
This is a repository copy of Energy Budget Constraints on the Time History of Aerosol 
Forcing and Climate Sensitivity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175213/

Version: Accepted Version

Article:

Smith, CJ orcid.org/0000-0003-0599-4633, Harris, GR, Palmer, MD et al. (8 more authors) 
(2021) Energy Budget Constraints on the Time History of Aerosol Forcing and Climate 
Sensitivity. Journal of Geophysical Research: Atmospheres. e2020JD033622. ISSN 2169-
897X 

https://doi.org/10.1029/2020jd033622

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Energy Budget Constraints on the Time History of Aerosol Forcing and Climate 
Sensitivity 

C. J. Smith1,2, G. R. Harris3, M. D. Palmer3, N. Bellouin4, W. Collins4, G. Myhre5, M. 

Schulz6, J.-C. Golaz7, M. Ringer3, T. Storelvmo8 and P. M. Forster1  

1Priestley International Centre for Climate, University of Leeds, UK. 

2International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. 

3Met Office Hadley Centre, Exeter, UK. 

4Department of Meteorology, University of Reading, UK. 

5Center for International Climate and Environmental Research in Oslo (CICERO), Norway. 

6Norwegian Meteorological Institute, Oslo, Norway. 

7Lawrence Livermore National Laboratory, Livermore, CA, USA. 

8Department of Geosciences, University of Oslo, Norway. 

 

Corresponding author: Chris Smith (c.j.smith1@leeds.ac.uk)  

   

Key Points: 

 We determine the most plausible time history of aerosol forcing that matches surface 
temperature and Earth energy uptake constraints 

 Constrained aerosol forcing shows a modest recovery between 1980 and 2014, slower 
than the rate simulated by many CMIP6 models 

 The best estimate aerosol forcing using this method is -1.10 W m-2 for 2005-14 relative to 
1750. 
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Abstract 

An observationally-constrained time series of historical aerosol effective radiative forcing (ERF) 
from 1750 to 2019 is developed in this paper. We find that the time history of aerosol ERFs 
diagnosed in CMIP6 models exhibits considerable variation and explore how the time history of 
aerosol forcing influences the probability distributions of present-day aerosol forcing and 
emergent metrics such as climate sensitivity. Using a simple energy balance model, trained on 
CMIP6 climate models and constrained by observed near-surface warming and ocean heat 
uptake, we derive estimates for the historical aerosol forcing. We find 2005-2014 mean aerosol 
ERF to be -1.1 (-1.8 to -0.5) W m-2 relative to 1750. Assuming recently published historical 
emissions from fossil fuel and industrial sectors and biomass burning emissions from SSP2-4.5, 
aerosol ERF in 2019 is -0.9 (-1.5 to -0.4) W m-2. There is a modest recovery in aerosol forcing 
(+0.025 W m-2 decade-1) between 1980 and 2014. This analysis also gives a 5-95% range of 
equilibrium climate sensitivity (ECS) of 1.8-5.1°C (best estimate 3.1°C) with a transient climate 
response (TCR) of 1.2-2.6°C (best estimate 1.8°C). 

Plain Language Summary 

There are two main human drivers of climate change: (i) Greenhouse gas emissions, which warm 
the planet; and (ii) air pollution (aerosols) that offset some of this warming. Unfortunately, 
disentangling the effects of historical aerosol cooling is difficult based on the available 
observations. Therefore, we often use climate models to estimate how much aerosols have 
cooled the Earth since the start of the Industrial Revolution. Over the mid-to-late 20th Century, 
some climate models simulate less warming compared to 1850 than has been observed. This may 
be because aerosol cooling in some climate models is too strong. Our approach combines the 
relationships between aerosol emissions and their cooling effects on temperature from 11 climate 
models with simpler representations of the underlying physics. This simpler mathematical 
framework allows us to more fully account for uncertainty in both the aerosol cooling and its 
effects on surface temperature and ocean heat uptake by running a much larger set of 
simulations.  Our results suggest that the effect of aerosol cooling has only unwound slowly 
since 1980, and that it is difficult to determine how sensitive the climate is from this method. 

1 Introduction 

Aerosol effective radiative forcing remains one of the most uncertain components of the 
present-day climate (Bellouin, Quaas, et al., 2020). Uncertainty in present-day forcing reduces 
our ability to confidently predict the future climate response to emissions (Forster et al., 2013) 
and the level of historical greenhouse gas warming masked by the cooling effect of aerosols 
(Samset et al., 2018). Aerosol forcing is the largest uncertainty governing future committed 
warming (Matthews & Zickfeld, 2012; Smith et al., 2019) and remaining carbon budgets 
consistent with Paris Agreement targets (Mengis & Matthews, 2020). In most future socio-
economic scenarios, aerosol forcing is projected to become less negative over the 21st century 
(Gidden et al., 2019; Huppmann et al., 2018; Rogelj et al., 2018), promoting an increase in the 
rate of warming unless there is a concurrent reduction in greenhouse gas emissions (Shindell & 
Smith, 2019). The time history of aerosol ERF is a necessary input to many reduced-complexity 
climate models (Nicholls et al., 2020), which in turn may be driven by simple emissions-to-
forcing based relationships; these simple models find enormous utility when coupled to 
integrated assessment models (Huppmann et al., 2018). 
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Given its large uncertainty, aerosol forcing has remained an active research area. Several 
studies have quantified the aerosol effective radiative forcing (ERF) in the present day relative to 
pre-industrial based on observations, models, energy balance arguments, or a combination of 
approaches (Andrews & Forster, 2020; Bellouin, Quaas, et al., 2020; Boucher et al., 2013; 
Fiedler et al., 2019; Forest, 2018; Forest et al., 2002, 2006; Myhre, Shindell, et al., 2013; Skeie et 
al., 2018; Smith et al., 2020; Zelinka et al., 2014). Fewer studies have attempted to diagnose a 
time series of historical aerosol forcing. Murphy et al. (2009) used observations of ocean heat 
uptake, surface temperature and radiative forcing of long-lived greenhouse gases and volcanic 
eruptions since 1950 to determine the residual forcing, which was mostly attributed to aerosols. 
Skeie et al. (2011) and Lund et al. (2018) used chemistry-transport models with prescribed 
meteorology, evaluated at frequent time slice years since pre-industrial, to determine historical 
aerosol forcing since 1750. Shindell et al. (2013) used timeslices from 1850, 1930, 1980 and 
2000 in full-complexity climate models to estimate the historical aerosol forcing. The most 
complete historical aerosol forcing time series, for 1750 to 2011, is given in Annex II (Prather et 
al., 2013) of the Intergovernmental Panel on Climate Change Working Group 1 Fifth Assessment 
Report (AR5), which takes in multiple lines of evidence including the Skeie et al. (2011) and 
Shindell et al. (2013) modelling studies. 

