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ABSTRACT

We define a service factory to be a network of service-related-workstations, at
which assigned workers process work-in-progress that flows through the workstations.
Examples of service factory work include mail processing and sorting, check processing
and telephoned order processing. Exogenous work may enter the factory at any
workstation according to any time-of-day profile. Work-in-progress flows though the
factory in discrete time according to Markovian routings. Workers, who in general are
cross trained, may work part time or full time shifts, may start work only at designated
shift starting times, and may change job assignments at midshift. In order to smooth the
flow of work-in-progress through the service factory, work-in-progress may be
temporarily inventoried (in buffers) at work stations. The objective is to schedule the
workers (and correspondingly, the workflow) in a manner that minimizes labor costs
subject to a variety of service-level, contractural and physical constraints. Motivated in
part by analysis techniques of discrete time linear time-invariant (LTI) systems, an
object-oriented linear programming (OOLP) model is developed. Using exogenous input
work profiles typical of large U. S. mail processingfacilities, illustrative computational
results are included.

Key words: Linear programming, scheduling, service, factory, object-oriented,
queueing, queueing networks, Markov chains
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The "decade of the services industries" is a popular label for the 1990's.

With about three quarters of the jobs and two thirds of the GNP of the U.S.A.
associated with services, productivity in services is of paramount concern. Other

industrialized countries, in western Europe and Japan for instance, are focusing
efforts on productivity improvements in their services industries as well.

One important component of the services industries in these countries is

the "service factory," which we define to be a facility that processes and sorts
papers, parcels, files, transactions and other usually paper-based or computer-

based entities through a network of processing stages toward some definition of

completion. A service factory is distinguished from a manufacturing factory in

that no product is assembled in a service factory; rather, a service or sequence of

services is provided to the entities passing through the service factory.

An example of a service factory is a mail processing center (MPC) of the

United States Postal Service (USPS). The inputs to an MPC are both outbound
and inbound mail requiring sorting. The MPC provides a sequence of required

sorts to each piece of mail, delivering the sorted mail to loading docks for

transportation to either long haul transportation facilities (e.g., an airport), for

outbound mail, or to local post offices, for inbound mail. The arrival pattern of

mail over the course of a day is highly predictable and time-of-day dependant;

the fully sorted mail must be on the loading docks prior to pre-specified

"dispatch deadlines."

Other examples of service factories can be found in the "back rooms" of

banks (e.g., in the processing of checks), in insurance companies (e.g., in the
processing of claims), in order processing rooms associated with "800" numbers,
and in many different governmental offices dealing with the processing of

various types of applications.

For simplicity in this paper we shall use the nomenclature of the MPC to
motivate, illustrate and crystallize the concepts involved. An MPC-focused
earlier version of the model was instrumental in assisting the second author's
expert testimony before a five member labor/management arbitration panel. At

that time USPS management could designate only 10% of its workforce in large
facilities as part time and/or flexible. At least 90% of workers had to be full time
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regularly scheduled 40-hour-a-week employees, working 8 hour shifts on

scheduled work days. Based on the modeling work, the arbitrators concluded

that management of the USPS should contractually be allowed twice as much
flexibility (i.e., up to 20%) in scheduling their personnel in MPC's (Cahn, Larson,

Berman 1992). That decision is currently saving the USPS hundreds of millions

of dollars per year.

1. Perspective on the Problem: Beyond the 'Teller Paradigm"

We wish to design the operation of the service factory to minimize
variable costs while meeting constraints of various types. The largest source of

variable cost is labor, and scheduling the workforce is the focus of our effort.
But, as we shall see, there are other important controllable quantities, too,

particularly the workflow through the service factory. We shall want to deal

with both workforce and workflow scheduling simultaneously.

A workforce schedule is an assignment of workers to tasks and times of

work. A workflow schedule indicates the amount of work processed at each

workstation, by time, and the amount temporarily held in buffers. In simple

situations, in which workflow scheduling is not an option, a good workforce

schedule will match labor force levels as closely as possible to empirically
derived work demand. For the labor intensive service industries that face a

varying work demand throughout the day, generating a good workforce

schedule can be a complicated task. It is not surprising that this problem has
been considered for such service industries as nursing [Warner 1972], bank tellers

[Mabert 1977], telephone operators [Henderson 1977], and fast food servers

[Glover 1986].

In the operations research literature the approaches to the labor

scheduling problem have been shaped by what can be called the "bank teller

paradigm," i.e., the scheduling of bank tellers to shifts during a work day that

exhibits predictable time-varying demand. The demand or required work level
is assumed to have been determined empirically by methods such as that in [Edie
1954], and the objective is to minimize the amount of labor used while providing

an acceptable level of service. Various papers in the literature have run the

gamut from the scheduling of days off in a cyclical weekly schedule, to
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overlapping shift scheduling during a day, taking into account meal and rest
breaks. These problems are all formulated as either linear or integer
programming models, some driven by the outputs of queueing models. Many of
the early results obtained from these types of models are surveyed in [Baker
1976]. In all cases homogeneous and unlimited labor pools are assumed. In the
simpler cases analytic solutions could be derived [Baker 1976], but in the more
complicated formulations one of the major difficulties has been the integer nature
of the problem. Various heuristics [Henderson 1976] have been suggested and
attempts were made to reduce the problem to a network flow problem [Bartholdi
1980]. [Bechtold and Jacobs 1990] present a new modeling approach for flexible
break assignments which reduces the number of decision variables in the
problem.

There have also been formulations that add significant realism to the
problem. For example [Warner 1972] and [Emmons and Bums 1991] address a
non-homogeneous labor pool with substitution of a limited number of employees
of differing qualifications to cover shortages. We refer to this aspect as "job
switching." Though job switching is introduced in a treatment of the nurse
staffing problem, in [Warner 1972], it too can be categorized by the bank teller
paradigm. If one thinks of a nurse qualified for a particular ward of a hospital as
a bank teller who is qualified for a particular financial transaction the similarity
of the situations becomes clear. [Glover 1986] creates one of the most realistic or
"general" formulations of the employee scheduling problem by considering a
case with a non-homogeneous labor pool of limited size with great flexibility in
assignment of days off, employee activity preferences, breaks, part time work,
etc. Although very complex this formulation too is part of the bank teller
paradigm, since its underlying assumption is that work performed by one
employee has no influence on the rate at which work arrives to another employee
who performs a different task.

