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ABSTRACT

The generalized linear programming algorithm allows an

arbitrary mathematical programming minimization problem to

be analyzed as a sequence of linear programming approximations.

Under fairly general assumptions, it is demonstrated that any

limit point of the sequence of optimal linear programming dual

prices produced by the algorithm is optimal in a concave

maximization problem that is dual to the arbitrary primal

problem. This result holds even if the generalized linear

programming problem does not solve the primal problem. The

result is a consequence of the equivalence that exists between

the operations of convexification and dualization of a primal

problem. The exact mathematical nature of this equivalence is

given.



1 . Introduction

Around 1960, Dantzig and Wolfe [3, 4 showed how linear

programming can be used to solve mathematical programming

problems that are not linear and to decompose large scale

linear programming problems with special structure. Their

approach has been variously called generalized linear program-

ming, column generatiorn, or Dantzig-Wolfe decomposition. Sub-

sequently, the generalized linear programming algorithm has

been widely interpreted as a method for decentralizing decision

making by the calculation of internal prices on shared resources

so that local decision makers can account for external economies

or diseconomies (Baumol and Fabian [1]; Dantzig [2; Chapter 23]).

The object of this paper is to state and demonstrate a

fundamental property of generalized linear programming. Suppose

the algorithm is applied to an arbitrary minimization problem

called the primal problem. Then, for nearly all problems of

practical importance, any limit point of the sequence of dual

prices produced by the algorithm is optimal in a concave

maximization probloom tlt:. is dual to the primal problem. This

result holds even if the, generalized inear programming,, algorithm

does nriot solve th: prim.l problem.

hi: proper-:y 1 ,eral]izecd i.e ) 'd>ga mm lilg i3 d

consequeice of a ni.thematica1 equivalenc that exists between

convexification and ual ization of a mat.hematical programming

problem; namely, that the optimal objective function values of
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the convexified problem and the dual problem are equal.

Moreover, given an arbitrary primal problem, direct methods

for finding a globally optimal solution exist only if the

primal problem has convex structure. A common algorithmic

approach regardless of the structure of the primal problem is

to replace it by its convexified relaxation. The equivalence

between convexification and dualization indicates that when

this is done, it is the dual problem that is actually being

solved and therefore the specific algorithm used should take

into account the structure of the dual problem and its relation

to the primal problem.

For example, if the primal problem is a convex programming

problem, then the Kuhn-Tucker optimality conditions are neces-

sary and sufficient. In this case, the primal and dual problems

are perfectly symmetric in that their optimal objective

function values are equal and any pair of primal and dual

solutions satisfying the Kuhn-Tucker conditins are optimal in

their respective problems (Rockafellar [29; Chapter 281). If

an exact optimal f?,tuti(n is desired to a convex programming

ploblerm, then a i tgor i thm ilay be chos,rin according oC it: r. ate

o- conveIge nce to j)rmlllal-du l L pair :;tl slyig, the /u-%>cer

coinditiorIs. Wolfcl, [371 (ln:llyze; the r t-',; of o.riverpgence oJf

g(reralized inear prograrmirn andl omit r'; it to other algorithms

forl convex prO)gl',rmIll t, robl]ems.

On the oher, b,i(l, a larle number of management science

applicationsof gentrdlized linear programmning are non-coinvex;
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e.g., multi-item production control (Dzielinski and Gomory

[6]), resource constrained network scheduling (Fisher [83),

cutting stock (Gilmore and Gomory [171), network synthesis

(Gomory and Hu [181), traveling salesman (Held and Karp [201),

integer programming (Shapiro [301), and multi-commodity flow

(Tomlin [32]). For these problems, the same symmetry between

the primal and dual problems cannot be guaranteed or even

expected. In particular, there can be a so-called duality

gap between the optimal values of the primal and

dual problems, or equivalently, there can be a relaxation

gap between the primal problem and its convexified relaxation.

Thus, there may be no practical dual pricing mechanism for

finding an optimal primal solution.

Nevertheless, construction and solution of dual prolerns

is useful in analyzing and solving non-convex problems. For

example, Shapiro [31] gives a dual method for aggregating,

ordering and eliminating integer programming activities.