Our goal is define an aerosol ERF time series from 1750 to 2019 that is consistent with 
energy balance constraints from observations; effectively to provide an update to AR5 Annex II 
that takes into account more recent evidence. Here we take a combination of the climate 
modelling and energy balance approaches. Under the Radiative Forcing (RFMIP) and Aerosol 
Chemistry (AerChemMIP) Model Intercomparison Projects, historically time-varying aerosol 
forcing can be diagnosed directly from CMIP6 models. However, in the multi-model mean, 
CMIP6 model simulations of global-mean surface air temperature (GSAT) are cooler than 
observations throughout the latter part of the 20th Century before recovering to near-present 
levels of warming today (Flynn & Mauritsen, 2020). One hypothesis is that aerosol forcing in the 
20th Century may be too strong in some CMIP6 models, coupled with high transient climate 
response (TCR) that causes implausibly rapid recent warming in many models (Tokarska et al., 
2020). Nevertheless, CMIP6 models remain an important line of evidence in determining 
historical aerosol forcing. Unlike for greenhouse gases, proxy records for aerosol forcing are 
sparse before widespread surface radiation measurements became available in the 1950s 
(Bellouin, Quaas, et al., 2020; Moseid et al., 2020). No global observations of aerosols were 
available until the satellite era (late 1970s), whereas CMIP6 models provide aerosol forcing 
estimates from 1850. Therefore, we use CMIP6 model forcing over the industrial era to inform 
our estimates of historical aerosol ERF, and “correct” for these responses by constraining the 
forcing estimates to observations of GSAT and Earth energy uptake (EEU). 

2 Methods and Data 

This section describes how the historical ERF time series are generated and how 
observational constraints are used with a simple energy-balance climate model to produce a best 
estimate and range of historical aerosol forcing estimates. A number of historical aerosol forcing 
time series are investigated. The primary focus of this study is an ensemble of time series 
generated from a simple relationship of global annual emissions to global annual historical 
aerosol ERF, using historical aerosol emissions time series and tuning this relationship (which 
we call a “forcing emulator”) on CMIP6 models where historical aerosol forcing estimates exist. 
Following the observational constraining we refer to this time series as “CMIP6-constrained”. 
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We also investigate replacing the CMIP6 emissions time series with scaled estimates of 
historical aerosol forcing from 11 CMIP6 models and one chemistry-transport model. This 
provides a total of 13 different historical aerosol forcing scenarios. 
 

Throughout this paper, a probabilistic approach is taken, sampling 100,000 historical 
forcing timeseries per scenario with the same number of simple climate model configurations. 
Uncertainties in the non-aerosol components of historical forcing (greenhouse gases, land-use 
change, black carbon deposition on snow, aviation contrail and contrail cirrus, and natural 
forcings) are also taken into account. The resulting GSAT and EEU time series from each 
ensemble member is compared to the observational constraints and a weighted posterior 
distribution produced of historical aerosol ERF. 

2.1 Aerosol effective radiative forcing timeseries 

2.1.1 CMIP6 model output 

We start with 1850 to 2014 (or beyond) transient aerosol ERF derived from 11 GCMs 
(Fig. 1; Table 1). Seven models were provided under RFMIP (Pincus et al., 2016), three under 
AerChemMIP (Collins et al., 2017) and one used a similar method to AerChemMIP but with 
Atmospheric Model Intercomparison Project (AMIP) sea-surface temperatures (SSTs) rather 
than model-diagnosed SSTs (Golaz et al., 2019). 
 
Table 1: CMIP6 models providing transient historical aerosol ERF estimates. Runs extended 
beyond 2014 in RFMIP experiments followed an SSP2-4.5 forcing pathway.  

Model Long name Model variants Modelling 

protocol 

Ensemble 

members 

Time period References 

CanESM5 Canadian Earth 

System Model, 

verison 5.0.3 

r1i1p2f1 

r2i1p2f1 

r3i1p2f1 

RFMIP 3 1850-2100 Swart et al. 

(2019) 

E3SM-1-0 U.S. Department of 

Energy (DOE) 

Energy Exascale 

Earth System 

Model (E3SMv1) 

3 ensemble 

member pairs 

(non-ESGF) 

AMIP and 

AMIP with pre-

industrial 

aerosols 

3 1870-2014 Golaz et al. 

(2019) 

GFDL-ESM4 Geophysical Fluid 

Dynamics 

Laboratory ESM4.1 

r1i1p1f1 AerChemMIP 1 1850-2014 Dunne et al. 

(2020) 

GFDL-CM4 Geophysical Fluid 

Dynamics 

Laboratory CM4.0 

r1i1p1f1 

r3i1p1f1 

RFMIP 2 1850-2100 Held et al. 

(2019) 

GISS-E2-1-G Goddard Institute 

for Space Studies 

ModelE 2.1-G 

r1i1p1f2 RFMIP 1 1850-2100 Kelley et al. 

(2020) 

HadGEM3-

GC31-LL  

Met Office Hadley 

Centre Global 

Coupled Model 3.1 

r1i1p1f3 

r2i1p1f3 

r3i1p1f3 

RFMIP 3 1850-2099 Williams et al. 

(2018) 

IPSL-CM6A-

LR 

Institut Pierre 

Simon Laplace 

r1i1p1f1 RFMIP 1 1850-2100 Boucher et al. 

(2020) 
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Climate Model 6A 

(low resolution) 

MIROC6 Model for 

Interdisciplinary 

Research on 

Climate, version 6 

r1i1p1f1 

r2i1p1f1 

r3i1p1f1 

RFMIP 3 1850-2100 Tatebe et al. 

(2019) 

MRI-ESM2-0 Meteorological 

Research Institute 

Earth System 

Model version 2.0 

r1i1p1f1 AerChemMIP 1 1850-2014 Yukimoto et 

al. (2019) 

NorESM2-LM Norwegian Earth 

System Model, 

version 2 

r1i1p2f1 

r2i1p2f1 

r3i1p2f1 

RFMIP 3 1850-2100 Seland et al. 

(2020) 

UKESM1-0-LL UK Earth System 

Model 

r1i1p1f2 AerChemMIP 1 1850-2014 Sellar et al. 