On the other side of the research spectrum are studies that focus primarily
upon workflow. [Graves 1986a] formulates a stochastic model of workflow
through a job shop that is very similar in structure to the way workflow is
modelled here. He develops a discrete-time, continuous flow model for the
movement of work in the system. His model is different from the one here
mainly in terms of the randomness in exogenous work input and simple noise in
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work transfers from station to station. He does not explicitly model the

workforce but instead generates simplified expectations of labor needs that are

suggested by the workflows. In [Graves, et. al. 1986b] an LP planning model for a

mental health care system is developed that optimizes the flow of patients

through a health care system according to certain measures of social welfare.

This model does not include the assignment of resources to points of the system

as decision variables.

The existing research that has linked labor with workflow has focused on

worker dispatching rules in stochastic job-shop type work environments. Much

of this research is surveyed in [Trevelen 1989] and is characterized by simulation

studies of the performance of various dispatching policies when not all of the

equipment in a shop is fully staffed. These studies do not consider how to

generate schedules for individual workers and do not take into account flexibility

in start times or shift length.

Our model combines the bank teller and the factory workflow paradigms.

The service factory can be viewed as a network of "bank tellers." "Customers" (i.e.,

units of work-in-progress) proceed through the various work stations of the

service factory, with different customers perhaps taking different routes. Any

customer may enter the service factory exogenously at any station and exit the

factory at any station. Exogenous customer arrival profiles can follow any

prescribed time-of-day pattern. Paths through the network are governed by a

Markov chain, allowing for feedback (i.e., cycling) due perhaps to defective

processing or work categorization. In many ways the model parallels that of a

Jackson queueing network [Jackson 1957], but without stochasticity and steady

state. In addition, we will assume that the various customer flows are large

enough so that all the integer variables may be accurately approximated as

continuous ("relaxed") variables. By allowing the queue of customers, i.e., work-

in-process, at a workstation to grow in a buffer, one has the flexibility to smooth

the workflow over the course of a day. Work does not arrive "downstream" from

any particular workstation until, of course, the work is processed at that station;

inventorying work at a workstation will delay flow of work to stations

downstream and thereby delay demand for workers at downstream

workstations. Workers, who in general are cross trained, may work part time or

full time shifts, may start work only at designated shift starting times, and may
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change job assignments at midshift. Our task is to schedule "servers" (i.e.,

qualified workers) at the respective stations and also to schedule the time

progress of "customers" through the network so as to minimize labor costs yet

satisfy constraints such as required time windows for customers to emerge "fully
serviced" from the network.

The modeling approach uses ideas of linear time invariant (LTI) systems

analysis, due in part to the fact that the time progression of a Markov chain is

governed by a set of linear difference equations (Sittler 1956; Howard 1971).

When realism can be enhanced, we include extensive detail in the input data set,

recognizing that data set size does not necessarily imply model intractibility or

conceptual complexity.

The linear program derived from the modeling analysis is an object oriented

LP (OOLP), due to the building block nature of the model; the resulting model

can be thought of a set of inter-related LTI blocks (i.e., workstations), connected

together by a network whose dynamics are governed in discrete time by LTI

analysis. A user can construct and operate the LP in object language without

ever having to see the detailed objective function and constraint equations

imposed by the model. Our belief is that the ultimate user of this model will see

no equations in its generation or use, only icons on a computer screen that - with

a mouse click - can be "opened" to input or change parameters related to each

icon. The ideas are compatible with many of the suggestions of Geoffrion toward

building a "language for structured modeling." (Geoffrion 1987, 89, 92, 92)

For reader convenience, a glossary of modeling terms is given in Exhibit 1.
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Glossary: Exhibit 1

n = total number of workstations in the factory
T = total number of equal length time periods during a working day
bjt = the number of units of work that arrives exogenously to station j and is presented

there at the beginning of time period t, t = 1, 2,.. ., T.

B = total daily exogenous work input, or B - b jt
j=lt=l

Pij = fraction of jobs processed at station i that are routed next to station j, i,j = 1,...,n.
H = the set of all allowed shift lengths

ST = the set of all allowed starting times for shifts
Mki = 1 (0) if worker type k can (cannot) perform work at station i.

(j, j2) = a pair of workstations, jl and j2, representing a worker's workstation assignments for
the first and second half of her shift, respectively

K = number of worker types
Ak = the set of all (jl, j2) that are feasible for worker type k, i.e., Mkl1 = Mkj 2 = 1.

Xk,(jl, 2), h, x = number of workers of type k working the first half of the shift at station jl, the

second half of their shift at station j2, for a shift of length h that starts at time period ; ; k =

1,...,K;(jl, j 2 )e Ak;he H;E cST.

Ck,(l, j 2 ), h, T =cost of a worker of type k working the first half of the shift at station jl, the

second half of their shift at station j2, for a shift of length h that starts at time period r;; k =

1, . .. ,K;(jl, j 2 )e Ak; he H; r ST.

fk,(jl, j2), h, rt = number of units of work that a type k worker can process during period t,

assuming the worker works the first half of the shift at station jl, the second half of their

shift at station j2, for a shift of length h that starts at time period r; ; k = 1,..., K; (jl, j2) E Ak

; h H; ST., t=r,r+l,...,l+h-1.

Ijt = total quantity of new work presented to station j at the start of period t
Rj, tl = total work remaining at station j from period t - 1

Yjt = units of work in the buffer at station j at the start of period t

Wjt = maximum number of jobs that can be processed by personnel assigned to station j during

period t

Ojt = "output" of station j during period t
X = the maximum allowed percentage of daily exogenous work that can be left in the system at

the end of the day for processing "tomorrow"
wjt = maximum number of workers who are permitted to work at station j during period t

,yt = capacity of buffer j during period t, measured in units of work
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2. Formulation of the Problem

2.1. Overview

The service factory is arranged in a general way that resembles a

manufacturing factory. The service factory contains n workstations (or stations),

where at each workstation workers will be assigned to process work-in-progress

(hereafter simply referred to as "work") that flows through the workstation. Each

workstation has a finite capacity buffer that can be used to inventory locally

work waiting to be processed next by that particular workstation. The workday

is divided up into T equal length periods (e.g., 24 one-hour periods).