Held and Karp [20, 21] use duality theory in conjunction with

branch-and-bound in the construction of an efficient algorithm

for solving the traveling salesman problem. The traveling

salesman dual problemrn tey ue) gives tight lower bounds for

rlarvh-,lnd-boulridJ ar i niltc.e. et ffe(' tive branching strategies.

Th''e use (i dal r(,blrm:; in ojrijuncliorn with branch-and-bound

to solve a variety of discrete optimization problems is given

in [10]. Although dual solutions for non-convex problems
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admit some economic interpretation (e.g., Shapiro [30; p. 703),

their use is primarily algorithmic.

For non-convex problems, dual ascent methods are preferred

to generalized linear programming because they provide monotoni-

cally increasing lower bounds for use in branch-and-bound.

Specifically, there is the dual ascent approach of Lasdon [22],

adaptations of the primal-dual simplex algorithm (Fisher and

Shapiro [9, 10], Grinold [19]) approximation algorithms based

on simplicial approximation [10], and subgradient relaxation

(Held and Karp [211). Approximation in the dual is attractive

because the dual is itself an approximation to the primal

problem and therefore it is more important to obtain quickly

good dual solutions than to converge in a limiting sense to

an optimal dual solution.

Generalized linear programming has also been extensively

proposed as a method for decomposing large scale linear

programming problems with special structure; e.g., block

diagonal or staircaise structures (Dantzig [2; Chapter 23]

Lasdon [23]). Untortun.itely, (computational experience with

the algorithm on thlese robleirm:; has been omewhat disapprintirng

(()r 'hrd -T[,iy'; [28f~ . 2 0]). T''us, it ,pi)(pairs that. the

Ir'imrn'dy imiplJ't , T.rc ( i (t t.i,.: lgor'i.thm nl,y It,, in identifying the

diuta l)rol)lem and : otential usefuines;. As was the case for

non-convex problem,, it may be preferable to use approximation

methods on the dual to obtain quickly good solutions to the

primal rather than an exact method which requires an exorbitant



- -

computional investment to obtain optimal or even good

solutions.

The plan of this paper is the following. Section 2

contains a statement of general primal and dual problems and

a demonstration of the mathematical equivalence between

convexification and dualization of the primal problem. The

following section contains a brief review of the generalized

linear programming algorithm and a proof that any limit point

of the sequence of linear programming dual prices is an optimal

dual solution. Section 4 applies the previous theory to an

analysis of a phase one procedure for finding an initial feasible

solution fcr the generalized linear programming algorithm.

Mathematical generalizations of some of the results in previous

sections are given in section 5. Some concluding remarks are

given in section 6 and there is one appendix.

A number of authors have given results related to the

ones being presented here; e.g., Falk [71, Geoffrion [14, 16],

Lasdon [223, H. Wagner [33], Wolfe [37]. Nevertheless, to the

best of our knowledge, the fact that generalized linear

programming solves the dual has, never been explicitly demon-

:;traet i.n any gracrlty in J publ ished paper and remnains

uinknowri to mos t o I lhe :'omrllic(s and management science

conmluli ty fo whont ),en. v.rlized linear, programnming is a familiar

idea. In his thesis, M. Wagner, [341 established the property

for a restricted dial pr'oblern using different mathematical

argument s.
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Our proof follows Dantzig's proof in [2; Chapter 24]

that generalized linear programming solves the convex

programming problem, but we omit the convexity assumptions

on the primal problem. In this sense, generalized linear

programming anticipated some of the later research into

mathematical programming duality (Gale [133, Geoffrion [151,

Rockafellar [291, and others). Whittle [351 gives results

similar to ours on the equivalence of the operations of

convexification- and dualization of mathematical programmuring

problems; see also Luenberge [251. Our subsequent analysis

of the generalized linear programming algorithm can be viewed

as a mechanization of this fundamental property.
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2. Statement of' the Primal and Dual Problems

and a Lemma

The primal problem we wish to consider is

v = min f(x)

s.t. g(x) < 0 (2.1)

x e X C Rn

where f is a continuous real-valued function, g is a

continuous function from Rn to Rm and X is a non-empty

compact set. If (2.1) is infeasible, then we take the

primal value v = + . Problem (2.1) is not a completely

arbitrary mathematical programming problem defined on Rn.