(2019) 

 
 

In all cases, aerosol ERF is diagnosed as the top-of-atmosphere radiation flux difference 
between parallel climate model experiments, one with time-varying aerosols, and one with pre-
industrial aerosols (Table 2). In the RFMIP models, SSTs, sea ice and non-aerosol forcings are 
given as a pre-industrial climatology in both the transient (CMIP6 name piClim-histaer) and 
control (piClim-control) experiments, with aerosols following the 1850 to 2014 (or 2100, in 
models running the SSP2-4.5 extension) emissions from CMIP6 in the transient run (Hoesly et 
al., 2018; van Marle et al., 2017). The pre-industrial control is a 30-year climatology. In 
AerChemMIP models we use historical (1850-2014) SSTs, sea ice and forcings (histSST) as the 
perturbation experiment, and historical SSTs, sea-ice and non-aerosol forcings with pre-
industrial aerosols (histSST-piAer) as the control. E3SM also followed this method (described in 
Golaz et al. (2019)). 
 
Table 2: Experiment definitions for the RFMIP and AerChemMIP model runs used in this study. 

Protocol Experiment Control 

RFMIP CMIP6 name piClim-histaer CMIP6 name piClim-control 

Pre-industrial SSTs & sea ice Pre-industrial SSTs and sea ice 

Pre-industrial non-aerosol forcing Pre-industrial non-aerosol forcing 

Historical aerosol forcing Pre-industrial aerosol forcing 

AerChemMIP CMIP6 name histSST CMIP6 name histSST-piAer 

Historical SSTs & sea ice Historical SSTs & sea ice 

Historical non-aerosol forcing Historical non-aerosol forcing 

Historical aerosol forcing Pre-industrial aerosol forcing 

 
Figure 1 shows the aerosol effective radiative forcing with respect to 1850 from CMIP6 

models. Most models show a peak in negative aerosol forcing at some point between 1975 and 
2010 before recovering in recent years. 
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Figure 1: CMIP6 diagnosed net aerosol effective radiative forcing relative to an 1850 
climatology. Individual years are shown in dots with an 11-year Savitzky-Golay smoothing filter 
applied to show solid lines. The black point and line represents the 17-model mean and range 
from Smith et al. (2020) for 1850-2014, which did not include E3SM-1-0. 
 

2.1.2 Separation of aerosol components 

For each CMIP6 model, the shortwave (SW) aerosol-radiation and aerosol-cloud 
interaction components of the ERF (ERFariSW and ERFaciSW) are determined using the 
Approximate Partial Radiative Perturbation (APRP) method (Taylor et al., 2007; Zelinka et al., 
2014). The LW ERF from aerosol-cloud interactions (ERFaciLW) was determined using the 
difference between all-sky and clear-sky forcing (difference in cloud radiative effect) with the 
LW ERF from aerosol-radiation interactions (ERFariLW) estimated as the difference between 
ERFLW and ERFaciLW. The APRP is not exact and a small residual term arises that varies over 
time and by model (Fig. S1), some of which is related to a small surface albedo adjustment 
(Ghan, 2013), but only the time-varying shapes and relative magnitudes of ERFari and ERFaci to 
each other are important for this decomposition. 
 

For the RFMIP models we calculate the APRP using the difference of each year of the 
piClim-histaer run against every year of the piClim-control run before averaging across the 30 
piClim-control years to determine the ERFari and ERFaci from each year of 1850 to 2014 (or 
2100). This method removes some non-linearities in the APRP (particularly in relation to the 
cloud fraction adjustment part of ERFaci) alongside minimising the influence of internal 
variability. For the AerChemMIP models and E3SM-1-0, APRP was calculated using the parallel 
all-forcing and 1850-aerosol forcing AMIP ensemble members and averaged. In all cases where 
modelling groups provided more than one ensemble member, the APRP decomposition is 
calculated separately in each ensemble member and then averaged. 
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2.1.3 Forcing emulator 

Simple emissions-based relationships are then fit to the APRP-derived ERFari and 
ERFaci in each CMIP6 model: 
 ERFari = 𝛼SO2𝐸SO2 + 𝛼BC𝐸BC +  𝛼OC𝐸OC        (1) ERFaci =  −𝛽 ln(1 + 𝐸SO2/𝑠SO2 + (𝐸BC+OC/𝑠BC+OC))     (2) 
 

In eqs. (1) and (2), 𝐸SO2, 𝐸BC and 𝐸OC refer to global annual total emissions in Tg yr-1 of 
SO2, black carbon (BC) and organic carbon (OC), and 𝛼SO2, 𝛼BC, 𝛼OC, 𝛽, 𝑠SO2 and 𝑠BC+OC are 
scaling coefficients. 𝛼 values can be interpreted as the radiative efficiency of emission of each 
aerosol species. Strictly, eqs. (1) and (2) represent radiative effects rather than radiative forcings. 
Radiative forcings are given by the difference of radiative effects in eqs. (1) and (2) calculated 
between the emissions in the year of interest and the pre-industrial year (either 1850 or 1750).  
 

Equation (1) follows from studies showing that ERFari scales linearly with emissions 
(Johnson et al., 2019; Lund et al., 2018; Mahajan et al., 2013; Rap et al., 2013). Equation (2) is 
an extension of the simple relationship of Stevens (2015) and is based on the understanding that 
the change in cloud albedo is logarithmic with sulfate burden, and that burden scales with 
emissions (Carslaw et al., 2013; Charlson et al., 1992). Including carbonaceous aerosol in eq. (2) 
represented by the sum of BC and OC emissions is useful as some CMIP6 models include the 
effects of BC and/or OC on the change in cloud condensation nuclei. The resulting aerosol-cloud 
interactions can be substantial, for example a negative ERFaci to BC emissions in the MIROC6 
model (Thornhill et al., 2021). Equation (2) is found to give a good heuristic approximation of 
global-mean ERFaci to a more sophisticated aerosol indirect effect model (Ghan et al., 2013) as 
shown in Smith, Forster, et al. (2018). The sum of BC and OC emissions is used following the 
original Ghan et al. (2013) aerosol indirect model which considers primary anthropogenic 
emissions to be BC+OC, and to limit the number of free parameters in eq. (2) to three. 
 𝛼SO2, 𝛼BC, 𝛼OC, 𝛽, 𝑠SO2 and 𝑠BC+OC parameters in eqs. (1) and (2) are estimated using a 
least-squares curve fit of each CMIP6 model’s ERFari and ERFaci (Table 3). A multi-model 
mean emulation is performed where the ERFari and ERFaci from the 11 models is averaged and 
eqs. (1) and (2) applied. The multi-model mean 𝛼 coefficients (-2.5, +28.5 and -8.5 mW m-2 (Tg 
yr-1)-1 for SO2, BC and OC respectively) are of similar magnitudes to the radiative efficiencies 
from Aerocom models (Myhre, Samset, et al., 2013) for SO2 and BC, and a little stronger for OC 
here. The radiative efficiency coefficients are negative for BC and positive for OC in the IPSL-
CM6A-LR model. However, using coefficients derived from the AerChemMIP single-forcing 
experiments for BC, OC and SO2 in IPSL-CM6A-LR-INCA gives a much less good fit to the 
historical aerosol forcing in IPSL-CM6A-LR than our fitted coefficients, and while the fitted 
coefficients may not be representative of the true physical behavior in this model, allowing these 
values as part of the prior sampling allows for a larger diversity of aerosol forcing time series. 
We do not attribute a nitrate forcing to avoid overfitting and because most models do not include 
the effects of nitrogen compounds on aerosol formation. In reality, nitrate formation may 
compete with sulfate formation for available ammonium. Model evidence suggests this is of 
limited importance historically (Thornhill et al., 2021), but may become more important in future 
scenarios where the nitrate to sulfate emissions ratio is projected to increase (Bellouin et al., 
2011; Hauglustaine et al., 2014).  
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The best-fit values for 𝑠SO2 and 𝑠BC+OC span several orders of magnitude. We treat these 

