and bound algorithm is described in detail in the literature [6],

tD3]. The idea is to solve a sequence of linear programming problems, not neces-

sarily satisfying the integer restrictions, that give progressively lower bounds

on the value of the solution to the mixed integer problems. Khumawala provides a

good description of the process in one of his earlier papers [9].
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Problem (I') is first solved as a linear program (without
the integer restrictions on the Y's). Let Z be the solution
that problem. If all the Y's are integer, then the problem is
solved. If some Yk is fractional, then: (a) the restriction
Y = 0 is added to the problem and the problem is again solved.
Let Z be the solution; clearly Z > ZO; (b) the restriction Yk = 1

is added to the_problem and the problem is again solved; also,
Z2 > Z. Then Z = min 1 Z2) is a new lower bound on Z. This

procedure has resulted in the construction of a tree whose nodes
are represented by the Z's and the corresponding value of the
fixed Y's. If a node is reached where all the Y's are integers
the LP solution at this node forms an upper bound on Z. A node
where all the Y's are integers will be called a terminal node,
as opposed to a nonterminal node, where at least on Y is frac-
tional; the LP solution at a terminal node will be referred to
as a terminal solution. Branching continues from nonterminal
nodes, whose LP solutions are less than the current upper bound;
i.e., a fractional Y at such a nonterminal node is constrained
0 and 1 and the linear programs are solved at the two additional
nodes. The b & b algorithms continues in this manner, updating
the bounds at each stage. Of course, no branching takes place
from an infeasible node, the node at which the LP solution is
infeasible. The algorithm stops when a nonterminal node, whose
LP solution is less than the current upper bound, cannot be
found. The current upper bound is then the optimal solution.
The tree constructed in this manner will be called the b & b
tree for the problem and its size will be measured by the num-
ber of nodes in the tree.

Effroymson and Ray note, as we have also observed, that due-. to the uncapaci-

tated nature of the formulation, the optimal solutions (allocation) to the linear

program at each node is trivial. They continue by defining K1, K0 and K2 as the

set of indices of warehouses that are fixed open, fixed closed and free at the

node. Then the optimal LP solution at the node is:

Xjk = 1 if Cjk + gj /n = minj(k uk + gj 
k luk2 ) jk

= 0 otherwise,

Yj = 0 jEK,
=k.P Xjk/njik JEK2'

= 1, jcK1,

where g = F i K2,

j=0 FjK
1

i KlO
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At this point E&R propose three simplifications for use at each nod. These

simplifications can significantly reduce the number of possible branches which

need to be evaluated at each node, thereby reducing the size of the branch & bound

tree. These are (1) a minimum bound for opening a warehouses (2) a means of re-

ducing nj, the number of customers that can be supplied from warehouse j, and

(3) a maximum bound on the cost reduction for opening a warehouse. Details of the

computations involved in the simplification are not of specific interest to us

here, but may be found in [6] or [9].

The E&R algorithm cycles through these three simplifications at each node

until no further openings or closings can be effected. As E&R note, the main prob-

lem with branch and bound is computational. If a large number of linear programs

have to be solved, and computation time for each is high, the method becomes pro-

hibitively expensive.

Khumawala, using the same formulation as E&R, was able to develop several

additional means to guide the branch and bound algorithm more efficiently. He

describes these further refinements in [9 as

(1) Formal rules for selecting the free warehouse at a given stage
from among those in the set of free warehouses at that stage.
These he calls "branching decision rules."

(2) A means of using much of the information already available at a
stage to solve the linear program (I) without the integer require-
ments, as rapidly as possible.

(3) Programming related improvements resulting in efficient storage
use.

The branching decision rules that Khumawala tested were eight in number. They

are all based on information obtained in performing the simplifications described

by E&R. As such they require no additional computation or storage. He tested

the eight rules and found one superior to the others in almost every case. This

he calls the "largest omega" rule.
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Omega () is defined as the sum of the minimum savings for supplying each

customer that can be made, if a given warehouse is opened, considered over all

the fixed open warehouses at a node. If this sum fails to exceed the fixed cost,

Fj, of opening a warehouse, then such a warehouse is closed and eliminated from

further consideration. Mathematically we let

jk = Minr(NlK) [max (Crk -Cjk, 0)]

and define

k ECP Wjk -F

We then select as the next warehouse to enter the set of open warehouses,

that which has the largest omega.

Khumawala also proposed a means for lessening storage requirements through

"judiciously deleting nodes no longer necessary for the algorithm. The storage

used for these nodes is effectively used over and over again for the new nodes

that are generated as the algorithm proceeds."

In a very recent paper [10], Khumawala has proceeded still further in his work

on the facilities location problem. Noting that the efficiency of the branch and

bound method is approximately exponential with the number of potential warehouses

considered, he developed a set of "simple and computationally inexpensive heuristic

rules." He states that his results show the computational eficiency of these

rules to be substantially less than linear while still providing excellent solutions.

He uses all of the eight branching decision rules alluded to above and with

each branching rule he now associates a heuristic decision rule. Simply his heur-

istic rules are as follows: "Trace the preferred path which would result from the

application of the particular decision rule." In essence, he takes a given prob-

lem and applies in turn each of the branching decision rules and their associated

heuristics. The solution is the best of the eight solutions obtained.