We have chosen f, g continuous and X compact to simplify

the mathematical analysis below thereby permitting an

uncluttered demonstration of our main results. A number

of mathematical generalizations are discussed in Section 5.

A final point here is that the vast majority of real-life

applications of mathematical programming can be put into the

form (2.1) without difficulty.

Let u be an m-vector' of pDrices, and detine

L(x,ii) f1(x) + ug(x)

find

L(u) = min {f(x) + ug(x)} = min {L(x,u)}. (2.2)
xcX xcX
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The usual assumption is that (2.2) is much easier to solve

than (2.1). It is well known that L(u) is a continuous

concave function and that L(u) < v for any u O (see

Rockafellar [29]). The dual problem is to find the best

lower bound to v; namely, find

d = sup L(u)

s.t. u 0.3)

Clearly, d v and without additional assumptions we

cannot expect d = v. A characterization of when equality

holds is as follows.

By its definition, L(u) < f(x) + ug(x) for every

xeX. Thus if we plot (see Figure 1) the values (f(x), g(x))

in Rm + 1 the hyperplane L(u) y + uy lies below the

resulting set, i.e. substituting y = g(x) gives

Yo = L(u) - ug(x) f(x). Also, L(u) is the intercept

of this hyperplane with y = 0. Letting

If, g] : U {( , f) : L > f(x), ' > g(x)}

.lnti if, ,] be t,)-i l. cnvex h L of [f, g], we easily (,Fe

that tilfh 1( ) =y + tiy must be a ;u)pporting hyperpldn. f or

[i, i j as well. We formally record this result as the

ollowing well known lemma [25].
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uy

r .

Figure 1

(f , g ) -

L - -9 
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Lemma 2.1: For any u > 0, the hyperplane L(u) = y + uy

supports the set f, g]C.

Proof: If (n, ) C[f, gC, than there exist (n1, 51), .. ,

n+2 m+ ) [f, g] and non-negative weights Xl, ... 9 Xm+2

m+2 m+2 m+2 
satisfying E Xk 1,k = n X Z X = (this is

k=l k=l k=i

Caratheodory's Theorem [29; p.155]). By the definition of

if, g] there must exist xkcX satisfying rk > f(k),

Ck > g(xk ), k = 1, ... , m+2. These inequalities imply that

m+2 k m+2 k
for any u _ 0, Z f(x ) + u Z g(x ) + U. But

k= 1 k=l
m+2

then, since L(u) f(xk) + ug(xk), L(u) L(u) < n + u,
k=l

i.e., y = L(u) - u < . Finally, if L(u) = f(x) + ug(x)

then the hyperplale (u) = yo + uy supports [f, g at

Next we defin,

v(,) - inf {n : (n, ) e [f, g]C}

which is taken to be + if there is no (n, 0) E [f, g]C

C v vC O) is the convexified value of the primal problem.

e are- -.;w in a position to prove the basic result establishing

t-.e equivalence of convexification and dualization of the primal

problem (2.]).

,eminra 2.2: The optimal dual objective [function value equals

the optimal objective function value of the convexified primal;

name ly

v = d
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Proof: (d vC): If v C = + , there is nothing to rove;

otherwise, select an arbitrary (n, 0) c [f, g . Then

from lemma 2.1, for any u 0, L(u) < n + u O n0

Thus,

d = sup L(u) n

s.t. u O0

and since (n, 0) was chosen arbitrarily from f, g]C we

can conclude d < vC

(v c < d): If v -_, there is nothing to prove;

otherwise, let r < v c be an arbitrary real number. Then

(r, 0) f, gC. Since f, g is a closed convex set (see

Appendix 1), there is a hyperplane u Yo + uy = strictly

separating (r, 0) and f, g; namely, the non-zero vector

(Uo, u) Rm+l and real number satisfy.

u o r + u* 0 < < uo n + u for all (, F) c Lf, g]C (2*4)

Since n and eh component j of £ are unbounded from above

over if, g it can easily be shown using the right most

inequality in (2.4) that ui O, i = 0, 1, ... , m.

To complete the prool that v < d, we distinguish

two cases.

(i) There fExist8. poirLt (r1, 0) [f, jg] for some n c R.

Then it fol; ,ws I ()m (2.4) t.t u l 0; otherwise 0 < 0.