terms as shape parameters, describing how linear or logarithmic the change in ERFaci is with 
increasing anthropogenic SO2 and carbonaceous aerosol emissions. With large 𝑠SO2 and 𝑠OC+BC 
values, a linear response in ERFaci to emissions is exhibited (from the Taylor expansion of ln(1 + 𝑥) ≈ 𝑥 for small 𝑥). The degree of logarithmic behaviour that ERFaci exhibits to 
emissions differs considerably between GCMs (Wilcox et al., 2015) and the possibility that 
ERFaci may be linear with emissions in some CMIP5 models was discussed in Booth et al. 
(2018).  
 
 
Table 3: Forcing emulator coefficients corresponding to eqs. (1) and (2) for each model and the 
emulation of the multi-model mean forcing. Emissions are in terms of TgSO2 for 𝛼𝑆𝑂2 and TgC 
for 𝛼𝐵𝐶 and 𝛼𝑂𝐶. 

 ERFari (mW m-2 (Tg yr-1)-1) ERFaci 

Model 𝜶SO2 𝜶BC 𝜶OC 𝜷  

(W m-2) 

𝒔𝑺𝑶𝟐 (TgSO2 

yr-1) 

𝒔𝑩𝑪+𝑶𝑪 (TgC 

yr-1) 

CanESM5 -2.5 32.6 -0.4 0.727 58.9 24.6 

E3SM-1-0 -0.9 24.8 -12.6 2.048 155.9 71.3 

GFDL-CM4 -2.6 26.9 -2.1 3.501 692.7 382.9 

GFDL-ESM4 -2.6 102 -30.4 3096 913 500 202 620 

GISS-E2-1-G -6.7 146 -44.1 0.563 117.9 16.0 

HadGEM3-GC31-LL -2.9 10.2 1.5 1.004 95.4 77.2 

IPSL-CM6A-LR -0.7 -56.1 8.8 1.097 358.3 518.9 

MIROC6 -1.8 38.7 -14.2 0.773 117.2 35.0 

MRI-ESM2-0 -3.2 4.5 -10.0 7.404 1276 907.4 

NorESM2-LM -1.5 -18.3 9.7 13 502 1 915 000 944 800 

UKESM1-0-LL -2.4 2.6 0.0 0.741 39.5 228.1 

Multi-model mean 

emulation 

-2.5 28.5 -8.5 1.223 156.5 76.7 

 
 

Figure 2 shows the emulated fits to each CMIP6 model from eqs. (1) and (2) as colored 
curves with the APRP-derived forcing from the GCMs in grey using an 1850 reference. The gray 
curves in Figure 2 show that most models show a peak in ERFari that is weakening in recent 
years, whereas for ERFaci is approximately constant up to 2014 or with a slower weakening 
trend. It can be seen that the emulated relationships (colored curves) give good representations of 
each component of the aerosol forcing in each model. We extrapolate these CMIP6 model-
specific emulations back to 1750 in each model, resulting in a small positive forcing in 1750 
relative to 1850. Where models do not provide an SSP2-4.5 future projection, we also extend 
these time series forward using eqs. (1) and (2). Finally, we re-base all emulated time series to a 
1750 reference (fig. 3), where the impacts of the different shapes for historical aerosol forcing 
due to different parameter combinations are more clearly seen. One notable feature in all time 
series is an increased forcing between 2014 and 2015 in the emulated curves owing to a 16% 
reduction in global SO2 emissions from the CMIP6 historical to SSP2-4.5 datasets over one year.  
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Figure 2: simple emissions-based fits from eqs. (1) and (2) to ERFari (left), ERFaci (centre) and 
total aerosol forcing (right) for 11 CMIP6 models. Gray curves show the relevant forcing 
components from each GCM diagnosed using the APRP method. 
 
 

 
Figure 3: Emulated emissions to forcing curves, relative to 1750. The multi-model mean 
emulation is shown in black. 

2.1.4 Ensemble generation 

To simulate time-varying aerosol forcing we take probabilistic ensembles for both the 
magnitude and the shape of the historical aerosol forcing. To generate historical shapes, we take 
100,000 samples of 𝛼SO2, 𝛼BC, 𝛼OC, 𝑠SO2 and 𝑠BC+OC based on their distributions from the 11 
participating GCMs (Table 3). A joint kernel-density estimate of the 𝛼 coefficients is used to 
derive a distribution which is then sampled from for ERFari (Fig. 4a-c). Accounting for 
correlation between the coefficients maintains the connection that different aerosol species are 
often co-emitted. For ERFaci, we take ln (𝑠SO2) and ln (𝑠BC+OC) from each model and derive a 
joint kernel distribution from these two parameters (Fig. 4d). Logarithms of the values in Table 3 
are used because the total ERFaci in Eq. (2) has a logarithmic relationship to emissions and 
individual model estimates of these parameters span several orders of magnitude. 𝛽 is not a 
degree of freedom in this setup because the resultant ERFaci time series will be scaled as 
described below. 
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Figure 4: Joint distributions of (a) 𝛼SO2 and 𝛼BC, (b) 𝛼SO2 and 𝛼OC, (c) 𝛼BC and 𝛼OC, (d) ln (𝑠SO2) and ln (𝑠BC+OC). The grayscale 2D hexbin histogram of points represents a density of 
the 100,000 drawn sample sets and the coloured points are fits to each CMIP6 model. 
 