Work arrives exogenously at the factory during each time period and is
presented to the appropriate work station(s) at the beginning of the next time
period. We denote by bjt the number of units of of work (sometimes called

"jobs") that arrives exogenously to station j and is presented there at the
beginning of time period t, t = 1, 2,..., T. For instance, if b47 = 66, then 66 units

of work arrive exogenously to station 4 during period 6 and "become ready" for

processing by station 4 at the beginning of period 7. We assume a cyclic clock, so
that b1j is the exogenous work that arrives at workstation j during period T and

is presented to station j at the beginning of period 1.

Work can move from one station to another only at the end of each

respective time period, being transported virtually instantaneously to another

station, ready for processing at the beginning of the next time period.

2.2. Markovian Work Routing

The process by which work proceeds from station to station can be

described by a network in which each node represents a station and each

(directed) link represents a one-step path of flow of some work from one station

to another. It is convenient to add to the network one additional (dummy

station) node n + 1 which "collects" all the final output from the service factory.

10



We denote the fraction of work output that flows from station i to station j
n+l

by Pij, i,j=1,2,...,n+l, where 1 Pij=l, i=1,2,...,n+l and pn+,,l+l-l.. We allow Pii >

0, reflecting a self loop at station i which in practice usually depicts processed

work at station i that, due to some type of defect, must be reworked there before

it can be forwarded to station j i. We assume that any such rework on defects

must occur in a time period subsequent to the time period in which the work is

initially processed at node i. That is, the same job cannot be both worked and

reworked during the same time period.

While the flow of individual jobs is sufficiently large so that we can treat

all flows as deterministic quantities, the route of any individual job can be

considered to be probabilistic. This is due to the Markovian nature of the

network of stations, in which each station can be viewed as a state in a discrete

state discrete transition Markov chain. Feasibilty of a solution requires that the

artificial state n+l is accessible from any starting state i (corresponding to the

station of exogenous entry into the system), and since state n+l is a trapping state
(i.e., Pn+l,n+l = 1), the Markov chain is ergodic with only one recurrent state, the

"trap" state n+l; all states other than the trap state are transient states. This

implies that eventually, with probability one, each piece of work will reach trap

state n+l, meaning leaving the service factory. The path taken by any individual

job is independent of the values of the decision variables, assuming a feasible

solution. The time that a unit of work is resident in the system is, of course,

highly dependent on the values of the decision variables; in general, larger in-

residence times correspond to larger inventories in buffers.

The deterministic flows used in the optimization are in fact the expected

values of integer valued random variables. An analysis of the validilty of the

deterministic assumption used in the optimization model would focus on the

values of the coefficients of variation of these random variables. In large MPC's,

for instance, typical coefficients of variation are less than 0.05, implying that the

deterministic assumption is a reasonable one.

One can forgo completely the stochastic interpretation of the model and

view the entire model as deterministic. In that case, the "one step Markov

transition probabilities" become deterministic "branching ratios," indicating the
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relative fractions of work routed to each respective subsequent workstation. In
fact, the branching ratios could add to a value greater than one, reflecting the
possibility that in some service factories a unit of work at a workstation can be
"split up" into two or more pieces that are subsequently processed separately
along different paths, perhaps to be reunited later "down the line" in the factory.
While such a generalization is not conceptually difficult, for simplicity in this
paper, we do not explicitly consider work splitting and reuniting, and we require
each set of branching ratios, or transition probabilities, to sum to one.

2.3. The Decision Variables

The objective is to assign workers by time and task so as to meet system
constraints at minimum cost. Thus, the numbers of workers assigned, by
category, represent the decision variables.

Each worker's time schedule consists of assignment to a shift of a given
integer length and starting at a given integer time, where the respective integers
correspond to the number of time periods in the shift and the time period during
which the shift is started, respectively. Let H be the set of all allowed shift
lengths (e.g., H = 4, 6, 8, 12)) and ST be the set of all allowed starting times for
shifts (e.g., ST = (4, 8, 12, 16, 20, 24)).

In a move away from the simple teller's paradigm, workers may be cross
trained. That is, some or all workers are able to do the work associated with two
or more workstations. This flexibility is exploited at the mid shift break point,
usually just after the meal break, at which point the worker may be switched
from the station worked before the break to another for which she is trained. A
worker type is characterized by the set of stations for which she is trained to work
and by the productivity levels that she can attain at each respective station. For
instance, worker type 1 may be trained to work stations 1, 5, 6 and 10 (with given
productivity levels), whereas worker types 2 and 3 may be trained only to work
stations 1 and 7, with type 2 being "more productive" than type 3. A worker is
said to be "trained on station j" if she has positive (i.e., nonzero) productivity at
station j, at least during certain hours on certain shifts. Let K be the number of
worker types. Let M be a matrix with rows corresponding to worker types and
columns corresponding to stations, where
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1 if worker type k is trained on station j
kJ = 0 otherwise

Let (jl, j2) be a pair of stations where jl represents the station a worker is

assigned to during the first part of her shift and j2 is the station the worker is

assigned to during the second part of her shift. Let Ak be the set of all (jl, j2) that
are feasible for worker type k, i.e., MkjI = Mkj2 = 1.

Each worker type's hourly productivity depends on shift characteristics

and is allowed to vary over the course of a shift; this flexibility allows one to

adjust for partial or full time off during a period for meal break, travel between

stations, set-up and set-down requirements during the starting and ending

periods of shifts, etc. The productivity coefficient is

Pk,(jl, j2), h, t = number of units of work that a type k worker can process

during period t, assuming the worker works the first half of the shift at
station jl, the second half of their shift at station j2, for a shift of length h

that starts at time period r;; k = 1,.. ., K; (jl, j2 ) Ak; h E H; rE ST.,

t=r,r+l,...,r+h-1.

This coefficient is equal to zero if Mkjl or Mkj2 is zero, i.e., if the worker is not

qualified to work at station jl or j2, and is usually positive otherwise; for any

particular period t the coefficient may be zero or a small number, reflecting a

scheduled meal break, time in transit, etc. When the worker is working at full
productivity, we assume pk,(jl, j2), h, Tt 1, i.e., that a qualified worker at a station

can process many pieces of work per time period. For instance, a worker assigned

to an mechanized letter sorting machine in an MPC can process more than 3000

letters per hour. This assumption of processing many pieces of work per unit time

allows us to model work movements as continuous flows, not as discrete units or

pieces as might be found in some job shop models. The flow assumption is critical
to our model.

