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Abstract

The network design problem with connectivity requirements (NDC) models a wide

variety of celebrated combinatorial optimization problems including the minimum span-

ning tree, Steiner tree, and survivable network design problems. We develop strong for-

mulations for two versions of the edge-connectivity NDC problem: unitary problems re-

quiring connected network designs, and nonunitary problems permitting non-connected

networks as solutions. We (i) present a new directed formulation for the unitary NDC

problem that is stronger than a natural undirected formulation, (ii) project out several

classes of valid inequalities-partition inequalities, odd-hole inequalities, and combi-

natorial design inequalities-that generalize known classes of valid inequalities for the

Steiner tree problem to the unitary NDC problem, and (iii) show how to strengthen

and direct nonunitary problems.

Our results provide a unifying framework for strengthening formulations for NDC

problems, and demonstrate the strength and power of flow-based formulations for net-

work design problems with connectivity requirements.

1 Introduction

Network Design Problems with Connectivity Requirements (NDC) arise in a wide variety

of application domains including VLSI design and telecommunication network design. The

increasing reliance on communication networks (and expectations of a digital future) places

an enormous importance on the reliability of such networks. To stay apace of the explosive

growth of data, traffic telecommunication companies (telcos) are adding new fiber as well

as deploying fiber capacity enhancing technologies (like Dense Wave Division Multiplexing)

to increase the capacity of their backbone networks. Telcos are also actively deploying
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(competing) technologies in the local loop (the portion of the network that serves the

customers premises) to provide greater access bandwidth to customers. Given the enormous

bandwidth capabilities of these networks, and the increasing array of services provided

over them, the failure of any link in such a network can have significant, perhaps even

catastrophic consequences.

In this paper, we consider network design problems with edge connectivity requirements.

Informally given requirements for the number of edge-disjoint paths between every pair of

nodes , we wish to design a minimum cost network that satisfies these requirements. To set

notation, and define the class of problems we consider, we formally state the NDC problem

as follows:

Network Design Problem with Connectivity Requirements (NDC): We are given

an undirected graph G = (N, E), with node set N and edge set E, and a cost vector c E I 1E I

on the edges E. We are also given a symmetric INI x INI requirement matrix R = [rij]. The

entry rij prescribes the number of edge-disjoint paths needed between nodes i and j. We

wish to select a set of edges that satisfy these requirements at minimum cost, as measured

by the sum of costs of edges we choose.

The NDC problem models a wide variety of combinatorial optimization problems in-

cluding the classical minimum spanning tree and Steiner tree problems. One important

specialization of the NDC problem that arises in the design of telecommunications net-

works (see [CMW89]) is the Survivable Network Design Problem (SND). In this application

each node v in the graph has a connectivity requirement r and the connectivity require-

ments between nodes s and t are given by rt = min{r, rt}. Table 1 shows several other

noteworthy cases of the NDC problem.

A few observations concerning the entries in Table 1 are worth making. The k-edge dis-

joint path problem seeks, at minimum cost, k-edge disjoint paths between specified nodes s

and t. Whitney [Whi32] showed that a graph is k-edge connected (i.e., remains connected

after elimination of any k - 1 edges) if and only if it contains k-edge disjoint paths between

every pair of nodes. As a result, the minimum cost k-edge connected spanning subgraph

problem is an SND problem with rv = k for all nodes. The network design problem with

low connectivity requirements (NDLC) is of particular interest to local telephone companies

(see [CMW89]). In this special case of the SND problem, the connectivity requirements are

restricted to {0, 1, 2}. (Since most local telephone companies believe it is sufficient to pro-

tect against single link failures in the local loop, this problem is of significant importance

to them.) In the Steiner forest problem, we are given a graph G = (N, E) and node sets

T 1,T 2,..., Tp with Ti n Tj = for all node set pairs i, j. We wish to design a graph at
minimum cost that connects all the nodes in each node set. The point to point connection
problem is a special case of the Steiner forest problem with Ti = {si, ti} for i = 1,..., P.

NDC problems can be classified in two ways. If the connectivity requirements imply that
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Problem Type SND or NDC Connectivity Requirements
Minimum Spanning Tree SND rv = 1 for all nodes v.

Problem

Steiner Tree Problem SND rv = 1 for all nodes required in the tree;

rv = 0 for all other nodes.

k-Edge Disjoint SND rs = rt = k

Path Problem requires k edge-disjoint paths

between nodes s and t.

Minimum Cost k-Edge-Connected SND r = k for all nodes v.

Spanning Subgraph Problem

Minimum Cost Steiner k-Edge- SND rv = k for all required nodes;

Connected Spanning Subgraph Problem rv = 0 for all other nodes.

Network Design with Low SND rv E {0, 1, 2} for all nodes v.

Connectivity Requirements (NDLC)

Point to Point Connection NDC rit = 1 for given source sets

Problems {sl, s2, . .. , sp and terminal sets

{tI, t2 , , .tp}. rij = 0 otherwise.

Steiner Forest Problem NDC rij = 1 if i E Tq and j E Tq for some

pairwise disjoint node set T1, T2, ... , Tp.

rij = 0 otherwise.

Table 1: Specializations of Network Design Problems with Connectivity Constraints
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all nodes with a (positive) connectivity requirement must be connected, we say the problem

is a unitary NDC problem. Otherwise, it is a nonunitary NDC problem. For example, the

SND problem is a unitary NDC problem, while the general Steiner forest problem is a

nonunitary NDC problem.

The examples in Table 1 show that the NDC problem models a very wide variety of con-

nectivity problems on graphs. These problems appear both as stand alone problems and as

subproblems in more complex network design applications (like VLSI design and telecom-

munications network design and management). Consequently, techniques for modeling and

solving NDC problems have widespread applicability.

Considerable accumulated experience in the optimization literature has demonstrated

the value of developing good linear programming relaxations (strong formulations) of com-

binatorial optimization problems. Strong formulations are very useful in developing exact

algorithms solution methods (branch and bound, branch and cut, column generation) since

their use rapidly accelerates these solution techniques. Strong formulations can also provide

good bounds on the optimal solution and so are useful in assessing heuristic solution meth-

ods. In particular, dual-ascent heuristic techniques (that generate both lower bounds on

the optimal solution value and feasible solutions to the combinatorial optimization problem)

based upon strong formulations typically provide better solutions than those based upon

weaker linear programming relaxations. The development in this paper is motivated by a

desire to develop better linear programming relaxations for NDC problems, and to provide

a unifying strengthening approach applicable to all NDC problems.