By scaling lo' u nd we may assume that u = 1. But then

since f(x), g(x)) E [, g] for every xX, (2.4) implies that
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L(u) = min {f(x) + ug(x)) > > r
xcX

and therefore since r < v was arbitrary

d = sup L(u) > vC

s.t. u > 0

(ii) There does not exist a point (rn, 0) c f, gimplying

v c = + . Then the sets {(r, 0) : r c R and f, g]C are

disjoint closed convex sets implying the existencel of

(Uo, ) R + l and a scalar B such that

u r + u - 0 < < u + u E

for all r R and (n, ) e [f, g]. As in part (i), we

have (uo, ) 0. Letting r + , the left most inequality

implies that u = and thus that B> 0. Thus, u 5 > B

for any (n, ) c f, g and for any K > 0, we have

(Ku) > YK .

Letting = g(x), this inequality imnplies that

min [(Ku) g(x)] > KB
xcX

This, if - rin I (xc), we hav(e
x£X

I.,(Ku) :- mirr L (>x) + (Ki)
xf.X

t(x) - ' + KP

Letting K go to + - demonstrates that

d = sup L(u) = + = v. 

s.t. u > 0

1. Since the sets are not compact, the existence of a strictly
;epar~itiI,,, hyp rplane needs additional proof. Such a proof
tses he -)rope t:ies , g continuou ;, X compui-t. Details are

,.mit ,d.
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3. Review of the Algorithm and Convergence Properties

At iteration K, the generalized linear programming

algorithm solves the master LP

K K
d min f(xk)

k=l

K k
-. t. Z g(x )k 0 (3.1)

k=l

K

E k
k=l

k > 0, k=l1,...,K,

where the points xk c X, k=l,...,K have been previously

generated. We assume (3.1) has a feasible solution; a phase

one procedure for finding a feasible solution is given in

Section 4. The LI dual to (3.1) is

K

let K , k , ... , ,i1xl t 1' fIl-V(2.ctor It K, di t , (',pt 1m l

:}ollutionr to thtt ,Fr l)rin. ,iL l r[ t),lI .rt (3. i ) rld the iLJP dtuaiL

problem (3.2), r(e,;pectivcey. 'i'T-e gencraliizrd linear

programming algor.i hlt pro(ce(cl: ly -lv ing the Lagrangean
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L(uK ) = min{f(x) + uKg(x)}
xeX

= f(xK+ ) + UKg(x K+).

Note that by its definition in problem (2.3)

d = sup w

s.t. w < f(x) + ug(x) for all xX

> 0

Since this problem has at least as many constraints as

(3.2), dK > d; also by definition, L(uK) < d. These

inequalities give us immediately

Lemma 3.1: At iteration K of the generalized linear program-

ming algorithm

(i) Kd > d

(ii) If L(uK ) > dK , then L(uK ) = d = d K

that is, uK is optimal in the dual (2.3)

Thus, the generalized linear programming algorithm

terminates with an optimal solution uK to the dual problem

(2.3) if (u K )f L(K) L(uK) < dK , the algorithm proceeds

bzy adding a column corresponding to x K 1 to (3.1) or

K+iequivalently, a row corresponding to x to (3.2).

We consider now the convergence properties of this algorithm

when L(uK) < dK for all K. The proof of lemma 3.2 is similar

to the proof given by Dantzig in [2] for convergence of the

(3.3)



- 15 -

generalized linear programming algorithm in the case wer

(2.1) is a convex problem. We have simply dropped all

reference to convexity properties of the primal problem (2.1).

Lemma 3.2: If there exists an index set~ C {, 2, ... }

such that the subsequence {u}K is convergent, say to the

limit point u, then

(i) u* is optimal in the dual problem (2.3)

and

(ii) lim d = d = L(u*)
K

Proof: By the definition of problem (3.2), we have for

all k = 1, 2, ... , K

f(x k ) + uK g(x k ) > dK > d (3 .4)

where the right inequality is from lemma 3.1. Let

d = lim d; this limit exists because the dK are

monotonically decreasing and bounded from below by any

L(u) for any u > 0. Taking the limit in (3.4) for K (K,

we obtain

f(xk) + u* g(x ) > d > d for each k = 1, 2,...(3.5)