There is one set of explicit decision variables in the model, namely the

numbers of workers of various types to schedule for tours and assign to
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workstations. We define these decision variables and their associated costs as

follows:

Xk,(jl, j2), h, r = number of workers of type k working the first half of the

shift at station jl, the second half of their shift at station j2, for a shift of

length h that starts at time period ;; k = 1,..., K; (jl, j2 ) E Ak; h E H; 'rE ST.

Ck,(jl, 2), h, T = cost of each worker of type k working the first half of the shift

at station jl, the second half of their shift at station j2, for a shift of length h

that starts at time period r;; k = 1,. . ., K; (jl, j 2) Ak; h E H; r E ST.

The objective is to minimize the total cost of the system,

K

where the sum is seen to be over all possible combinations of worker types,

feasible pairs of stations for which workers are qualified to work, shift lengths

and starting times. The model to be developed below will reveal the constraint

set against which this minimization is to be performed.

A second set of decision variables, which are implicit, deals with

workflow. That is, we assume that there are (finite capacity) buffers at each

workstation that can be used to inventory work so that not all work that arrives

to a workstation at the start of time period t needs to be processed during period

t. Some work, in addition to jobs that require rework due to defects, can be left

over at the end of period t, to be processed during period t + 1 or even later. In

that sense, the optimal solution to the problem determines personnel scheduling

with job assignments and workflow progression through the factory. This

progression is determined by a set of linear relationships that specify the

operation of each station and its interaction with each other station. Those

relationships provide inequality and equality constraints for the model. We

develop these relationships within the context of generic workstation j, depicted
in Exhibit 2.

2.4. Model of a Workstation
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The generic workstation is the building block of the model, the key "icon"

in the object-oriented depiction of the service factory. We develop the model for

the workstation in this subsection.

First we deal with work flowing into the workstation. The total quantity

of work (jobs) at station j at the start of period t is the sum of the new work that is
presented to station j and the residual work that has remained at station j from

period t - 1. This total quantity is the number of jobs in the buffer at station j at

the beginning of period t and represents the maximum amount of potential work

that could be processed at station j during period t.

The new work arriving at station j at the start of period t is the sum of the

exogenous work presented to station j and the sum of all the work delivered
from other workstations, excluding station j. Defining

Ijt = total quantity of new work presented to station j at the start of
period t,

we have

bjt+ j PiJOi(tl) t=2,3,...,T

[jt = (1)

b j + PiOiT, t= 1,

where

i(t-1) = the "output" at station i at the end of period t-1.

= the number of units of work produced at station i during period t-1.

We must be careful to note that the output Oi(t-l) represents the total number of

units of work processed at station i during period t-l, including work that has to be
retained at station i due to defects. The quantity PijOi(tl) represents the number of

units of work that flow from station i to station j (virtually instantaneously) at the

end of period t-1.
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The residual work remaining at station j from period t - 1 is the sum of (1)

the number of jobs processed during period t - 1 at station i that must be
reworked at station j due to defects and (2) the difference (if positive) between

the quantity in the buffer at the beginning of period t - 1 and the amount
processed during period t - 1. Define

Yjt = units of work in the buffer at station j at the start of period t

Rj t_1 = total work remaining at station j from period t - 1.

Yjt is the maximum potential quantity of work that can be processed at station j

during period t. The actual quantity of work will of course depend on the
number and types of workers assigned to station j during period t. If the number

of workers assigned is sufficiently large so that their capacity to perform work
during the period equals or exceeds the work in the buffer, then the buffer will be
depleted entirely during period t; otherwise there will remain some quantity of
unworked jobs in the buffer for the next period.

Recognizing that the buffer content at the start of a period is the sum of

the new work delivered at the start of that period and residual work remaining
from the previous period, we can write

Yjt= Ijt +Rj,t- 1 , t =2,3,...,T
(2)

Y jt= Ijt +Rj,T t=l1

where the residual work is the sum of defect-related (re)work and work
remaining in the buffer, i.e.,

Rjt = PJOjt + [Yjt - Ojt] (3)

All of these relationships are shown schematically in Exhibit 2, in which a unit of

delay is depicted by a triangular unit delay operator.
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bit
Ojt < min{Yt,W

PjjOjt

Exhibit 2. Schematic Diagram of Generic Workstation

We now develop expressions for the amount of output from workstation j
during a given time period. In many instances, this output will be either the
maximum amount that the currently deployed workers can produce or the
amount in the buffer, whichever is smaller. However, there may be buffer

capacity constraints "downstream" from workstation j, constraints that would be

violated if the maximum possible output were to be produced at station j. In
such circumstances, the downstream buffer capacity constraints back up or block
production "upstream" and temporarily curtail production there. If the buffer

capacity constraints do not limit production, minimization of the objective
function will force the maximum possible output from station j.

The modeling to accomplish the desired behavior is rather simple. If we
define

Wit = maximum number of jobs that can be processed by personnel

actually assigned to station j during period t,

and recalling that

Ojt = "output" of station j during period t

17
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= number of jobs worked by assigned personnel at station j during

period t,

then we can write

Ojt = MIN{Yjt, Wjt ,

implying the inequalities,

Ojt < Yjt

0 jt < Wit

(4)

(a)

(5)

(b)

The maximum number of jobs Wjt depends on the number of each type of

worker that is assigned to station j during period t, and can be expressed as

{'eth, .k'(dJ)httXk(J'J)' +n 2 Wk

n2j

rE th ]ik,( n1l J),h, ,Xk,( n,) t}

TEth ik,(jnd2)h,.rtXk,(jn 2 ),hT+

(6)
nle Wk
nlj

where

Mj is the set of qualified worker types for station j

Wk is the set of stations for which worker types k is qualified

Fth is the set of starting times such that a shift of length h includes period

t, i.e., Fth={ x: t+l-h<r<t}

Gth is the set of starting times such that the first half of shift h includes

period t, i.e., Gth={ r: t+l-h/2<:t})

18

Wjt·'E·jIE:



Qth is the set of starting times such that the second half of the shift h
includes period t, i.e., Qth=( r: t+1-h<r<t-h/2).

The entire workstation described in this section can be considered as one

object or icon in an interactive computer implementation of this modeling
system. In computer parlance, the workstation object can be thought of as a large
"macro."