We combine the sampled 𝛼 and 𝑠 coefficients with 100,000 samples of the absolute 
values of the 1850 to 2005-15 ERFari and ERFaci from the process-based assessment in fig. 8 of 
Bellouin, Quaas, et al. (2020; hereafter the “Ringberg assessment”), using the distributions that 
do not account for energy budget constraints. We run the emissions emulator in eqs. (1) and (2) 
using a update of the historical CEDS emissions to 2019 (O’Rourke et al., 2020) for energy and 
industrial sectors and BB4CMIP (for biomass burning) under a historical+SSP2-4.5 assumption 
(the emissions are much less sensitive to the choice of scenario for biomass burning than for 
energy and industry). Critically, the updated CEDS emissions account for phenomena such as an 
earlier and more gradual reduction in SO2 emissions from China than were in the original CMIP6 
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dataset (Paulot et al., 2018), as well as other corrections, and avoids arbritrarily choosing a 
scenario for post-2014 emissions. Differences in these time series are plotted in Fig. S2. 

 
This process rescales the 𝛼 coefficients and selects 𝛽 in each ensemble member 

consistent with the present-day ERFaci. These 100,000 sampled time series are then rebased to a 
1750 baseline by subtracting the 1750 forcing from the 1850 forcing, producing 100,000 
candidate historical time series of aerosol forcing for the period 1750-2019 that differ in shape 
and magnitude (Fig. 5). 
 

 
Figure 5: Sampled ERFari, ERFaci and total aerosol ERF time series before constraint. 
Overplotted are three individual ensemble members (colored lines) that have present-day total 
aerosol forcing close to the ensemble median with different time histories. The 5-95% and 16-
84% ranges of the ensemble are shown as light and dark grey bands with the ensemble median in 
black. 

2.1.5 Scaled model forcing 

 
Alongside the emissions-based aerosol forcing time series, we repeat the analyses using 

scaled historical ERFari and ERFaci from each CMIP6 model, where the shapes of the historical 
forcing derived from the APRP method (Fig. 2) in each model are fixed, but the pre-industrial to 
present-day magnitudes are allowed to vary. We also use RFari and RFaci time series generated 
from the Oslo-CTM3 chemistry transport model (Lund et al., 2018, 2019) for 1750-2020 under 
historical+SSP2-4.5. In these 11 CMIP6 models plus Oslo-CTM3, the magnitude of 1850 to 
2005-15 forcing is allowed to vary according to the Ringberg assessment distributions, and the 
generated time series are extrapolated backwards to a 1750 baseline. Unlike the emissions time 
series run with the forcing emulator, the historical shapes of ERFari and ERFaci from these 12 
model estimates are fixed. 
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2.2 Non-aerosol forcing time series 

The non-aerosol component forcings are also generated from a 100,000-member Monte 
Carlo ensemble. As they are either less uncertain or smaller in magnitude (or both) than the 
aerosol forcing they are not the main focus of this paper but are generated to provide a consistent 
view of the total ERF, including uncertainty estimates, so that energy budget constraints can be 
applied. Detailed information is provided in Supplementary Text S1 with a summary of the key 
data sources in Table 4. 
 
Table 4: Non-aerosol forcing present-day uncertainties and key references. 

Forcing type Description Key references 

Well-mixed greenhouse 
gases 

Concentrations to radiative forcing; 
tropospheric adjustments 

Etminan et al. (2016); Gidden et al. (2019); 
Hodnebrog, Aamaas, et al. (2020); 
Hodnebrog, Myhre, et al. (2020); 
Meinshausen et al. (2017, 2020); Smith et 
al. (2020); Smith, Kramer, et al. (2018) 

Ozone Analysis of CMIP6 models; precursor 
emissions to forcing  

Skeie et al. (2020); Smith, Forster, et al. 
(2018); Stevenson et al. (2013) 

Other anthropogenic Land use forcing (including 
irrigation); black carbon on snow; 
aviation contrails; stratospheric water 
vapor from methane oxidation 

Bond et al. (2013); Ghimire et al. (2014); 
Lee et al. (2020); Myhre, Shindell, et al. 
(2013); Sherwood et al. (2018) 

Volcanic Forcing from stratospheric aerosol 
optical depth 

Global Volcanism Program (2013); Gregory 
et al. (2016); Kovilakam et al. (2020); 
Larson & Portmann (2016); Toohey & Sigl 
(2017) 

Solar Total solar irradiance; tropospheric 
adjustments 

Gray et al. (2009); Matthes et al. (2017); 
Smith, Kramer, et al. (2018); Vieira et al., 
(2011) 

 

2.3 Simple climate model 

We use our 100,000 member ensemble of aerosol and non-aerosol forcings and run them 
in a two-layer energy balance model, including efficacy of deep-ocean heat uptake (Geoffroy, 
Saint-Martin, Bellon, et al., 2013; Geoffroy, Saint-Martin, Olivié, et al., 2013; Held et al., 2010). 
To perform this many simulations precludes the use of a comprehensive GCM and similar 
constrained Monte Carlo ensemble methods using reduced-complexity models have been done 
previously (Meinshausen et al., 2009; Smith, Forster, et al., 2018). The structural uncertainty 
associated with the choice of simple climate model has been found to have limited impact on 
global mean temperature projections in historical simulations (Nicholls et al., 2020). We choose 
to use the two-layer model due to its computational efficiency, inclusion of both EEU and 
GSAT, and its proven ability as a useful emulator of complex GCMs (Palmer et al., 2018). We 
use the formulation from the two Geoffroy et al. papers, hereafter G13a and G13b. The two-layer 
model can be written as 
 𝐶mix 𝑑𝑇mix𝑑𝑡 = 𝐹 + 𝜆𝑇mix  −  𝜖𝛾(𝑇mix − 𝑇deep)       (3) 𝜖𝐶deep 𝑑𝑇deep𝑑𝑡  = 𝜖𝛾(𝑇mix − 𝑇deep)           (4) 
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where 𝐶mix and 𝐶deep (W yr m-2 K-1) are the heat capacities of the ocean mixed layer and deep 

ocean, 𝑇mix and 𝑇deep (K) are the respective layer temperature anomalies, 𝜆 (W m-2 K-1) is the 

climate feedback parameter (using the convention that negative values indicate stabilizing 
feedbacks), 𝐹 (W m-2) is the effective radiative forcing, 𝜀 (dimensionless) is the efficacy of deep 
ocean heat uptake and 𝛾 (W m-2 K-1) the heat transport between the two layers. The relatively 
small heat capacity of the land surface and atmosphere compared to the ocean means that it can 
be neglected and the GSAT anomaly is given by 𝑇mix. 
 