J.irlceg( ) i; cont i nuous; nd X i ; C'ilompact, there i s a

reual number B uch that gi(x)I < fr all xX and

i = 1, 2, ... , m. Then
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IL(x , u ) - L(xK + u*) =(uK - u*) g(x K+l

m K
< B Z - Uil

i=

Consequently, given > 0 there is a K1 e X such that

for all K C E, K > K1, the right hand side is bounded

by and therefore

K+i K K+1
L(uK ) = L(x , u) > L(xK + ,*

f(xK+l) + U* g(xK+l ) -

Thus, from (3.5) and the definition of d,

d < d < f(xK+l) + * g(xK+1) < L(uK ) + < d + 

Since > 0 was arbitrary, we can conclude that d =im dK = d.

Also, the last line implies that

lim L(uK) = L(lim uK) = L(u*) = d,
KiCd KEt

where the first equality follows from the continuity of L.

In order to establish our main result that generalized

linear programming, solves the dual, we required a converging

subsequence ),f the linear programming dual prices uK produced

by problem (.1). It c(ln be ;hown that d sufficient condition

that there exists coiverging subsequence of the dual prices

uK is that there xist an x° C X such that gi(xo) < 0 ,

i = 1, ... , m, (iisher and Shapiro [10O). This is a

sufficient condition that lim d K = d; it may be that

lim dK = d in all cases, but we have been unable to prove it.



- 17 -

Note that under the hypothesis of lemma 3.2, the

generalized linear programming algorithm mechanizes the

duality result of lemma 2.2 as announced in Section 1.

This follows at once from the algorithm and the weak duality

half (d < vC) of lemma 2.2. At each step of the algorithm,

KK K k K K k K K cd E f(x) A and Z g(x) < 0 ; thus, (d ,0) f, g]
k=l k=l

implying vc < dK ind since lim dK = d, we can conclude v d

and therefore v c d. There is, however, a subtle distinction

between the results of lemma 2.2 and 3.2. When the generalized

linear programming algorithm converges, we not only have

d = vc, but we have found a u* > 0 such that L(u*) = d;

namely, we have attainment of the dual suprenum objective

function value in (2.3).
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4. Phase One of the Generalized Linear Prograrmming

Algorithm

Our discussion here will be brief because the phase

one procedure for finding a feasible solution and its pro-

perties is closely analogous to the phase two procedure

discussed in the previous section for finding an optimal

solution to the dual problem (2.3). At iteration K of

phase one, the generalized linear programnming algorithm

solves the masterI LP (cf problem (3.1)).

Ka miT a

K
s.t. E gi(x ) - a < 0, i=i5 v amkLI kk=-

K

kZl kk=l
= 1

a > 0, k > 0, k-l,..., k

The LP dual to (.1) i:j (of. problem (3.2))

Ka = TIIviX W

:;. t w < jlL(xk) k=l . . K

m

i=l1 -

(4L.2)

I

U 0 .

;K
Let Ak kl,... K, and the m-vector u , enote he optimal

solutions to (4.1A) and (4.2). The graized inear pro-
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gramming algorithm proceeds by solving the

P(uK ) r min u K g(x)
x£X

K (xK+l= ug(x )

The dual problem implicitly approximated by (4.1) and

(4. 2) is

a = max P(u)

m
s.t. X u. < I

i=l 1 -

u > 0

The properties of this phase one procedure are summarized

below. Note that since the
K

u are generated from the compact

m
set u.

i=l 1
< 1, u > 0. They have at least one limit point.

Lemma 4 .1:

(i)

(ii) I '(K ) 0( , I hen P(i( K )
K- o=

I ; ' '('(

i Cid( . )( , I I , iI ,.I1

i l I t , l i j '' I I ;I . II ) .