Since the NDC problem models a wide variety of combinatorial optimization problems,

the polyhedral structure of many special cases of the NDC problem have been well studied.

Over the past twenty years, researchers have proposed a large number of formulations (and

solution methods based on them) for the Steiner tree problem. Most noteworthy among

these are the papers by Wong [Won84] proposing a (bi)directed model for the undirected

Steiner tree problem; Chopra and Rao [CR94a, CR94b] examining the facial structure of

the undirected Steiner tree polyhedron and its relationship to a directed formulation for the

Steiner tree problem; Goemans [Goe94] investigating extended formulations with node and

edge variables for the Steiner tree problem and introducing combinatorial design inequalities

for the Steiner tree problem; and Goemans and Myung [GM93] establishing the relationship

between several formulations for the Steiner tree problem.

Several researchers have examined special cases of unitary NDC problems with higher

connectivity requirements (i.e., greater than 1). For series-parallel graphs, Mahjoub [Mah94]

and Baiou and Mahjoub [BM93] provide complete descriptions of the 2-edge-connected

'A natural formulation has one variable for each member of its "ground" set. For example, a natural

formulation for the NDC problem would contain one binary (or integer) decision variable for each edge in

the graph. An extended formulation contains additional variables-integer or continuous. Strong models

for combinatorial optimization problems are often developed by using extended formulations.
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spanning subgraph polytope and the Steiner 2-edge connected spanning subgraph polytope

respectively. Boyd and Hao [BH93] introduce a class of valid inequalities for the 2-edge-

connected spanning subgraph polytope and describe necessary and sufficient conditions for

these valid inequalities to define facets. Based on a result by Robbins, Chopra [Cho92]

describes a directed formulation for the NDLC problem in a model that permits unlimited

edge replication. Using a result due to Nash-Williams, a generalization of Robbins theo-

rem, Goemans [Goe90O] shows how to strengthen a well-known cutset formulation for the

SND problem with connectivities r E {0, 1, even} in a model that permits unlimited edge

replication. Grdtschel, Monma, and Stoer [GMS92b, GMS95b, GMS95a, Sto92] investi-

gate the polyhedral structure of both the edge- and node-connectivity versions of the SND

problem. One of these papers [GMS92b]investigates the polyhedral structure of the NDLC

problem, while another in [GMS95b] examines the polyhedral structure of SND problems

whose highest connectivity requirements are three or more. [GMS95a] and [Sto92] contain

comprehensive summaries of polyhedral results for the SND problem.

Researchers have proposed many solution methods (both exact and approximate) for the

NDC problem and its specializations. Our discussion has focused on polyhedral research

in this area. Survey papers by Grdtschel, Monma, and Stoer [GMS95a], Raghavan and

Magnanti [RM97], and Frank [Fra94] provide more comprehensive reviews of research on

the NDC and its specializations.

In this paper, we develop strong formulations for both unitary and nonunitary NDC

problems. Our work differs from earlier research in several ways. Goemans [Goe90O] and

Gr6tschel, Monma, and Stoer [GMS95a] have shown in various forms how to use a result

due to Nash-Williams to obtain stronger models for the SND problem with connectivities

rv E {0, 1, even}. We show that although the Nash-Williams theorem is useful to motivate

the directing procedure, it does not play a role in strengthening the formulation (i.e., it is not

necessary)! Consequently, we are able to generalize the directing procedure to strengthen

formulations for all unitary NDC problems.

Next, we project out three classes of valid inequalities from the strengthened (extended)

formulation for the unitary NDC problem that are generalizations of facet-defining valid

inequalities for the Steiner tree problem. For special cases of the unitary NDC problems

several researchers have shown how to project from extended formulations that are equiva-

lent to the flow-based strengthened formulation for the NDC problem. For example, Goe-

mans [Goe94] describes a node weighted formulation for the Steiner tree problem and obtains

the three classes of valid inequalities by projection. Chopra and Rao [CR94a, CR94b] de-

scribe a directed arc formulation for the Steiner tree problem and show how to project out

two classes of valid inequalities-partition and odd-hole-from it. Gr6tschel, Monma, and

Stoer [GMS95a] describe a directed formulation for the SND problem with connectivities

rv E {0, 1, even} and show how to project out partition inequalities from it. We illustrate

the projection from the flow-based formulation for three reasons. First, several extended
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formulations that are equivalent to the flow formulation for the Steiner tree problem do

not generalize to the NDC problem, for example, node weighted extended formulations for

the Steiner tree problem do not generalize to the NDC problem. Second, for nonunitary

problems we describe a directing and strengthening technique that requires flow variables.

Consequently, a deeper understanding of the flow-based formulation and its relationship to

the cutset formulation is important. Third, we believe this paper is the first to explicitly

show how to project from the flow-based formulation (even for special cases of the unitary

NDC problem like the Steiner tree problem).

Finally, we show how to direct nonunitary NDC problems which appear to have received

significantly less attention in the literature. We implement our directing procedure by

using flow variables to obtain strengthened (flow-based) formulations for nonunitary NDC

problems, but it is not obvious how to implement the directing procedure without using

flow variables.

A companion paper [MR99] empirically confirms the theoretical results presented in

this paper. It shows that a solution procedure for the NDLC problem using the models

developed in this investigation can be effective in solving large scale problems with up to

300 nodes and 3000 edges to within a (guaranteed) few percent of optimality.

The rest of this paper is organized as follows. In Section 2 we review two well-known for-

mulations for the NDC problem, a natural formulation with edge variables, and an extended

formulation containing both flow and edge variables. Next in Section 3, we first motivate

the directing procedure applying a result by Nash-Williams that applies to unitary NDC

problems with restricted connectivities. We then obviate the need for Nash-Williams re-

sult to strengthen the formulation of all unitary NDC problems. Sections 4, 5, 6, and 7

deal with the strength of the improved formulation. Section 4 provides some preliminary

results regarding the projection of improved flow formulation onto the space of the edge

variables. Sections 5, 6, and 7 show how to project partition inequalities, odd-hole inequali-

ties, and combinatorial design inequalities respectively from the improved flow formulation.

In Section 8 we examine nonunitary NDC problems. We first show how to strengthen a

formulation of the Steiner forest problem by applying a new directing technique. In Sec-

tion 9 we use this technique to strengthen formulations for all NDC problems. Finally, in

Section 10 we provide some concluding remarks.