All available 44 CMIP6 models that published both abrupt-4xCO2 and piControl 
simulations to the Earth System Grid Federation as of 2 July 2020 were used to tune the two-
layer model using the method set out in G13a and G13b. Models that were available on different 
resolutions (e.g. NorESM2-LM and NorESM2-MM), and physical and Earth system models 
from the same group (e.g. CNRM-CM6-1 and CNRM-ESM2-1) were treated as separate models, 
but different physics versions of the same model were not (e.g. r1i1p1f1 and r1i1p3f1 from 
GISS-E2-1-G). The two-layer model is tuned to the GSAT and TOA radiation imbalance of each 
CMIP6 model’s abrupt-4xCO2 run. There are five free parameters in the G13b model: 𝛾,  𝜀, 𝜆, 𝐶mix and 𝐶deep. Radiative forcing from a quadrupling of CO2 (𝐹4×) is also calibrated using this 

method with the abrupt-4xCO2 experiments. Table S1 sets out the parameters for each model 
and Fig. S3 shows the temperature evolution in CMIP6 models for the model output and the 
simulated two-layer model fits for abrupt-4xCO2. The ECS is an emergent parameter from this 
model and is calculated as 𝐹4×/−2𝜆. The inclusion of the efficacy of ocean heat uptake in the 
two-layer model leads to different and often larger estimates of climate sensitivity than from a 
“Gregory regression” of TOA energy imbalance against global mean temperature anomaly for 
the first 150 years of abrupt-4xCO2 (the so-called “effective” climate sensitivity, EffCS). The 
strengthening of climate feedbacks over time as temperatures approach equilibrium in abrupt-
4xCO2 experiments results in the long-term equilibrium ECS being in the region of 10-30% 
larger than EffCS (Rugenstein et al., 2020). The version of the two-layer model that includes 
efficacy of ocean heat uptake captures this effect somewhat, and we cautiously refer to our 
derived climate sensitivity as ECS for this reason.  
 

A joint kernel density estimate distribution of the six input parameters to the two-layer 
model are sampled based on the values resulting from the 44 CMIP6 model tunings (marginal 
distributions for each parameter are shown in Fig. S4). The joint distribution allows for 
correlation between model parameters to be taken into account when sampling (Table S2). 
 

Internal variability in GSAT is simulated by analysing the piControl run in all available 
models (49 as of 2 July 2020). Global mean temperatures from the piControl simulations are 
detrended to remove any residual drift with the residuals around the long term trend taken to be 
the internal variability. The autocovariance matrix of these residuals in each model is constructed 
by regressing the time series with itself at lag 1 year, lag 2 years, …, lag n years where n is the 
length of the model’s piControl simulation. This input is then used as the covariance of a 
multivariate Gaussian distribution that governs the time-dependent internal variability of 
temperatures in each model. For each ensemble member simulated, one of the 49 CMIP6 models 
is selected at random, and 270 years (1750-2019) of internal variability generated based on the 
underlying distribution in the selected GCM. This allows for a more realistic construction of 
internal variability than a memoryless process noting that in reality events such as ENSO tend to 
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cluster warm and cool years, and also provides for the recreation of low-frequency long-term 
internal variability that is present in some models such as CNRM-ESM2-1 (Fig. S5). 

2.4 Observational constraints 

We use GSAT estimates from 1850-2019 and total Earth system energy uptake 
observations from 1971-2018 to constrain our simulations. To estimate GSAT we use the 
Cowtan & Way (2014) dataset of infilled global-mean surface temperatures (GMST; near-
surface temperatures over land and sea-ice and sea-surface temperatures over open ocean) for 
1850-2019, multiplied by a time-varying ratio of GSAT/GMST from CMIP5 models under the 
historical and RCP8.5 pathways from 1861 to 2014 (Richardson et al., 2016). This ratio 
converges towards 1.08 for the recent past (Rogelj et al., 2019) and we extend this ratio forward 
to 2019. Both observations and model output are rebased to the 1850-1900 mean as a proxy for 
pre-industrial following the IPCC Special Report on 1.5°C. This results in a central estimate of 
GSAT warming of 1.10°C for 2010-19 relative to 1850-1900 with a warming trend of 0.30°C per 
decade since 2010. 
 

For observations of total Earth energy uptake, we use data from the Global Climate 
Observing System (GCOS) observational dataset that includes estimates from ocean heat uptake, 
cryosphere, atmosphere and land surface (Von Schuckmann et al., 2020). The ocean has 
absorbed 89% of the total energy uptake in the Earth system since 1960 owing to its larger 
thermal capacity compared to other components of the Earth system. The two-layer model only 
tracks heat uptake into the ocean, but to be physically consistent with the total observed EEU we 
assume that the heat uptake of the atmosphere, cryosphere and land is taken into account in the 
heat uptake of the mixed layer of the ocean. The GCOS dataset extends back to 1960, but we 
focus on the period from 1971-2018 due to the limited coverage of deep ocean temperature 
observations before the advent of expendable bathythermographs (XBTs) in the late 1960s 
(Palmer, 2017). Our constraint is based on the agreement of EEU calculated in the two-layer 
model with the total EEU from 1971 to 2018 in GCOS of 358 ± 37 ZJ (1 s.d.). 
 

Following the running of the two-layer model, each of the 100,000 ensemble members is 
assigned a weight 𝑤𝑖 based on how well it reproduces GSAT and EEU observations. The 
weighting is based on the model weighting technique of Knutti et al. (2017): 
 𝑤𝑖 = exp (− (  𝑟GSAT,𝑖2𝜎GSAT,D2  + 𝑟EEU,𝑖2𝜎EEU,D2))      (5) 

 

where 𝑟𝑋,𝑖 is a measure of how well the model reproduces observations for variable 𝑋 for 

ensemble member 𝑖, and 𝜎𝑋,D is the “radius of model quality” (Sanderson et al., 2015). The 

radius of model quality is a subjective choice and for both GSAT and EEU we use assessed 

uncertainties. For GSAT, 𝑟GSAT,𝑖 represents the root-mean-square error (RMSE) of each 

ensemble member’s simulated temperature compared to observations and 𝜎GSAT,D= 0.12°C based 

on the “likely” (> 66%) range of GMST from the 1850-1900 period to 2006-15 in IPCC Special 

Report on Global Warming of 1.5°C. For EEU, we use 𝑟EEU,𝑖 as the difference in EEU between 

the model ensemble member and the GCOS best estimate of 358 ZJ (1971-2018) and use the 
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GCOS uncertainty of 𝜎EEU,D= 37 ZJ. Unlike in Knutti et al. (2017) we do not downweight 

similar ensemble members.  
 

Following calculation of each 𝑤𝑖, the ensemble weights are normalised such that ∑ 𝑤𝑖 =1. Although subjective, our choices for the goodness-of-fit to the constraints ensure that GSAT 
and EEU have approximately equal influence on the total weighting given to each ensemble 
member (Fig. S6). An ensemble member will receive a high weight if it is close to both observed 
GSAT and observed EEU resulting in fewer high-weight ensemble members than using a single 
constraint only. Results using just one constraint are reported in the supplementary material.  