[' (, ,JC ) I , ,l, , ,I

,Limit i)oirlt r(i,, (i ii ) .

problem

(4. 3)

(4 . 4)

K
a > 

K I

(iV) I ir l 0

K

.* r ', '' I i I , I i

i ; 111'1

( i i I ) A I Y 1 I II i I I (,I1 I II*F ( I I~j(,
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Just as the phase two generalized linear programming

problem provides nonlinear duality results, the phase one

procedure very easily provides feasibility results in the

form of a general theorem of the alternative (Mangasarian

[26]). Note that since lim = a, we have lim a > 0

if and only if > 0; that is, if and only if there is a

u > 0 such that min ug(x) > 0.
xcX

Lemma 4.2: ExactLy one of the following alternatives

is valid

(i) There is a u > 0 such that min [ug(x)] > 0
xCX

(ii) 0 GC, the convex hull of G where

G = nJ E R : r > g(x) 
xeX

Proof: First, note that both alternatives cannot hold;

for suppose that = min [ug(x)] > 0 and that 0 G.
xaX

Then (by Caratheolory' s theorem again) there are x x2

xm1 E X with nk > g(xk ) and non-negative weights

m+l m+l
' .. xm+l satisfying Z = 1 and 0 = Z . ne >

j=l j=l 

+ 1
A . g(xJ). Mu ti pying beth s;ide; of this inequality

by u leads to the contradict.ion

m+l . M+l
0 u 0 > E A. [ug( )X > ( > 0.
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On the other hand, if min ug(x) < 0 for every u > 0,
xcX

then by its definition a = 0. By lemma 4.1, lim = a = 0
m+l K k

Kwith > k g i = 1,..., m; that is a e GC

k=l

where e is a column vector of m ones. But since Gc is
K GCclosed (see the Appendix) and lim K e = a e = 0, 0 C .

The following results establish that convergence

to a starting feasible solution for phase two is finite

if there exists an interior point solution to the original

primal problem (2.1)

Lemma 4.3: The phase one generalized linear programming

algorithm either converges finitely to a feasible solution

m Kfor the phase two LP problem (3.1) or Z u.K = for all K.
i=l 1

Proof: If E uK < 1 for any K, then K =0 by
i=l1 

complementary slackness between the linear programs (4.1)

and (4.2).

Corollary :4.1: If there exists an x° C X satisfyinr,

,.'(x0 ) < 0, i=,.. .,m, then the phase one generalized

I inear t rograarnninT al d1orithmn converges initely to r

i j s I ut) 1 i J(i for jr'obleni (3.1).

V'~""~'f" :'t,[)oir;r' lt,. tIa p}-I . (no ;((rr-' .Ul i zeC linnar pu-

';(}1 tI ' j O V' 8 pt iJ , WJJ >J. J 4 jli ( . ' *

thert i:, a limit poit ,* (i the seqquence {u } sch t

im u* =1. The existence of the interior point x implies

P(1*) ~ u*,(x O ) O which is a contradiction since

P'( ) ! j > ; by lerual 4.1 (iv).
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5. Mathematical Generalizations

In this section, we relax the assumptions on f, g and X used in the

construction, analysis and solution by generalized linear programming of

problem (2.1). The equivalence of convexification and dualization given

in lemma 2.2 remains essentially valid, but the specification and con-

vergence properties of the generalized linear progranming algorithm is

put in question.

To study problem (2.1) with no assumptions on f, g and X, we need

to extend the definitions of L(u) and vC(E) to

L(u) = inf{f(x) + ug(x)},
xCX

and

vC() = inf{n:(n, ) c cl([f,g] C)}

where cl(') denotes closure. Again, we set v = vC(0). It is no longer

true that d = vc (see lemma 2.2) in all cases. For example, if the primal

and dual problems are both infeasible linear programs, then d = - ~,

Cv = B ,° elow we show that this is the exceptional case and therwise

d - . The following lenmma will be useful in the dlemonstratio,. it -,

basd In pari. upon te bservat ion that if (u is finrte, Lemma .

mai r, val d when the a umptions on f, ( and X ris orn-itt c ,.

Lemma 5.1: Suppose thad for every red I number r*, (r* ,) / cl(Lf,rj; I ii

there is a u - 0 with L(u) finite. Then given any real numbers r' . r,

(r,O) cl(S)

where

S ({(r',O) L) [fg])c

Proof: Suppose to the contrary that (r,O) cl(S). Then there exists
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(rk,yk ) c S with lim rk = r, lim yk =0 Rm. By Caratheodory's theorem

again, there exist (nj' k ,k) c [f,g] and non-negative numbers kx 1

m+2 kk km+2 = 1 satisfying
j=0

k + m+2 kj,k
r = Xr' + z 

(5.1)

k = 7 k j,k

j=1 l

By considering subsequences if necessary, we may assume that lim X = x0

with O < 0 < 1. We istinuish two cases.