2.5. Completed Work

All work that is completed during the day is artificially collected and
stored at node n+l. Consider a particular day: work is physically completed at
the end of each of the periods 1, 2,..., T, and is forwarded to node n+1 at the
start of periods 2, 3,..., T, 1, respectively; work completed at the end of period T
(i.e., at the end of the day), since it is not passed to the collection buffer until time
T+ = 0+, is counted as the first completed work for the next day. In terms of
defined variables, we note that

Yn+l,t = total number of units of work at node n+1 at the start of period t

= total work completed up to and including the start of period t,

The total intra-day work completed up to and including the start of period t is
given by the usual recursion,

Yn+l,t = l Pi,n+lOi(-1) + Yn+l,(t-1) t2,...,T

where we define the start-of-day boundary condition, which counts work
processed during "yesterday's" last period as "today's" first period completed
work,

Yn+l,1 = Pin+lOit -
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In LTI terminology node n+l is simply a summation operator that is reset

at the start of each day; it too is an object that can be thought of as an icon or a

macro.

2.6. Capacity Constraints

Most applications of a model of a service factory must include constraints

on capacities of certain physical facilities to accomodate workers and/or work.

With regard to workers, in most service factories there is a capacity limit

for the number of workers who can simultaneously work at a workstation. For

instance, for certain semi-automated mail sorting machines in U.S. postal

facilities, there is a finite number of positions (each consisting of a chair,

keyboard and mail input device) for workers; once these positions are all filled,

no additional workers can be accommodated at that station. We generalize this

by defining

wjt = maximum number of workers permitted at station j during period t.

Then we must have

X;,(j j),hr + C E Xkln,),h,,+ E Xk(n )h,<wjt
IfEjh(=HI e;h XWX)n2 th nEWk TWk th (8)

n2•j nl-j

With regard to work, we assume that each buffer j is capacity constrained,

with perhaps a different capacity by time of day. Defining,

y1t = capacity of buffer j during period t, measured in units of work,

we can write,

Yi < Yjt, j=l, . .., n; t=l,. . . ,T. (9)

These constraints can easily be added to the workstation macro.
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2.7. Time Window Constraints for Work Completion

We now consider time constraints for completing the work. For any

feasible solution, the model behaves as a deterministic time-cyclic system, in

which each "day of work" is exactly like every other day. Thus, if a solution is
feasible, every day the amount of work produced by the service factory (i.e.,

exiting via node n+1) is equal in magnitude to the amount of work presented

exogenously to the factory. Noting that the total daily exogenous work input to

the system is B - l bjt, fo r solution feasibility we must have Yn+I, T = B, i.e.,
j=lt=l

the total output of the system during a day must equal the total input, as
measured in units of work.

But management is usually interested in the speed with which work

proceeds through the factory. For instance, management might specify that 95%

of the work brought to the factory each day must exit the factory by the end of

the day. By "work brought to the factory," we mean the sum of exogenous work

and work left over from the previous day. For the stated condition to be fulfilled,

the system (excluding state n+1) at the end of the day (at the end of period T)

cannot contain as work-in-process inventory more than 5% of the total input for

the day where, again, input is the sum of exogenous inputs and work left over

from the previous day.

Without a speed-of-work constraint, unfinished work would tend to fill
up the buffers, thereby greatly smoothing the workflow as experienced by

assigned workers, who themselves would tend to be the least expensive

alternative for accomplishing the required tasks. An increasingly tight speed-of-

work constraint tends to propagate through the factory the temporal variability

of the workflow as originally presented to the factory and to delimit the types

and costs of workers available to do the work; all this, in turn, increases the total

cost of operating the system. A tight speed-of-work constraint implies low in-

process inventories; a loose speed-of-work constraint implies large in-process
inventories. In fact, one can prove a Little's Law of queueing for this model:
time average in-process inventory = (daily arrival rate of work) * (average time

spent in the service factory by a random unit of work).
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Returning to the model formulation, the work left over from the previous
day can be considered to be divided into two components: (1) the work
remaining in buffers; (2) the work remaining in the system being transported
virtually instantaneously at the end of period T from one node i to another node
j; i, j = 1, 2,... , n. The quantity of work remaining at station j at the end of
period T is the residual work RjT; all of this work will reside in the buffer at

station j at the start of the next day. The total quantity of work leaving node j to
the set of all other internal nodes i (i=1,..., n; i j) at the end of period T can be
written as OjT(1 - Pjj- Pj+); all of this work will reside in other buffers i (i=1,...,

n; ij) at the start of the next day.

Generalizing the 95% service level to X percent, we obtain the constraint

(RjT + OJT(1- jj- Pjn+1) ) < (1-){ B + RJT+ OjT( - pjj- pjn+1)

or, equivalently,

,1 (RjT + OT{1-p-p -Pj,n+l}) <{ 1 }B. (10)

In addition to the speed of work constraint represented by Eq.(10),
management may wish to constrain the pattern of flow of work completed over
the course of the day. By this we mean that "X percent of the day's work should
be completed by the end of period t." If we define Xt as the desired fraction of the
day's work to be completed by the end of period t, and recognizing the unit
counting delay associated with node n+l, then this type of constraint is given by

{Yn+,t+l/B} > t, t = 1, 2 ... , T-1. (11)

(Recall that work processed during period T of one day is "credited" to period 1
of the next day and that Yn+l,T = B.)

2.8. Managerial Constraints
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A variety of managerial "side" constraints can be included in the model.
For example, we can require that a given percentage a of workers must be full
time workers (i.e., those working shifts of length eight hours or more). This
managerial constraint can be expressed as

K K
(1--a){ k-1 jeAk I I I XkQ1 J2),h,*r a kl ,lAk hel TET k(j,j2)h.=1~ ~kt·EA k = I Dj2E AhTH

h<8

(12)
For another example suppose the number of workers who are allowed to switch
between different stations can be at most wo percent of all workers scheduled.
This managerial constraint can be written,

(1-kl (l2)E Ak 1 (,JEAk heH (13)
(ijlA2)

The model can also include many other managerial side constraints.

The overall optimization problem is to determine how many workers to
assign to each station during each period so as to minimize the total cost of the
system subject to physical, managerial and performance constraints.