3 Results 

Figure 6 shows the aerosol ERF time series that best fit the observational constraints of 
GSAT and EEU for the CMIP6-constrained ensemble plus 12 climate models. Also shown are 
the projections of GSAT and EEU with the applied ensemble weighting. The weighted 5 to 95% 
range from the CMIP6-constrained time series using both GSAT and EEU as constraints is 
shown as a grey band with the weighted mean as a grey line. The 1750-2019 aerosol ERF is 
determined to be -0.90 W m-2 (-1.55 to -0.35 W m-2 5-95% range), comprised from -0.31 (-0.62 
to -0.08) W m-2 for ERFari and -0.59 (-1.18 to -0.10) W m-2 for ERFaci. The central estimate of 
total aerosol forcing is equal to the -0.9 (-1.9 to -0.1) W m-2 assessed for 1750-2011 in AR5, with 
a narrower “very likely” (> 90%) range in this study. 
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Figure 6: Weighted historical time series of (a) ERFari, (b) ERFaci and (c) total aerosol ERF 
time history shapes from each forcing scenario. Curves derived from CMIP6 models and Oslo-
CTM3 are scaled and ensemble-weighted as described in section 2 and do not represent raw 
model output. (d) and (e) shows the weighted ensemble simulated global mean surface 
temperature and ocean heat uptake. Solid lines are weighted ensemble means and shaded regions 
show the weighted 5th-95th percentiles for the CMIP6-constrained time series. 
 

With the CMIP6-constrained time series, aerosol ERF exhibits a slight recovery between 
1980 and 2014 of +0.025 W m-2 decade-1. This is a lower aerosol recovery than seven of the 11 
CMIP6 models, although the constrained 5-95% range is wide (-0.074 to +0.111 W m-2 decade-1) 
and includes the means from all but the UKESM1-0-LL model (Fig. 7). These results indicate 
that a rapid aerosol forcing recovery is unlikely and not consistent with the enegy budget 
constraints, but whether aerosol forcing has been strengthening, weaking or stable in recent 
decades is not conclusive. 
 

 
Figure 7: Histograms of linear aerosol forcing trends for 1980-2014 simulated by the 100,000 
member Monte Carlo ensemble (thin black histogram) and weighted after application of 
observational constraints in the CMIP6-constrained time series (thick grey histogram). The mean 
of these distributions are shown as grey and black lines above the histograms with 5th and 95th 
percentiles of the constrained and unconstrained distributions. The trends of each CMIP6 
model’s aerosol forcing are shown as colored lines, calculated as a 35 year regression from 1980-
2014 and error bars showing 5-95% confidence ranges in the slope of the regression.  Numbers 
provided in Table S3. 
 
 

Figure 8 uses the GSAT and EEU constraints to show the present-day distributions of 
aerosol forcing. Alongside this we use the ensemble weights to calculate distributions of ECS 
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and TCR from the ensemble given the two-layer model parameter distributions and ensemble 
weights. To calculate TCR we take the approach of Jiménez-de-la-Cuesta & Mauritsen (2019) 
noting the TCR is approximately 𝐹4× 2(−𝜆 + 𝜖𝛾)⁄ . The mean, 68% and 90% range for these 
parameters along with their unconstrained (prior) distributions are shown in Table 5. All 13 
historical time series are shown in Table S4 for both GSAT and EEU constraints, and in Tables 
S5 and S6 using only GSAT or EEU respectively. 
 

A diversity of constrained present-day aerosol ERF distribution shapes is possible for the 
aerosol forcing from each model’s historical time evolution. In particular there are a group of 
models (the two from GFDL, HadGEM3-GC31-LL, GISS-E2-1-G and NorESM2-LM) where 
present-day ERFari is relatively weak and few values less than -0.5 W m-2 satisfy the 
observational constraints. For ERFaci, neither the CMIP6 models nor the CMIP6-constrained 
time series support a strong negative forcing and the constrained distributions are less skewed 
than the Ringberg assessment range. All historical aerosol forcing time series constrain the 
present-day aerosol forcing to a narrower range than the full process-based distributions of the 
Ringberg assessment. As discussed in Bellouin, Quaas, et al. (2020), energy budget constraints 
do not favour a present-day aerosol forcing more negative than -2 W m-2, and this is also borne 
out by our distributions in Fig. 8c. 
 

 
Figure 8: Distributions of (a) ERFari, (b) ERFaci, (c) total aerosol ERF, (d) ECS and (e) TCR. 
Thin black curves show the prior distributions for aerosol forcing, ECS and TCR. 
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High values of ECS and TCR are also constrained out when applying observational 
constraints (Fig. 8d,e). The prior distributions in thin black curves allow for ECS values much 
larger than those seen in CMIP6 models as values of net feedback 𝜆 sampled in the prior 
distribution (Fig. S4) can be close to zero. Interestingly, the choice of historical aerosol forcing 
time series is less important for constraining ECS and TCR than for the present-day aerosol 
forcing, and in every case the constrained distribution favours lower climate sensitivity than the 
energy-balance derived prior. The constrained distribution of ECS is not tight (1.8 to 5.1°C 5-
95% range with a best estimate of 3.1°C), which is lower than the raw CMIP6 model range 
inferred from the two-layer model fits (1.9 to 7.1°C; Table S1). The best estimates reported in 
the main body of the text, Table 4 and Figs. 6 and 7 relate to the weighted mean of the 
constrained distributions; the median estimates are provided in Supplementary Tables 4-6. 
Transient climate response falls in the 5-95% range of 1.2 to 2.6°C (best estimate 1.8°C). 
 

Table 5: Ensemble percentiles for aerosol forcing, ECS and TCR, for the CMIP6-informed 
constrained distributions. End dates of 2010 represent a 2005-14 mean. 

 Time period 5% 16% mean 84% 95% 

Total Aerosol ERF 

(W m-2) 

1750-2019 -1.56 -1.26 -0.90 -0.54 -0.35 

1750-2010 -1.78 -1.50 -1.10 -0.70 -0.48 

ERFari (W m-2) 1750-2019 -0.62 -0.47 -0.31 -0.15 -0.08 

1750-2010 -0.77 -0.59 -0.40 -0.21 -0.12 

ERFaci (W m-2) 1750-2019 -1.18 -0.93 -0.59 -0.26 -0.10 

1750-2010 -1.36 -1.08 -0.69 -0.31 -0.12 

ECS (°C) Constrained 1.76 2.15 3.10 3.94 5.11 

TCR (°C) Constrained 1.24 1.43 1.83 2.22 2.57 

 
 

4 Discussion and conclusions 

Comprehensive climate models are the best tools available for determining global aerosol 
forcing where other spatially-complete lines of evidence do not exist, such as prior to the satellite 
era (approximately 1980). However, model-derived aerosol forcing depends on a chain of 
processes, and ultimately on spatially-resolved aerosol emissions time series that are themselves 
uncertain (Hoesly et al., 2018). It is not possible to determine here whether the tendency for 
some models to project strong aerosol forcing in the second half of the 20th Century and/or too 
much of a recent aerosol recovery, at least compared to what would be implied by the 
observational constraints, is due to model processes or uncertainties in the emissions.  
 