Case 1) x 0 1. From lemma 2.1, njk > L(u) - uji' k and thus

j u E X L(u)- u z Xck = (1-x )L(u) - uyk
j kl j- Ljl j=l 

But then from (5.1), rk > + (1-xk)L(u) - uyk Letting k - +

in this expression leads to the contradiction that r = lim rk > r'.

Case 2) X < 1. By considering subsequences if necessary, we may

assume that X0 < 1, k=1,2,...

k m+2 k
Thus k =- > O, >: j . 1 . Rearranging (5.1),

k 
(r-r m+2 r-A r'

1__O = | - in j, k approaches

and

k A]- >: 3,jk approaches .

- A0

contradiction shows t iat (r,O) L cl(S) is impossible. 



We next give the main duality result. For the most part the proof is

the same as that of lemma 2.2 with [f,g]C replaced by cl([f,g]C).

Theorem 5.2 (Fundamental duality theorem):

c C
If VC < + or d > - a, then v = d.

C C
Proof: (d < vC): If v = + or if d = - A, there is nothing to prove.

Thus, suppose d > - and X is not empty. For any u > 0, by lemma 2.1

L(u) < n + u for every (n,t) [f,g]C Thus the inequality also holds

for every (n,o) : cl(If,g]c) and the argument of lemma 2.2 applies.

(vC d): If v = - there is nothing to prove; if v + a,

i.e. there is a (r,O) c cl([f,g] ),then case (i) of lemma 2.2 applies

with [f,g] replaced by cl([f,g]C).

The only remaining case has v = + , i.e. there is no (r*,O) c

cl([f,g]C). By hypothesis, there is a u > 0 with L(u) > - . If L(u)

=+ (i.e. X is empty) then d = vC. Otherwise take r, r' with r' > r

in lemma 5.1. Then since (r,O) & cl(S) in that emma, there

is a hyperplane {(yO,y):u 0y0+uy=fi) strictly separating (r,O) and S, thus

UOr + u-0 < UO U uy (5.2)

for every (yO,y) c1tf,g]C dnd for (yO,y) = (r',O). The proof now

proceeds as in case ( i ) of lernma 2.1, i.e. u.j (j=,...,m), taking

(yO,y) = (r',O) implies that uo0 0 and thus by scaling u0 = i and then

by taking (yO,y) = (f(x), g(x)), (5.2) implies that

L(u) = infff(x) + ug(x)} > > r.
xcX

Since r was arbitrary d = sup L(u) = + x, vC.
. 0

A consequence of t I, re'ult is theorem of the alternative that

- 24 -
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somewhat extends lemma 4.2. If G is closed as well as convex, the theorem

is similar to theorem 2.2 of Geoffrion [16] and theorem 21.3 of Rockafellar

[29].

Corollary 5.2 (theorem of the alternative):

Exactly one of the following two alternatives is valid:

(i) there is a u > 0 such that inf[ug(x)] > 0.
XEX

(ii) 0 c cl(G C ) where G is the convex hull of the set U{aRm:,>g(x)}.
xcX

Proof: Let f be identically zero in the optimization problem

inf f(x)
X£X

subject to g(x) < 0.

Then cl[f,g]c {(O,):Ecl(GC)} and v is either zero or + - corre-

sponding to 0 E cl(GC ) and 0 cl(G C ) respectively. Also, L(u) =

inf[ug(x)] here and if L(u) > 0 for some u then L(Ku) + + as K ++ a.

Thus d = + if and only if condition (i) applies. In summnary, condi-

tion (i) -=> d = + = VC = + 0 ar, O cl (GC), that is exactly one

of conditions (i) and (i) is valid. |

We consider now possible extensions of the generalized linear pro-

gramming algorithm to the problem (2.1) with the relaxed assumptions given

at the beginning of this section. The generalized linear programming al-

gorithm must be modified for the cases when L(u) is finite but not attained

or when L(u) = - A. Modifications to the algorithm in the former case

are possible and will not be discussed here (see Fox [13]).



Modifications may be more difficult when there are u > 0 such that

L(u) = - . Since such points are of no interest, we can rewrite the dual

problem as

w - sup L(u), (5.3)
uEU

where

U = {u:u > 0 and L(u) > - a}.