For reader convenience a summary of the LP model is given in Exhibit 3.
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Exhibit 3: Summary of LP Model

Objective Function: Minimize Cost of Workers:

K
Min I

k=1 (jl,JE2Ak hH Tr;T C k,(Jl ,),h,Xk,(l,j22 ),h,r

1. System Dynamics

l.a. Buffer level=new work + residual work:

Yjt = units of work in the buffer at station j at the start of period t

= Ijt + Rj,t , where Iit = bjt + Piol(t-l) and Rj,t-l = Pjjj(t-)

Yjt = bjt + PijOi(t-1) + [Yj(t- 1)- j(t-)] , j=l,...,n; t=2,...,T

Yjl = bjl + PijOiT + [YjT- OJT], j=l,...,n

l.b. Output of a Station: Ojt < Yjt and Ojt < Wjt, where

jt1 k;jh H Pfk,(jj),h,r,tXk,(jj),h,, + 2E
n2E Wk

1eth [k,(j,n2) ,hrtXk,(j,n2),h,x+

nle Wk
nlij

TEth 1Pk,( nl,J),,',tXk,( nl,J),h,r}

l.c. Completed Work

Yn+l,t = total work completed up to and including period t,

Yn+l,t = J. Pin+lOi(t-1) + Yn+l,(t-) J=1 t=2,...,T, where Yn+l,l = Pi,n+lOiT
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2. Resource Capacity Limitations

2.a. Maximum number of workers at a station

ke;jheH n2 e Wk

n2•j

Xk,(j,ng),h, +
' th nleWk

nl•J

2.b. Buffer Capacity

Yjt < Yjt, j=l, . . ., n; t=,. . . ,T.

3. Speed and Pattern of Work Flow Requirement

3.a. At least A percent of each day's work must be done that day

n T
j=- RjT{ } tnI b jt'

3.b. Percentage of day's work that must be completed by a given time.

{ Yn+l B } > Xt

4. Side Constraints

The fraction

k= 1 (i

of workers who are full time must equal or exceed .

,A h hŽ8 TXk,(jl, 2) ,hr} {k Il (jl,JeAk j2),hel -
,jA khE H_8 -, hH<

h<8

The fraction of workers who may switch jobs at midshift cannot exceed A:
K K

(1-k)(Ik 2) h" T Xk,(JlJ2),h -OIk= ( j ,jAkh reT Xk,(JJ)h,}O

(jliJ2)

5. Nonnegativity: All subscripted variables X, O, Y, I, R are nonnegative.
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2.9. Size of the LP

The size of the LP model in terms of number of constraints is mainly
determined by the number of workstations in the system and the time scale used,
whereas the number of variables is dependent upon the degree of flexibility and
heterogeneity of the workforce being modelled.

There are 3nT constraints describing the system dynamics, nT constraints
each for the buffer capacity and worker space capacity limitations, 2 constraints
governing the speed and pattern of the workflow, and a constraint each for the
limitations on the amount of jobswitching and part time work allowed. More
constraints can be added to define different time windows for productivity levels.
Therefore the total number of constraints is approximately 5nT+4. For example in
an 8 station system with T set at 48 to represent half-hour periods the number of
constraints will be 1,924.

The number of variables relating to the flow of work are 2nT, i.e. the
variables Yjt and Ojt. The number of labor variables Xk,(jl, j2), h, is

I H I I ST I IAk . For example in a workforce that has 10 different types of

workers, each qualified to perform each of the 8 different tasks in the system the
sum A A, I would be 640. If there were 4 shift lengths and 6 start times the total

k

number of labor variables would be 15,360. In the 8 station system modelled in
Section 4 of this paper, in which a 24-hour-day is divided into 48 half-hour periods,
there are 768 flow variables for a total of 16,128 variables. It is easy to see that the
variety and flexibility in the workforce is what most strongly determines the
number of variables in the problem. The numbers of variables and constraints we
are speaking of for realistic problems are not large, and the corresponding LP's can
be solved "in minutes" on a modern workstation computer.

3. A Simple Feasibility Test

Before preparing the detailed data base for linear programming execution,
one might wish to check that a feasible solution exists. While we do not know
how to do this for the general case, we have developed a simple check for the
case in which neither buffer capacity constraints nor staffing limitations at the
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workstations are invoked. That is, we check to see if there exists a feasible

solution for the case in which buffer capacities and staffing limits at the

workstations are both infinite. In such a case it would be possible (with

sufficiently high staffing levels) to push work through the system with no

period-to-period inventory remaining in buffers; that is, each unit of work

presented to station j at the beginning of period t would be processed at that

station during period t. In that case, work proceeds through the system as
directed by the Markov chain having transition probability matrix P = (Pij). For

this Markov chain, we wish to see if the " constraint" [Eq.(10)] is met, that is if a

sufficiently large fraction of the daily work can exit the system on the day

presented. Factors working against completing work by end of day include (1) a

large service factory with many workstations in succession; (2) late-in-the-day

arrivals of exogenous work; and/or (3) feedback (i.e., cycling) in the workstation

network.

For the situation described above, let

fi(t) = flow of work (in units of work) through station j during period t

Define the n+l -vector F(t) = (fj(t) ), j=l, 2,..., n+l Define the n+l-vector of

exogenous inputs at period t, b(t) = (b(t)), where bn+l(t) O. Then, at the end of

each day, just before the end of period T, there exists a quantity of end-of-day
work at state j equal to j =0 IT, j = 1, 2,..., n. Forj=n+l, we know that lrn+l=B.

The end-of-day work is propagated into the next day according to the transition
probabilities (Pij). For instance, 7r2P21 is the quantity of work propagated from

station 2 to station 1 at the start of the next day; nr2P22 is the amount of (re)work

due to defects that remains at station 2; and 2P2,n+l is the amount of work

leaving the system from station 2, to be counted as completed work during

period 1 of the next day.

Define the n+l vector of end-of-day work, i= (j). Following a recursion

through several periods, we obtain,

F(1) = b(1) + P

F(2) = b(2) + F(1) P = b(2) + b(l) P + P2
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F(3) = b(3) + F(2) P = b(3) + b(2) P + b(l) p 2 + p3,

or, in general,

F(t) = b(t-k) pk + jrpt

We can write F(T) = (F*(T), B) [c = (* ,B)], where F*(T) [*] is an n-vector

corresponding to the n (real) workstations and the scaler B is the total amount of

work accumulated in the trap state up to and including period T. The (n+l) by

(n+l) transition probabilty matrix P can also be partitioned, with P*

corresponding to the n by n square submatrix corresponding to P with the n+lst

row and column removed. P* is a substochastic matrix (having row sums less

than or equal to one, with at least one row sum strictly less than one). But, for

states j=l, 2,..., n, due to the time-cyclic nature of the process, we have

F*(T) = r*= T; b(T-k) p*k + t*p*T

or, solving for Jr*,

T-1
*=[k b(T-k) pTk] [I p (14)

Eq.(14) is guaranteed to have a solution since, due to P* being substochastic, the

matrix [I - p*T] is invertible.