21

Testing his program on several problems from the literature he finds solu-

tions that are optimal or very near optimal in all cases. Computation time is

fast and efficient. He suggests that although it is computationally feasible to

use all eight rules, certain problems are solved more readily by individual hur-

istics than others. When this is the case certain branching rul6s could be

eliminated.

In another branch and bound approach, Spielberg [20] suggested algorithms

based on both opening and closing of warehouses. His justifications for the

closing or drop routine were comparable to those of FL&R described earlier.

Spielberg's computational results indicate that many problems easily solvable by

one algorithm become very difficult when attempted by use of the other algorithm.

This suggests the starting point need be determined as each particular situation

warrants. In a later paper [21], he proposes a "generalized search origin,"

whereby the search may be started at any convenient point, be it known apriori,

generated randomly, or generated dynamically during the search. He feels his

results are satisfactory, but require further development.

One further approach at the problem deserves mention. This is a general in-

teger linear programming algorithm tested by Ocampo-Gaviria in a recent Master's

thesis. He used an IBM program, MPSX, to solve the warehouse location problem.

The program has two stages. The first stage solved the problem with all integer

variables considered continuous. The second stage then searches integer solu-

tions using a branch and bound technique with heuristic rules. The search con-

tinues as long as improvement is realized in the objective function. Then optim-

ality must be proven.

The conclusion drawn from his work was that "MPSX will find 'good' integer

solutions relatively fast, but may take a long time to prove optimality of the

solution." This is seen as the major failing of the approach, although optimality

is by no means our sole criterion.
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Capacitated tModels

Comparatively little work has been dorn with the capacitated location problem,

although it lends itself quite well to mathematical formulation. If we define

Kj as the capacity of the jth warehouse then

z Xjk - YjKj
k

Sa [18] has proposed an exact branch and bound treatment of the capacitated

warehouse location problem. He developed a approximate algorithm for solving

the case when many integer variables are involved and tested his technique on

problems from the literature. His findings indicate that the algorithm is effec-

tive for large problems, but the branch and bound routine is greatly restrained

by problem size.

Davis and Ray [5] take a slightly different approach using a mixed integer

programming method for solving the same problem. They further use a decomposition

principle to solve the dual of an associated continuous problem at each branch

and bound iteration. The rationale was an attempt to strike a balance between

the number of branches to be examined and the cost of computation.

The problem in capacitated formulations is in computation time and cost. Ad-

ditional work is clearly desirable in these areas.

III. Public versus Private Warehousing

Concurrent with decisions regarding warehouse location, management must con-

sider the issue of public versus private warehouses. Each offers particular ad-

vantages under specific conditions. Consideration of these alternatives and condi-

tions under which the firm's logistic system is operating should be thorough and

complete before commitments are made.I
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Private warehousing offers several potential economic advantages. The choice

of private warehousing allows management to design to internal specifications con-

sistent with operational requirements. Size, storage requirements, and special

considerations can be tailored to effect internal efficiency. In addition, such

facilities are particularly attractive when throughput is stable and seasonality

is not a factor.

Public warehousing offers the obvious advantage of flexibility. A firm niay

choose to alter warehouse location patterns with changes in demand patterns, mar-

ket conditions, and seasonality effects. Commitments can be made for short or

long term use of such facilities. Public warehouses offer a variety of services

including receiving, handling and shipment, and loading operations. Other ser-

vices are frequently available for the convenience and option of the leasee. In

short public warehousing offers a full range of facilities, manpower, and equip-

ment on a long or short term basis to support a customer's local sales and dis-

tribution activity.

The relative costs of the two alternatives differ. Public warehousing will

almost always cost more per unit of storage and handling than a well managed

private warehouse. This is natural since the owners of public warehouses make

their profit on the operation of a warehouse. However, the differences in cost

between the two are often difficult to discern due to the nature of accounting

practices. Careful examination should be given to such analysis to determine which

alternative is economically preferable.

Magee [14] provides a summary of circumstances under which public or private

warehousing may be favored. It is reproduced here.
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Circumstances Favoring

Private Warehousing Publ ic Warehousing

Market

Geographic Location

Level of Demand

Seasonal ity

Product Line

Promotions

Physical Characteristics

Concentrated, Stable

Stable

Uniform

Limited or Unimportant

Special Handling or
Storage

Dispersed, Shifting

Volatile

Seasonal

Frequent and Important

Standardized Packaging,
Handling, Storage

Transporation Media

Technique Used

Source: Magee, J.F., Industrial Logistics

Stable Changing
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IV. Conclusions

Substantial effort has been di'rected a; solving the warehouse location problem

in its various forms. The development of this effort has been traced, analyzed,

and evaluated. Computational aspects emerge as a central problem in most every

approach. This then is the problem to be solved.

Suitable heuristics have and will continue to facilitate the solution to this

problem. Furthermore, it seems clear that branch and bound techniques are also

essential to the effort. It is through further joint application of these method-

ologies that productive effort should be directed.
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