It can easily be shown that U is a convex set, but it can be empty although

v is finite. A sufficient condition for U to be empty is that for some

y Rm, v(y) - - for problem (2.1) with right hand side y. This is the

contrapositive of lemma 2.1. This condition is given by Geoffrion [14;

p. 183 who also establishes necessity when (2.1) is a convex programming

problem.

If U is not empty, but strictly contained in the non-negative orthant,

the generalized linear programming algorithm may not work. This is because

the algorithm can generate a non-negative u U leaving us without a rule

for generating a, meaningjful constraint to add to (3.2) as a result of com-

puting L(u). An exception is when U can be explicitly represented and the

constraints violated by can lbe added to (3.2). This is the case, for

examnle, in the integer progralmltng dual problem of Fisher and Shapiro [10].

In spite of hese difficulties, let us suppose that the generalized

linear prorammingq algo ithm (can be applied unambiguously to problem (2.1)

wi Lh our relaxed assuinpi ions. Lerimma .1 which characterizes finite con-

Ver(,jnc * to (Ir ol, lil maI t ol tlL rn to I.the dual is still valid. However,

infinite cover(.nce to the optimal value for the dual in lemma 3.2 requires

that the sequence uk g(xk 1) is bounded.

- 26 -
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6. Concluding Remarks

We have demonstrated in this paper how linear programming applied

to some fairly arbitrary mathematical programming problems produces opti-

mal solutions to the duals to these problems. In another paper, we will

demonstrate how linear programming can be used in a direct fashion in the

construction of dual ascent methods.

Our main motivation in writing this paper has been more than pedago-

gical. Computational experience with generalized linear programming on

large scale problems has been disappointing because the dual prices gene-

rated at each iteration can fluctuate greatly and bear little relation to

the optimal dual prices. Moreover, convergence can be quite slow. In

our opinion, a more flexible approach to solving dual problems is required,

including approximation methods which do not use the simplex method in any

of its forms.
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Appendix A

The sets G = { Rm > g(x) for some xX} and

Ef, g] = {(n, >) : n > f(x) and > g(x) for some xX}

play a central role in the duality theory studied here.

These sets may be expressed as S { £ Rm : > y for

some y S} where S = {g(x) : xX}, the image of X under

g, for G and S = {(f(x), g(x)) : xcX} for Ef, g]. In

this appendix, we consider briefly some relationships

between S anti S ,(:1d in the process, establish that Gc

dnd [f, g are ciosed.

Lemma A. 1:

(S+)C) (S c )+

proof: i (Si) ) c (S 
m+l

If y (S C ) , then y > AX. s. for some s. S

mr+l j= m+l
and X. > 0, Z X. 1. Let 6 y - AX. s. > 0; then

j1 j=I -

mel m+lnl m(-+l + +
y A. (s. + 6) Z . s. where s. s. + 6 S

j =1 ) 1 ] J 

'I'hll; y , (2; ) ' ln<i ( i: ; ).;t ,1t,t i.(.h.,i.

(ii-:, ;" +
( j j ) ((;i )Y, (2

+ ~+~ii I. + m tI

+ + + 1.

; , 2. L 2 ckl A. : - st Lfyirlg r A . .ut
J 1 I -

m+l

the point E A. , c 2 and this enables us to conclude

that y () + es hlishing (ii).| I



Lemma A.2: If S is compact, then both S+ and (SC ) are

closed.

Proof: If S is compact, then so is S and consequently,

the lemma need only be exhibited for S. Let s be a point of

+ +
closure of S , and let {s } be a sequence of points in S +

converging to it. By definition of S , there exists a

sequence {sj) of points in S satisfying s > s. Since S

is compact, there is a subsequence (sk . converging to a
]

point seS. Thus, the subsequence {sk converges to the

+ + +
point s > s which establishes the fact that s S

Corollary A.1

If X is compact and g is continuous, then the set -

is closed. If in addition f is continuous f, g is closed.

Proof: The set S.= {g(x) : xcX) is compact and by lermma A.2,

(sc) + is closed. By lemma A. 1, then so i s G = (S+). The

:same argime nt ,itppl e: t [ , i i( 
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