Notation: We assume familiarity with standard graph theory terminology. We work

with undirected graphs and directed graphs which we refer to as graphs and digraphs. To

distinguish between directed and undirected graphs, we refer to undirected graphs as graphs,

undirected edges as edges, directed graphs as digraphs, and directed edges as arcs. We use

braces to denote an edge between nodes i and j, i.e., i, j), and parentheses to denote a

directed arc from node i to node j, i.e., (i, j). Econ(T) := max(rij Ij E T; i E N\T} denotes

the connectivity requirements of a set of nodes T. It is the maximum edge-connectivity
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requirement between any node in T and its complement. For NDC problems we refer to

econ(i) as the maximum connectivity requirement of node i. If econ(i) > 0, we say node i

is a required node. In models that permit parallel edges, we let G = (N, E) represent the

underlying graph and bij represent the number of parallel edges allowed between nodes i

and j. For example, if a model permits two edges between nodes i and j, then the graph

G contains the edge {i, j} and bij = 2. In an undirected graph, any set of nodes T defines

a cut 6(T) = {{i,j} : i E N\T,j E T}. Similarly, any set of nodes T in a directed graph

defines a dicut 6-(T) = ((i, j) : i E N\T, j E T} of arcs directed into the node set T and

a set of arcs +(T) = {(i,j) : i E T,j E N\T} directed out of T. An s-t cut is a cut 6(T)

with s V T and t E T. Similarly, an s-t dicut is a dicut, say 6-(T), with s V T and t E T.

The capacity of a cut 6(W) is defined as the sum of the capacity of the edges in the cut,

and the capacity of a dicut 6- (W) is defined as the sum of the capacity of the arcs in the

dicut.

Sometimes we will want to eliminate the variables from an "extended" formulation of a

problem. Let A and B be two given matrices and d be a column vector, all with the same

number of rows. Consider the polyhedron P = {(x, f) : Ax + Bf > d}. The polyhedron

Q = x : Ax + Bf > d for some vector f obtained by eliminating the f variables is

called the projection of the polyhedron P. If two formulations for a problem provide, for

all objective function coefficients, the same optimal objective value when solved as linear

programs, we say the two formulations are equivalent. When we compare two extended

formulations, we say the two formulations are equivalent if they provide the same objective

value for all objective function coefficients on the natural variables (the objective function

coefficients for the additional variables are zero). In other words two extended formulations

are equivalent if their projection onto the space of the natural variables is identical. We say

that adding an inequality / strengthens a formulation of a (mixed) integer programming

problem if it is valid and adding it to the formulation improves the objective value of the

linear programming relaxation of the formulation for some choice of the objective function

coefficients. We say that a formulation Pi is stronger than a formulation P 2 if, when solved

as linear programs, the objective value of Pi is always better than the objective value of

P2, and sometimes is strictly better than the objective value of P2 .

2 Formulations for the NDC Problem

In this section we describe two well-known models for the NDC problem, one a cutset

model, and the other a multicommodity flow-based model. For the flow-based model we

also show how to minimize the number of commodities, a method that proves invaluable in

our subsequent discussions.

Menger's theorem [Men27] states that the number of edge-disjoint paths between a pair

of nodes, say s and t, is equal to the minimum number of edges across any cut between
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them, i.e., any s-t cut. Consequently, the following well-known "cutset" formulation, with

xij representing the number of copies of edge {i, j} in the network, is a valid representation
of the NDC problem.

Cutset formulation for the NDC problem:

Minimize E Cijxij
{i,j}EE

subject to: E xij > econ(S) for all node sets S with q0 S #4 N;
{i,j}E6(S)

xij < bij

Xij > 0

for all {i,j} e E;

and integer, for all {i, j} E E.

(la)

(lb)

(lc)

(id)

An alternative way to formulate the problem is to enforce the connectivity requirements

of the matrix R using commodity flows. For each pair {s, t of nodes, with rt > 1, create

a commodity, arbitrarily choosing one of the nodes as the origin of the commodity and the

other node as the destination. Let K denote the set of commodities and let qk, for each

k E K, denote the edge-connectivity requirement between the origin and destination of

commodity k: if rst = 3, then qk = 3 for the commodity k corresponding to the node pair

{s, t. The following mixed integer program, with xij representing the number of copies of

edge {i, j} in the network and f flows, is a valid formulation for the NDC problem.

Undirected flow formulation for the NDC problem:

Minimize E cijxij (2a)
{i,j}EE

subject to: E fjki
jEN IEN {

-qk

qk

0

fi j
f ji < bij

fikjf > 0

xij bj

xij > 

The max-flow min-cut theorem implies

alent in the following sense.

if i = O(k);

if i = D(k);

otherwise;

for all i E N and k E K

for all {i,j} E E and k E K

for all {i,j}

for all {i,j}

E E and k E K

E E;

(2b)

(2c)

(2d)

(2e)

(2f)and integer, for all {i, j} E E.

that the cutset and flow formulations are equiv-

Lemma 2.1 The projection of the feasible space of the linear programming relaxation of the

undirected flow formulation for the NDC problem (2) onto the space of the edge variables
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is the feasible space of the linear programming relaxation of the cutset formulation for the

NDC problem (1).

Notice that the cutset formulation is of exponential size, while the flow formulation is

compact: it has O(IKI(E ] + INI)) constraints and O(IKIIEI) variables.
A simple, and naive, way to determine the number of commodities in the flow formula-

tion is to create a commodity for every pair of nodes with a connectivity requirement. For

an underlying graph with 100 nodes and 1000 edges and positive connectivity requirements

between all nodes this approach would create a commodity for every node pair and so 4,950

commodities. Consequently, the model would contain 495,000 flow balance constraints,

9,900,000 constraints of type (2c), 9,900,000 nonnegativity constraints for the flow vari-

ables, 1,000 constraints of type (2e), and 1,000 nonnegativity and integrality constraints for

the edge variables. As this example shows, the flow formulation can be very large.

By using fewer commodities, if possible, we could reduce the size of the formulation.

To accomplish this objective, we can use an idea that Gomory and Hu [GH61] used when

solving the classical network synthesis problem. Given the connectivity requirements matrix

R, create a "requirement" graph GR on the node set N, giving edge {i, j} between nodes i

and j in GR a weight rij. Gomory and Hu showed that it is sufficient to consider the

connectivity requirements only for the edges on a maximum spanning tree of this graph. It

is easy to verify this result using the max-flow min-cut theorem and the maximum spanning

tree optimality conditions. As is well known, a spanning tree is a maximum spanning tree

if and only if it satisfies the following optimality condition: For every nontree edge {k, I} of

GR, rij > rkl for every edge {i, j} contained in the (tree) path P on the maximum spanning

tree connecting nodes k and 1. As a result, any network that satisfies the requirements of

the maximum spanning tree has sufficient capacity to satisfy the requirements of nontree

edges. (By the max-flow min-cut theorem, the network has sufficient capacity to connect

nodes k and I if every cut in the network design separating these nodes has capacity at least

rk. Since some pairs i, j of nodes on the path P must lie on opposite sides of this cut, the

cut must have capacity at least rij > rkl.)