It is likely that regional effects are significant and aerosols emitted from different source 
regions affect the global energy balance in different ways which is not captured in a global 
emissions to forcing relationship (Kretzschmar et al., 2017). Including how global forcing 
changes to regional aerosol emissions could be an improvement to the forcing emulator, although 
may be difficult to implement for aerosol-cloud interactions in marine stratocumulus cloud decks 
which may be thousands of kilometres from the emissions source (Regayre et al., 2014). 
However, we show for the 11 GCMs that our relationship is trained on, the forcing emulator 
works well (Fig. 2) and is useful as a first-order global relationship that incorporates sufficient 
flexibility in its forcing response to emissions. 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 
Our results are consistent with the conclusions of previous studies that have attempted to 

constrain present-day aerosol forcing based on energy balance arguments. We find that very 
large negative values of pre-industrial to present-day aerosol ERF are inconsistent with observed 
warming and total Earth system energy gain (Andrews & Forster, 2020; Forest, 2018; Forest et 
al., 2002, 2006; Skeie et al., 2018; Smith, Forster, et al., 2018). Our best estimate 1750-2019 
aerosol forcing of -0.90 W m-2 is similar to recent observationally-constrained studies that put 
aerosol forcing in the -0.8 to -0.9 W m-2 range (Andrews & Forster, 2020; Skeie et al., 2018; 
Smith, Forster, et al., 2018), and the review of 19 inverse estimates in Forest (2018) of -0.77 W 
m-2. We also find that the most likely shape of recent (1980-2014) aerosol forcing is 
approximately constant or with a slightly positive trend, which is in line with reanalysis-derived 
estimates of aerosol RFari and RFaci (Bellouin, Davies, et al., 2020), and a rapid recovery in 
aerosol forcing is not likely. 
 

The shape of historical aerosol forcing time series - whether from our simple emulator or 
provided by a particular CMIP6 model - does not provide a constraint on the overall 1750-2019 
aerosol forcing. However, the choice of aerosol forcing dataset used matters less for constraining 
ECS and TCR than it does for the shape or magnitude of present-day forcing (Fig. 8). It is 
difficult to constrain the upper bound of ECS due to the heavy tail of the prior distribution, and 
95th percentile values of ECS range from 4.3 to 6.0°C depending on the aerosol forcing time 
series used (Table S4). Other studies also show that these constrained climate sensitivity 
distributions are sensitive to the priors used (Sherwood et al., 2020). For example, our prior 
sample space informed by CMIP6 models has very few ensemble members with ECS < 1.5°C 
and TCR < 1.0°C, both lower bounds of the respective “likely” range in AR5, and it is possible 
that this area of the distribution is undersampled. Note that we do not perform a full Bayesian 
analysis in this paper. However, our ECS estimate of 3.1°C (1.8 to 5.1°C) is in line with, 
although with wider uncertainty, than the Bayesian estimate of 3.2 (2.3 to 4.7°C) in Sherwood et 
al. (2020), which takes into account several lines of evidence in their assessment.  

 
The two-layer model used in this study includes the efficacy of deep ocean heat uptake, 

which can partially account for the “pattern effect” (Andrews et al., 2018; Sherwood et al., 2020) 
in which evolving patterns of sea surface temperature change can influence estimates of climate 
feedback as warming approaches equilibrium. In the notation of Sherwood et al. (2020) the total 
effective climate feedback can be written 𝜆 − Δ𝜆 with Δ𝜆 the contribution from the pattern 
effect. Across the sample of CMIP6 two-layer model calibrations in this study, the pattern effect Δ𝜆 varies from -0.1 to +0.6 W m-2 K-1 (mean +0.2 W m-2 K-1) between 1980 and 2050 (assuming 
SSP2-4.5 forcing), similar to previous studies (e.g. Armour (2017)). This forced contribution to 
the pattern effect arises through the efficacy of deep ocean heat uptake in the two-layer model, 
and occurs where 𝜖 > 1 (Geoffroy, Saint-Martin, Bellon, et al., 2013) as it is in the majority of 
CMIP6 model calibrations. The pattern effect means that historically, the effective climate 
feedback tends to be slightly weaker than the equilibrium feedback, 𝜆. However, this historical 
pattern effect is not as large as that determined from observed sea-surface temperatures from 
AMIP models (Andrews et al., 2018) of about +0.5 W m-2 K-1, as the historical pattern effect also 
includes an unforced component that is related to internal variability (Zhou et al., 2021). If we 
included the unforced component of the pattern effect through a further adjustment to Δ𝜆, it is 
likely our derived historical aerosol forcing would be weaker. However, applying this historical 
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pattern effect approach to our projections is not straightforward. Calculating Δ𝜆 this way requires 
a 30-year moving window regression (Andrews et al., 2018), and historical simulations in 
CMIP6 are provided only to 2014 meaning Δ𝜆 can only be estimated until around 2000. Δ𝜆 is 
sensitive to volcanic eruptions and aerosol forcing (Gregory et al., 2020), and the historical SST 
record is only one realisation. We therefore do not take the historical approach, but account for 
the pattern effect through the samping of deep ocean heat uptake efficacy, and for internal 
variability through the temporal autocorrelation of piControl runs. 
 

Our results suggest that the limited number of CMIP6 models considered here have a 
stronger aerosol forcing than may have actually occurred during the 20th Century and this effect 
may be responsible for the modest warming in the CMIP6 ensemble mean over this time period 
(0.24 ± 0.22°C for 1961-90 relative to 1850-1900 in CMIP6 models compared to reconstructed 
GSAT observations of 0.39 ± 0.06°C over the same period; Fig. S7). The diagnosis of historical 
aerosol forcing in more CMIP6 models to confirm or disprove this would be welcomed. 
Inclusion of uncertainties in historical emissions would be useful to determine whether this is a 
factor in suppression of warming. Re-running of GCMs with updated emissions inventories 
could determine how sensitive models are to emissions uncertainties, and the importance of 
regional effects. The time history of aerosol forcing and its present-day magnitude both constrain 
key climate system uncertainties such as climate sensitivity and the rate of recent warming 
(Tanaka & Raddatz, 2011). Reducing uncertainty in both will reduce uncertainty in climate 
projections. 
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