At time T the total amount of work in the system that will be held over for

the next day is ri*(1 - Pin+l). Following the derivation of Eq.(10), we must

have

ri*(l - Pi+l) - < (1 - A) [ B + t i*(1 - Pi+l) 

or,
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x li*(1 - Pin+l) < {(1 - A)AB (15)

If Eq.(15) is not satisfied, then the problem has no feasible solution. Since
Eq.(14) can be solved in O(Tn3) tinme, its use with Eq.(15) could save a much
larger amount of computer time (and analyst's detailed data preparation time).

4. Illustrative Computational Results
The model presented in Section 2 was programmed in object-oriented

form as a "problem generator" to provide ease of operation for the operations
research/management science analyst. The "output file" from the program,
invisible to the user, is designed in a form that is compatible with the widely
available commercial LP solver, CPLEXTM . All executions of the model have
been done using CPLEX as a "black box" LP solver.

To illustrate several features of the model we present numerical results
based on a service factory having six stations arranged in the network depicted
in object-oriented form in Exhibit 4; each lettered rectangular icon represents a
workstation and nonzero inter-station workflows are depicted by directed arcs.

Exhibit 4: Six Station Service Factory

The work day is divided into T = 48 30-minute time intervals, with
interval 1 starting at midnight. Exogenous work enters the system only at station
A and exits only at station F. At each of the stations B,C,D, and E there is a 5
percent defect-related rework rate for work processed there; this implies that PBB

= PCC = PDD = PEE = 0.05. Hence, contrary to the appearance of the icon-oriented
model in Exhibit 4, the model does include cycling or feedback, but such
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feedback (being local to each workstation) is not shown explicitly in Exhibit 4. At
all stations there is an inventory storage limit of 550 units of work, which is also
the maximum one period exogenous work input to the system. The
(probabilistic) routing of the work occurs according to the following transition
probabilities:

PAD = 0.6, PAB = 0.4, PDE = PBC = 1, PCF = 1IPEB = 0. 3, and PEF = 0.7,
shown adjacent to the respective directed arcs in Exhibit 4, with all other inter-
workstation transitions occurring with probability 0.

We will assume that the labor pool potentially available for staffing the
above system comprises the worker types shown in Exhibit 5. To illustrate

Worker Type Qualification Productivity* Salary**
1 A,E 60,80 30
2 B,F 80,80 38
3 A,C 80,80 36
4 A,D 60,60 30
5 E,F 80,80 34
6 D,E 80,80 36

Exhibit 5: The Six Allowed Worker Types for Illustrative Example

* Units of work processed per hour
** Dollars per hour

interpretation of Exhibit 5, a type 1 worker is qualified at station A with a
productivity of 60 units of work per hour and at station E with a productivity of 80
units of work per hour. The above productivity rates are maximum rates; in the
numerical results that follow we assume that the first and last half hour of a
worker's shift are performed at half the maximum productivity rate and that
during the half hour mid-shift break the productivity is zero. These assumptions
allow for set-up and set-down times at the beginning and end of the shift,
respectively, and for a mid-shift meal break. [While we could express all model
parameters in terms of our notations of Section 2, we choose not to do this in order
to maximize intuitive understanding of the model. The ultimate model user will
not see any Greek letters, sigma's for summations or other technical notations
while using the model; we describe the model's setup and use here in a style
compatible with object-oriented model usage.]
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Work is input into the system at station A according to the time-of-day
exogenous work profile shown in Exhibit 6. The main characteristic of this
schedule is that a high percentage of the total exogenous work input for a day
arrives during a relatively short timespan late in the day. Such a pattern is typical,
for instance, of large MPC's of the United States Postal Service.

We operate the model so as to minimize total labor costs under several
different operating policies. An operating policy will be defined by four decisions:

1. Is part time work allowed?
2. Is intrashift jobswitching allowed?
3. Is backlogging of work at workstations allowed?
4. How much residual inventory is left in the system at day's end?

Exogenous Work InpL
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Exhibit 6: Time-of-Day Exogenous Input Work Profile
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A full time shift is 8.5 hours, comprising 8.0 hours of work with a one half
hour (meal)break after the first four work hours. When part time work is

allowed we will restrict it to at most 20 percent of the workforce, with part time
shifts being defined as 4 hour and 6.5 hour shifts. [This corresponds to a = 0.8 in
Eq. (12).] Shifts of length 6.5 hours will have a one half hour break, whereas

shifts of length 4.0 hours will not. In model runs in which jobswitching is

allowed we will restrict it to at most 30 percent of the workforce. [This

corresponds to o= 0.3 in Eq.(13).] Switches occuring in midshift result in a half
hour break for all jobswitching employees full time or part time. This means, for

example, that a type 2 worker who works a four hour shift that is split between
stations B and F will spend the first two hours at station B, one half hour

switching over to station F, and then two more hours working at station F; so,

even though she does not officially get a 30 minute meal break, there is a 30

minute break in the shift after 2 hours, and the entire amount of time spent in the

service factory is 4.5 hours. We assume that shifts may begin at four different
times during the day: 0, 6, 12, and 16 hours (i.e., at the beginnings of time periods
1, 13, 25 and 33, respectively).

We label the eight different policies in terms of possible combinations of
the first three decisions and then perform runs parameterized on the allowed

residual inventory level:

rO - no backlogging, no jobswitching and no part time.
rOb - backlogging, no jobswtiching and no part time.
rl - no backlogging, jobswitching and no part time.
rib - backlogging, jobswitching and no part time.
r2 - no backlogging, no jobswitching and part time.
r2b - backlogging, no jobswitching and part time.
r3 - no backlogging, jobswitching and part time.
r3b - backlogging, jobswitching and part time.