Gomory and Hu's result permits us to model the edge-connectivity requirements in

any NDC problem with NI - 1 or fewer commodities. We simply compute the maximum

spanning tree of the requirement graph, which we now refer to as the requirement spanning

tree, and create commodities only for those edges of the maximum spanning tree with

nonzero weight. Since the requirement spanning tree has INI- 1 edges and finding it

requires O(IEI + INI log INI) time, this procedure creates at most INI - 1 commodities (we

will not create commodities for zero weight edges of the requirement spanning tree) and

requires O(IEI + INI log INI) time.
The two formulations 1 and 2 for the NDC problem are known to be weak. That is,

the objective value of the linear programming relaxation are typically significantly less than
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the optimal objective value of the integer program. Computational experiments reported

by Gr6tschel, Monma, and Stoer [GMS92a, GMS95b] confirm this result, particularly when
the requirement spanning tree has edges with connectivity requirement 1. (In a remarkable

paper, Jain (see [Jai98]) provides some theoretical evidence to support these results. He
shows that the worst case ratio of the optimal value of the integer program to the optimal

value of the linear programming relaxation of the cut formulation is 2, independent of the

problems's size.)

3 Stronger Formulations for Unitary NDC Problems

In this section we first show how to direct unitary NDC problems for situations when

the connectivity requirements are all even or one, and obtain a stronger formulation for

this special case of the unitary NDC problem. We then generalize this result, developing

an improved model for any unitary NDC problem (i.e., even those with odd connectivity

requirements). For ease of exposition, for the rest of this paper we assume that the model

does not permit edge replication. It is straightforward to verify that the results apply to

models that permit edge replication.

3.1 Directing the Unitary NDC Problem

The following result due to Nash-Williams [NW60] provides a key ingredient for transform-

ing the undirected formulation to a directed one.

Theorem 3.1 (Nash-Williams) Suppose G is an undirected graph with r.y edge-disjoint

paths connecting each pair x and y of its nodes. Then it is possible to direct the graph

(i.e., orient its edges) so that the resulting digraph contains [rxy/2 arc-disjoint paths from

node x to node y and Lry/2J arc-disjoint paths from node y to node x.

Consider any unitary NDC problem whose connectivity requirements rt are even or
one. We can view any feasible integer solution to this problem as follows: it is connected

and contains several 2-edge-connected components. If we contract the 2-edge-connected

components, the solution becomes a tree. The edges on the tree are the bridge edges in the
feasible solution before we contracted the 2-edge-connected components; that is, removing

these edges disconnects the graph defined by that solution.

The Nash-Williams theorem permits us to direct the edges of each 2-edge-connected
component so that for any pair of nodes i and j with rij > 2 (by assumption these require-
ments must be even), the network contains rij/2 directed arc-disjoint paths from node i

to node j, and rij/2 directed arc-disjoint paths from node j to node i. Once oriented,

each 2-edge-connected component contains a directed path between every pair of its nodes.

Therefore, if nodes i and j belong to the same 2-edge-connected component and rij = 2,
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the oriented network contains a directed path from node i to node j and a directed path

from node j to node i. To direct the bridges, consider the tree obtained by contracting each

2-edge-connected component of the solution. Select any one of the nodes created by the

contraction as a root node and direct the tree away from this node.

Figure 1 illustrates this directing procedure. In this example a, b, c and g are 2-edge-

connected components. Between every pair of nodes s and t in these components rst = 2.

We orient the edges of each component (see Figure lb) so that it contains a directed path

between every pair of nodes in each 2-edge-connected component. Next, we select the node

created by contracting component b as the root node and direct the tree edges (i.e., the

bridges of the solution) away from node b. Figure lc shows the graph at the conclusion of

the directing procedure.

These observations permit us to formulate the unitary NDC problem as follows. Let Yij

be 1 if edge {i, j} is oriented from node i to node j in the directing procedure applied to

the optimal solution (i.e., the oriented network contains arc (i, j)) and be 0 otherwise.

Directed cut formulation for the unitary NDC problem (rst E {O,l,even}):

Minimize E cijxij (3a)
{i,j}EE

subject to: Yij > 2econ() if econ(S) > 2; for all S C N, (3b)
(i,j)EJ-(S)

E Yij 1 if econ(S) = 1; for all S, root S (3c)
(i,j) e6- (S)

Yij + Yj i < ij for all {i, j} E E (3d)

xij < 1 for all i,j E E (3e)

Yij, Yji, ij > 0 and integer, for all {i,j) E E. (3f)

Since econ(S) _ max{rij j E S; i E N\S}, constraint (3b) ensures that for every pair of

nodes s and t with rst > 2, every s-t dicut contains at least rt/2 arcs and every t-s dicut

contains at least rt/ 2 arcs. Menger's theorem ensures that the oriented network contains

at least rt/ 2 arc-disjoint paths from node s to node t and rt/2 arc-disjoint paths from

node t to node s. Similarly, constraints (3b) and (3c) ensure that the oriented network

contains a directed path from the root to every required node. Constraint (3d) ensures that

the oriented network contains at most one of the arcs (i, j) and (j, i).

Proposition 3.2 The directed cut model is a valid formulation for the unitary NDC prob-

lem in the sense that (x, y) is a feasible solution to this model if and only if x is an incidence

vector of a feasible NDC design (that is, x is a feasible solution to the cutset model (1)).

Proof: Suppose x is an incidence vector of a feasible NDC design. The argument preceding
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d f

(a)

e

(b)

e

(c)

Figure 1: Directing the bridges of a feasible solution to the unitary NDC problem. (a) Fea-

sible solution. (b) Direct the edges of each 2-edge-connected component. (c) Direct the

bridges away from component b.
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Formulation (3) shows how to construct an integer vector y so that (x, y) is a valid solution

for the directed cut model.

To establish the converse, suppose (x, y) is a feasible solution to the directed cut model.