We recall that A represents the percent of all work brought to the factory

(both exogenously and left over from the previous day) that must be output by
the end of the day. We minimize labor costs for the different policies with
different values for A It is important to observe that when no backlogging is
allowed, i.e. all work at each station is processed during the time period that it
arrives to the station, the system will perform as if A were set to the highest
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service level that is feasible. That is, the constraint expressed in Eq.(10) is not
relevant to the case of no backlogging, but the feasibility test methodology of Sec.
3 is relevant.

For this probem when we perform the feasibility test of Sec. 3 we compute
that the inventory at the end of the day is 11.95 units of work; this is equivalent to
A = 0.99873. This means that given the exogenous work input profile of Exhibit 6
and the six station system layout of Exhibit 4, there will always be at least 11.95
units of work carried over from one day to the next. In the case we are
examining here the computations involved in the feasibility check are very
simple. It is easy to see that in our case when the matrix P* is raised to
successively higher powers it quickly reduces to the zero matrix. Therefore we
do not have to compute the inverse of [I-P*T since it is effectively the identity
matrix and we do not have to compute many terms of the summation in Eq. (14).

The following numerical results demonstrate how adding flexibility to the
flow of work and to the use of the workforce give large benefits in labor cost
reductions. Furthermore we see that as the required service level becomes more
demanding, the more flexible systems adapt in a less expensive way than the
relatively inflexible ones. The model run results for the four cases of backlogging
are shown in Exhibit 7. When the policies with no backlogging are used the
system performs at the highest service rate which is equivalent to setting A to
0.99873. The labor costs associated with the various policies are: rO: $49,947 rl:
$46,731 r2: $39,650 r3: $36,850, as opposed to the following (dramatically
reduced) costs associated with the corresponding backlogging policies with A
equal to 0.99873: rb: $30,208 rb: $28,192 r2b: $24,945 r3b: $23,819.

In Exhibit 7 we can see that when backlogging is allowed the highest cost
is always with the policy rob, i.e. when no part time or jobswitching is allowed.
When this policy is applied with the .99873 service level the cost is $30,208 which
is 82% of the least expensive policy with no backlogging. Thus we see the
extreme importance of backlogging, an option that allows smoother workflows
and less paid lost time (i.e., time during which workers are paid but not
productively working).
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Exhibit 7: Results of the First Set of Executions of the Model

We can see the effect that different settings for A have upon the inventorylevels over the course of the day in Exhibit 8. In this exhibit we have plotted theinventory level during each time period of the day for three different values of A,0.5, 0.99, and the maximum feasible A, of 0.99873 when the policy r3b is used. Inaddition we have plotted the inventory level for the no backlogging policieswhich perform according to the maximum lambda of 0.99873, and the peakedinput profile.

Next we increase the number of allowable start times to six evenly spacedthroughout the day, commencing at times 0, 4, 8, 12, 16, and 20 hours. Asexpected. the increase in the number of different start times leads to lower laborcosts. The costs when no backlogging is allowed are: rO: $40,100 rl: $39,751 r2:$33,815 r3:$32,291. The objective function values for the backlogging policies areshown in Exhibit 9.
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Inventory Levels (Policy r3b)

99
Max

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Time Period

Exhibit 8

lambda max final inv. rOb rib r2b r3b
0.5 9400
0.8 2350 19804 19151 19058 18989
0.9 1044 19804 19151 19058 18989

0.99 95 20502 20019 19561 19455
0.995 47 20877 20300 19745 19555

0.99873 12 21322 20790 20090 19768

Exhibit 9: Optimal Objective Function Values, Six Start Times, Backlogging

We next perform the same set of runs of the model flattening the profile of

the exogenous work input into the system. The results follow the same pattern as

before but as expected the more even input workflow is easier to cope with and

results in lower labor costs when backlogging is allowed. However, when no

backlogging is permitted the flatter demand requires more staffing throughout

the day and thus increases labor costs. When the original four start times are

used the costs for the no backlogging policies are: rO:$50,119 rl: $46,344 r2: $39,342 r3:

$36,418. The corresponding objective values for the backlogging policies are

shown in Exhibit 10.

35

aVV

3000

4 2500

2000

,, 1500

1000

500

0

1)rrV



lambda max final inv. rob rib r2b r3b
0.5 9400 21618 21465 20952 20914
0.8 2350 21618 21465 20952 20914
0.9 1044 21618 21465 20952 20914

0.95 495 21618 21466 20952 20917
0.99 95 22186 22048 21359 21305
0.995 47 22663 22535 21475 21425

0.99872 12 23746 23365 22034 21806
0.99918 7.7 25924 24782 22381 22093

Exhibit 10: Optimal Objective Function Values, Four Start Times,

Smoother Inputs, Backlogging

When the six start times are used the benefits over four start times for the

no backlogging policies are sharper than when we used a peaked input profile.
The costs for the no backlogging policies are: rO:$33,00 rl: $32,771 r2: $28,951 r3:
$28,291. The corresponding objective values for the backlogging policies are
shown in Exhibit 11.

lambda max final inv. rob rib r2b r3b
0.5 9400 21129 21021 20797 20759
0.9 1044 21129 21021 20797 20759

0.95 495 21129 21021 20797 20770
0.99 95 21557 21498 21065 21038
0.995 47 22028 21975 21179 21140

0.99918 7.71 24222 23930 21866 21715

Exhibit 11: Optimal Objective Function Values, Six Start Times,

Smoother Inputs, Backlogging

We can again plot the inventory levels as we did for the peaked input with
four start times for the smoother input (see Exhibit 12). The maximum A in this
case is 0.99918.

5. Summary

We have presented and executed an object-oriented linear
programming (OOLP) model of a service factory. We believe the key results are
(1) model-relevant for services firms, providing a generic modeling structure in
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which to analyze a wide variety of services operations; (2) policy relevant for

managers and workers, since the results demonstrate the cost advantages of

cross-trained, flexible workers and inventorying of work-in-process; (3) product-

relevant for operations researchers and management scientists, since a large and

perhaps foreboding LP model can be developed and used with

Inventory Levels (Policy r3b)

Ban-
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0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Time Period

Exhibit 12

ease via the bundling of functions within an object-oriented computer software
implementation. Within the realm of linear systems (and hence linear
programming), there is little reason to believe that more sophisticated "icons"

could not be developed to represent the LTI behavior of systems more complex

than those discussed here. Going to nonlinear programming, even more

complex system components could be modeled in this way, still providing ease

of use by the nontechnical manager or planner.
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