Let Q be any node set with econ(Q) = econ(N\Q) > 2. Combining inequality (3b) for

S = Q and S = N\Q and the inequalities (3d) summed over all {i,j} E 6(Q) gives

E xij > E Yij + E yji > econ(Q).
{i,j}6(Q) (i,j)E6+(Q) (j,i)E6- (Q)

If Q is any node set with econ(Q) = econ(N\Q) = 1, assume without loss of generality that
the root node is not in Q. Then the inequality (3c) with S = Q and the inequality (3d)
summed over {i,j} E 6(Q) implies that

E Xij > 1.
{i,j}E6(Q)

Therefore, x is a feasible solution to the cutset formulation (1). ·

To see that the linear programming relaxation of the directed cut formulation is stronger
than linear programming relaxation of the cutset formulation, consider the NDLC example
shown in Figure 2. In this example, each edge has unit cost. Nodes a, b and c have a

connectivity requirement of 2. Nodes d, e and f have a connectivity requirement of 1.
The optimal solution to the linear programming relaxation of the cutset formulation is

Xab = ac = 1 and Xbc = Xbd = Xcd = Xde = Xdf = Xef = 0.5, with objective value 5.

The optimal solution to the linear programming relaxation of the directed cut model has
integer values for the edge variables. The solution is Yab = Ybd = Ydc = Yca = Yde = Ydf = 1,

Xab = Xac = Xbd = X-d = Xde = Xdf = 1, with objective value 6. By reformulating

the problem and solving the linear programming relaxation, we have obtained the optimal
solution.

In the next section we show how that the Nash-Williams procedure is not necessary

for this directing procedure. Consequently, we generalize the results in this section to all
unitary NDC problems.

3.2 Generalizing the Directing Procedure

The directed cut formulation (3) is not valid for unitary NDC problems with odd connec-
tivity requirements. As an example, consider an SND problem defined on K 4, the complete
graph on four nodes, assuming each node has a connectivity requirement of 3. The optimal
solution for this problem is K 4. For any node i in K 4, there is no way to direct the edges
so that both 6+(i) and 6-(i) are at least 1.5.

Suppose, however, that in the directed cut formulation we relax the integrality con-
straints imposed upon the Yij variables, and interpret Yij as the capacity on the flow from
node i to node j. We will show that this formulation is a valid mixed integer program for
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Figure 2: The directed cut formulation is stronger than the cutset formulation.

ing graph with all edge costs equal to 1. (b) Optimal LP solution to the cutset

(c) Optimal LP solution to the directed cut formulation.

(a) Underly-

formulation.

any unitary NDC problem. Consider any feasible solution to an unitary NDC problem.

As we noted previously, the solution is a connected graph consisting of 2-edge-connected

components and bridges. Suppose (i) we select yij = yji = 1/2 for each edge on the 2-edge-

connected components, and (ii) direct the bridges away from the component that contains

the root node, setting yij to 1 if edge {i, j} is oriented from node i to node j, and 0 oth-

erwise. (If we contract the 2-edge-connected components the directing procedure for the

bridges is similar to the directing procedure for the Steiner tree.) The resulting solution

(x, y) is feasible in the directed cut formulation if we relax the integrality condition on y.

Therefore, the following directed cut formulation is valid for all unitary NDC problems.

Directed cut formulation for the unitary NDC problem:

Minimize E cijxij (4a)
{i,j}EE

E Yij 
(i,j) E6- (s)

E Yij 1
(i,j)E6- (S)

Yij + Yji < 

Xij < 1

con(S)
2

if econ(S) > 2; for all S C N,

if econ(S) = 1; for all S, root S

ij for all {i,j} E

for all {i,j} E
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Yij, Yji 0 for all {i,j} E E (4f)

Xij > 0 and integer, for all {i, j} E E. (4g)

Proposition 3.3 The directed cut model (4) is a valid formulation for the unitary NDC

problem in the sense that (x, y) is a feasible solution to this model if and only if x is an

incidence vector of a feasible NDC design.

Proof: Similar to the proof of Proposition 3.2. ·

3.2.1 Flow Formulation

The max-flow min-cut theorem permits us to formulate an improved flow model, with

multiple commodities, that is equivalent to the directed cut model (4).

Improved undirected flow formulation for the unitary NDC problem:

Minimize E cijxij (5a)
{i,j}EE

-qk if i = O(k);
subject to: E fji - Z fl = qk if i= D(k); for all i E N and k E K (5b)

jEN 1EN 0 otherwise;

fi + fh < xij for all {i,j} E E and k, h E K (5c)

fik f ki > 0 for all {i,j} E E and k E K (5d)

xij < 1 for all {i,j} E E (5e)

xij > 0 and integer, for all {i, j} E E. (5f)

Using the procedure described in Section 2, we can create the commodities as follows.

Select any node i whose maximum connectivity requirement is greater than or equal to 2

as the root node. (If the maximum connectivity requirement of all nodes is 1, and so the

problem is a Steiner tree problem, we arbitrarily select any one of the nodes as the root

node.)

Commodity selection procedure for Formulation (5)

1. Find the requirement spanning tree.

2. Delete all edges with rt = 0 from the requirement spanning tree. The resulting tree

is connected because, by assumption, the NDC problem is unitary.

3. For each edge {s, t} of the requirement spanning tree with rst > 2, create two com-

modities: one with origin node s and destination node t, and the other with origin

node t and destination node s; each of these commodities has a flow requirement

of rst/2.

15



(a)

(b) (c)

Figure 3: Commodity selection procedure for the unitary NDC problem. (a) Requirement

spanning tree. (b) Tree obtained by deleting edges {s, t} with rst = 0. (c) Tree obtained

by contracting edges {s, t} with rst > 2.

4. Contract each edge {s, t} with rt > 2 in the requirement spanning tree, creating a

contracted requirement spanning tree T with rij = 1 for all edges {i, j}. We distinguish

nodes created by the contraction from the original nodes, by calling them components.

We denote a component by any one of the nodes it contains in the original requirement

spanning tree (e.g., if we create a component by contracting nodes s and t, then we

denote the component s). Select a component i in T as the root node (if T does not

contain any components, then select any node as the root node arbitrarily). Create a

commodity for every node j in T other than the root node, with node i as its origin (in

the original graph), and node/component j as its destination (in the original graph),

with a requirement of 1.

Figure 3 illustrates this procedure. Figure 3a shows the requirement spanning tree of a

unitary NDC problem. Figure 3b shows the requirement spanning tree after we have deleted

edges {s, t} with rt = 0. Notice that because the problem is a unitary NDC problem, the
graph in Figure 3b is connected. Otherwise, it would be a forest.

Table 2 identifies the commodities obtained by applying the directing procedure to the

example in Figure 3. Edges {a, b} and {c, d} are the only edges with a requirement of

at least 2 on this tree. Therefore, we create four commodities-those shown in the first

16



Commodity Origin Commodity Destination Commodity Requirement

a b 2

b a 2

c d 3

d c 3

a c 1

a g 1

a h 1

a i 1

a j 1

Table 2: Commodities in Formulation (5) for example in Figure 3.

four rows of Table 2. Figure 3c shows the contracted requirement spanning tree (i.e., after

contracting edges with rst > 2). Let node a denote the component {a, b}, and node c denote

component {c, d}. We select node a as the root. The tree in Figure 3c contains 6 nodes.

Therefore, we create 5 commodities, each with origin node a, and destination nodes c, g, h,

i and j.

The following useful property is a consequence of the commodity selection procedure.

Property 3.4 For any node set S,

1. If econ(S) > 2, then the improved flow formulation contains a commodity k whose

flow requirement is econ(S)/2, origin is in N\S, and destination is in S.

2. If econ(S) = 1 and root S, then the improved flow model contains a commodity

whose flow requirement is 1, origin is the root node, and destination is in S.

3. If econ(S) = 1 and root E S, then no commodity in the improved flow model has its

origin in N\S, and destination in S.

Proof: This result follows from the commodity selection procedure and the fact that rst =

max{rij Ij E S; i E N\S}) econ(S) for any edge {s, t} in the requirement spanning tree.

We now establish the validity of the improved undirected flow formulation for the unitary

NDC problem by showing that the improved undirected flow formulation and the directed

cut formulation are equivalent.

Lemma 3.5 The improved undirected flow formulation (5) and the directed cut formula-

tion (4) are equivalent.
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Proof: We assume that we select the same root node in both formulations. First, consider

any feasible solution (x*, y*) to the directed cut formulation. If we interpret y*j as a capacity
imposed upon the flow from node i to node j, the max-flow min-cut theorem implies that

we can (i) send rt/ 2 units of flow between any pair of nodes s and t in the requirement

spanning tree with rt > 2, and (ii) send one unit of flow from the root component in

the contracted requirement spanning tree to any other node/component in the contracted

requirement spanning tree. Furthermore, the constraint Yij + Yj*i < Xi implies that we

can fulfill conditions (i) and (ii) while ensuring that for each edge {i,j}, the sum of the

maximum flow sent (on the edge {i, j}) from node i to node j, and the maximum flow sent

from node j to node i does not exceed xij. These arguments show that we can find flow

variables f* so that (x*, f*) is feasible in the flow formulation.

Suppose (, f) is a feasible solution to the improved flow formulation. For each edge

{i, j), set ij = maxkeK fij and Yji = maxkeK fi We claim the solution (, y) is feasible
in the directed cut formulation. Whenever edge {s, t} is in the requirement spanning tree

and rst > 2, the improved undirected flow formulation sends rst/2 units of flow from node s

to node t and rst/2 units of flow from node t to node s. Consequently, if edge {s, t} is in the

requirement spanning tree and rt > 2, the capacity of every s-t dicut and every t-s dicut

is at least rt/2 (for the solution (, y)). For any node set S, the requirement spanning tree

contains an edge s, t in (S) with econ(S) = rt. Therefore, whenever econ(S) > 2, the

capacity of the dicut - (S) is at least econ(S)/2. The improved undirected flow formulation

sends 1 unit of flow from the root component to every node/component in the contracted

requirement spanning tree. Therefore, the capacity of every dicut 6-(S) with root S

and econ(S) = 1 is at least 1. The constraint fik + -i < ij implies that for every edge,

ij + ji < ij. Consequently, (, y) is feasible for the directed cut model, and thus the
improved undirected flow formulation and the directed cut formulation are equivalent. ·

Before concluding this section, we note the improved models (4) and (5) are stronger,

as linear programs, than the cutset (1) and the undirected flow (2) model only if the

requirement spanning tree contains an edge s, t with rt = 1. To see this result, observe

that if no pair of nodes i and j has a connectivity requirement of 1, then for all node sets

S, econ(S) Z: 1. But then, if R is any feasible solution to the cutset formulation, the vector

(x, y), with Yij = ji = .ij/ 2 , is feasible in the directed cut formulation. As we have shown

before, if (, y) is any feasible solution to the directed cut formulation, then x is feasible in
the cutset formulation. Therefore, in this case, the two models are equivalent.

Finally we note that a simple modification of the formulations we have considered per-

mits us to model situations that allow edge replication: we just replace the constraint

xij < 1 by the constraint xij < bij throughout our discussion.
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4 Projecting from the Improved Flow Formulation

To compare the improved flow formulation and the cutset formulation, we would like to

project out the flow variables from the improved flow formulation so that the resulting

models have the same set of variables. An elegant method for projection, proposed by

Balas and Pulleyblank [BP83], and implicit in the work of Benders [Ben62], is based upon

a theorem of the alternatives.

Theorem 4.1 (Projection Theorem) The projection of the set P = {(x, f) E Rn+m Ax+

Bf > d} onto the space of the x variables is

Projx(P) = {x e nnl(gj)TAx > (gj)Td, forj = 1, 2,... ,J},

which is defined by a finite set of generators {gJ j = 1, . . , J} of the cone C = {glBTg =

; g > 0}.

The cone C in the statement of Theorem 4.1 is just the linear programming dual to the

feasibility problem obtained by deleting the x variables and setting the righthand side to

zero in the inequality Ax + Bf > d. When the polyhedron P is defined by equality as well

as inequality constraints, as in the improved undirected formulation Theorem 4.1 assumes

the following form.

Corollary 4.2 The projection of the set P = {(x, f) Rn+m lAx + Bf > d; A'x + B'f =

d'; x E X; f > 0} onto the space of the x variables is

Proj.(P) = x E X (g)TAx + (gJ)TA'x > (gj)T d + (gj)Td', foj = 1,2,..., J},

which is defined by a finite set of generators {(g{,gJ)j = 1,...,J} of the cone C

{(u, v)IBTu + B'T v > 0;u > 0;v unrestricted}.

If we can identify a set of finite generators of the cone C, then we obtain the projection

of the set P. The Projection Theorem has the additional advantage that every member

(u, v) of the cone C defines a valid inequality (uTA + vTA')x > uTd + vTd ') for Projx(P).

As a consequence, even if we cannot characterize the generators of the cone, we can still

use the cone to obtain valid inequalities for Projx(P).

4.1 Projection Cone of the Improved Undirected Flow Formulation (5)

In Sections 5, 6, and 7, we will use the Projection Theorem to show that the improved flow

formulation (5) implies three classes of valid inequalities for the cutset formulation and,

therefore, that the flow formulation is stronger than the cutset formulation. To develop

these results, we need to find generators for the cone C in the statement of Theorem 4.1,
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which is the dual linear program to the feasibility problem obtained by deleting the x
variables and setting the righthand side to zero. For the improved flow formulation (5), we
need to consider the following projection cone:

heK Uij5 Vk- 0 V {i,j}E E, k K (6a)
+ kh

uh > 0 V {i,j}E E, Vk, hE K. (6b)

In these inequalities, vk is the dual variable corresponding to the flow balance equation at
node i for commodity k, and u/kj is the dual variable corresponding to the forcing constraint

fiki + fi -< xij. Note that for any edge {i, j} and any pair of commodities k and h, the model

contains two forcing constraints f + fi < xij and fih + fki < xij. We identify the dual
variable ukjh with the constraint fk + fh < xij and the dual variable uhk with the constraint

+ f i < Xij. By convention, the dual variables obtained by reversing the indices, i.e., uOh

and uhi are the same.

Since one flow balance equation for each commodity is redundant, we can set, for each
commodity k, Vo(k) to value zero. Using Corollary 4.2 for any member of this cone, we
obtain a valid inequality of the form

{ij}eE(ZkEKhKUZ3 )Xi > EkCkqkvk(k) (7)

In this expression, qk is the number of units of commodity k sent from commodity k's
origin to its destination. We refer to the coefficient of xij in this inequality as rij and the
righthand side coefficient as ro.

Given some choice of the variables vk for all the nodes i and commodities k, there are a
number of choices for u k. How do we determine the best such choice? Since the coefficient

23

lrij of xij in the inequality 7rx > 1ro is EkeKEheKUikjh we would like EkeKZheKUj to be

as small as possible for each edge. The following theorem describes the choice of Uhjk that
minimizes EkeKheKUkjh. We give a constructive proof that also shows how to determine
the uj k values.

Theorem 4.3 Suppose we are given values for vi for all nodes i and all commodities k. For
any edge {i,j}, let tj = max (0, v - vp) and ti = max (0, v - v). Define tij = EkcKtEk j

and tji = Then max (tij, tji) is the minimum feasible value of ZEkKhEkuhkij in

the inequalities (6a).

Proof: We will establish this result for each edge {i, j}. Let us first show that max (tij, tji) is

a lower bound on the value of EknKEheKUi4 in any feasible solution to the inequalities (6a).
Let I be the set of all commodities with tkj > 0 and J be the set of commodities with tki > 0.
For any edge {i, j} with v -vk > 0, equation (6a) implies EhCKUki > v - vk. Summing

over all commodities in the set I gives Ek-EIheKU"kh > Eke(Vj --Vi) = tij. Similarly,~ ' yEEU1E. L 3 r- 3. 
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by considering the commodities in the set J, we obtain EkeJEheKUZ4 > EkEj(VI - 9i) =

tji. But then the inequalities EkeKEheCKup > EkEIEhEKUij and EkeKEheKUijh

EkeJEheKUij imply that EkEKEhECKUi? > max (tij, tji).

We next prescribe values for the variables uz~jh that achieve the lower bound max (tij, tji).

Initially, each ukh =- and EkEKhEK - 0 - O. Select a commodity I from I and a

commodity m from J. Set uliJ = min{(tij, t}. If tij > t, delete m from J, and if tlj < t m ,Z3 Z3 3Z 23 - 3%, %32- PI

delete I from I. Set t = t_ -u Im and t = tj- u. Repeat this procedure until one of the

two sets I and J, say J, is empty. Note that at this point EkeKEheKijh = min (tij, tji) and

the u and v variables satisfy inequality (6a) for every commodity we have deleted from I and

J. For the remaining commodities E I, let m be any commodity in K and set uin = tlj.

Thus, keKheKU k h = min (tij, tji) + (max(tij, tji) - min(tij,tji)) = max(tij,tji). By

construction, this choice of uhk satisfies the equations of the cone. ·

With the aid of Theorem 4.3, we will now derive three classes of valid inequalities-

partition inequalities, odd-hole inequalities, and combinatorial design inequalities-that

generalize known classes of valid inequalities for the Steiner tree problem to the unitary

NDC problem. For ease of exposition we will first consider the NDLC problem, and then

generalize the results to the unitary NDC problem.

5 Partition Inequalities

For the NDLC problem, partition inequalities (also called multicut inequalities by some au-

thors) have the following form. Partition the node set N into disjoint node sets No, N 1, ... , Np

satisfying the property that each node set has at least one node i with a connectivity re-

quirement ri > 0. A partition inequality is an inequality of the form

1 k=p p + 1 if at least two sets have a node with
2 E Z xjy > a connectivity requirement of two;

2 o k=8(Nk)k=0 6(Nk) p p otherwise.

This inequality implies that (i) if no set or exactly one set in the partition has a node with

a connectivity requirement of two, then the network contains at least p edges between the

p + 1 sets, and (ii) if two or more sets have a node with a connectivity requirement of

two, then the network contains at least p + 1 edges between these sets. Chopra [Cho89] and

Magnanti and Wolsey [MW95] show that the partition inequalities describe the dominant of

the spanning tree polytope. Chopra and Rao [CR94a] and Grotschel and Monma [GM90]
show that under appropriate conditions, partition inequalities are facet defining for the

Steiner tree problem and for the NDLC problem respectively.

Consider the five node example shown in Figure 4. Nodes 0 and 1 have a connectivity

requirement of two; nodes 2, 3 and 4 have a connectivity requirement of 1. The improved

undirected formulation (with node 0 as the root node) for this network has four commodities
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Figure 4: Projecting partition inequalities for a five node example. (a) Connectivity re-

quirements (b) Value of the v variables (c) Value of the vi variables (d) Value of the v?

variables (e) Value of the v 3 variables (f) Value of the v! variables.

(1, 2, 3 and 4) with the origin as the root node and node 1, 2, 3 and 4, respectively, as

the destination node. It also has a commodity (commodity 5) with node 1 as the origin

and node 0 as the destination. We will refer to commodity 5 as commodity 0 to simplify

our discussion. Therefore, for each commodity i, node i is the destination. Consider the

partition inequality with each node defining a set in the partition (i.e., 1ZiEjizij > 5).
Each edge variable in the partition inequality has a coefficient of 1 (note that the inequality

counts each edge twice in the double summation). Consequently, in projecting out these

variables to obtain this inequality, we need EkeKhEKUikjh = 1. Since the righthand side

has value 5, we also need EkeKVD(k) = 5 (qk = 1 for all commodities in the NDLC problem).

In the example of Figure 4, for each commodity k = 0,..., 4, let vk = O if i # k and vk =
1. Consider any edge {i, j}. Note that the v~ and vj values are the same for all commodities,
except for (i) commodity i, with v = and v 

z 7= 1. Thus, for each edge i,j}, EkeK max(O, V -Vt) = keK max(O vi -v, ) = 1.

Therefore, in accordance with Theorem 4.3 we can set u k = 1 if h = j and k = i, and

U/j = 0 otherwise. This choice of variables in the projection cone imply the partition
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½EiEjixij > 5.
In general, consider a partition No, . . ., Np. Without loss of generality assume that the

root node is a node in No. Suppose econ(Ni) = 2. Recall, from Property 3.4, if econ(Ni) = 2

the improved flow formulation must contain two commodities: one with origin ni E Ni and

destination some node mi V Ni, and one with destination ni E Ni and origin mi ' Ni, both

with a flow requirement of econ(Ni)/2 = 1. Let i denote the commodity with destination

node ni Ni (and origin mi Ni) and a requirement of 1. Similarly, if econ(Ni) = 1

and i $ 0, the improved flow formulation must contain a commodity i with destination a

node ni E Ni (the origin would be the root node) and a requirement of 1.

For commodities 0,... ,p, we set

vk |1 if i ENk,
v - 0 otherwise,

and set v = 0 otherwise.

With this choice of values for the vk variables, we ensure that for all edges {i, j} across

the partition EkeK max (0, v - vk) = EkeK max (0, vi - v) = 1 and for edges {i,j} not

in the partition ZkeK max (0, vj -vi k ) = EkeK max (0, v i - v ) = 0. Thus, by choosing the

values of uk as indicated by Theorem 4.3, we find that rij = ZkeKheKUikjh is 1 if i and j

are in different sets of the partition and rij = 0 otherwise. Also, ro = EkeKVD(k) = p + 1,

since VD(k) = 1 for commodities 0,... ,p and v(k ) = 0 otherwise.

If all the nodes with a connectivity requirement of two lie in one of the sets (i.e., No)

of the partition or the problem has no node with a connectivity requirement of two (in this

case the problem is a Steiner tree problem), by Property 3.4, there is no commodity in the

improved flow formulation with destination in No. Consequently, we select p commodities

with destinations in N 1,..., Np and origin in No (i.e., the root node). With the same choice

of v for k = 1,... ,p (i.e., k = 1 if i E Nk and 0 otherwise), for all edges {i,j} across the
partition, max (EkK max (0, v , kemax ( 0,v-v)) = 1; and for edges {i, j} not in

the partition, EkeK max (0, -vi k) = EkeK max (0,. v-) = 0. Thus, in accordance with

Theorem 4.3 the edges across the partition have coefficient 1; all others have coefficient 0.

Since we have only p commodities, the resulting righthand side is r0 = ZkVo(k) = P

5.1 Partition Inequalities for the Unitary NDC Problem

Since the structure of the projection cone obtained from the improved flow model for the

NDLC problem and the improved flow model for the unitary NDC problem are identical,

any member of the cone that provides a valid inequality for the NDLC problem also provides

a valid inequality for the unitary NDC problem.

Consider a partition No, ... , Np. Without loss of generality assume that the root node

is a node in No. Consider any set Ni of the partition. If econ(Ni) > 2, Property 3.4
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implies the improved flow formulation must contain two commodities: one with origin

ni E Ni and destination some node mi V Ni, and one with destination ni E Ni and origin

mi Ni, both with a flow requirement of econ(Ni)/2. Let i denote the commodity with

destination node ni E Ni (and origin mi V Ni) and a requirement of econ(Ni)/2. Similarly,

if econ(Ni) = 1 and i f 0, the improved flow formulation must contain a commodity i with

destination a node ni E Ni (the origin would be the root node) and a requirement of 1.

For commodities 0,... ,p, we set

vk I 1 if i ENk,

0 otherwise,

and set vik = 0 otherwise.

We have not changed anything so far. These values for vi variables are the same as

for the NDLC problem. Therefore, for all edges in the partition, rij = 1 if i and j are in

different sets of the partition and rij = 0 otherwise. For commodities k = 0, ... , p, qk = 1 if

econ(Nk) = 1, and qk = econ(Nk)/2 if econ(Nk) > 2. Substituting these values, we obtain

the following valid inequality:

1 k=p f P if I2 = (;

2 k=O (Nk)ij iei 2 econ(Ni) + III otherwise. (8)

In this inequality, I1 = {i: econ(Ni) 1} and I2 = {i : i E econ(Ni) > 2}.

But since, in the mixed integer program, the variables xij are either 0 or 1 we can round

up the righthand side in this inequality and still maintain feasibility. Thus, the following

inequalities are valid:

Ik~~~~~~~ P ~if I2 =
(9)

2=06(Nk) - [½ EieI2 econ(Ni)l + II I otherwise. (

Gr6tschel, Monma and Stoer [GMS95b, Sto92] call inequalities (9) partition inequalities

and show that under appropriate conditions they are facet defining for the SND problem.

Our derivation shows that these inequalities are valid for the more general unitary NDC

problem. If the number of sets in the partition inequality with odd connectivity requirement

greater than one is odd, then the improved undirected formulation implies a weaker form of

the partition inequality that we refer to as weak partition inequalities (i.e., inequalities (8)).

Otherwise, the formulation implies the partition inequality. Note that the weak partition

inequalities are stronger than the cutset formulation (as long as I 4 0).

Since the flow model implies the weak partition inequalities, and does not always im-

ply the partition inequalities, we might like to characterize, in a certain sense, how much

stronger a model containing the partition inequalities would be compared to a model con-

taining the weak partition inequalities.
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To compare two classes of valid inequalities, we use the following notion previously intro-

duced by Goemans [Goe95]. Let X1 and X 2 be two classes of valid inequalities. Then, the

relative strength of the class of the valid inequalities X1 to the class of the valid inequalities

X 2 is defined as

max Imincx: x El x E X1; x E X 2 }
maxs E

(mincx x E l; xE X 2 } 

The relative strength measures how much, in the best case, the objective function of a linear

program that contains the class of valid inequalities X2 improves by adding to it the class

of valid inequalities X1 .

The following result characterizes the relative strength of the partition inequalities with

respect to the weak partition inequalities when (unlimited) edge replication is permitted.

Theorem 5.1 The relative strength of the class of partition inequalities X1 with respect to

the class of weak partition inequalities X 2 is .

Proof: We will show that by multiplying any feasible solution (including any optimal solu-

tion) to the linear program {mincx : x E RJE; x E X 2} (we refer to this linear program as

LP2) by T1 gives a feasible solution to the linear program {mincx:x E E7.eEl; x E X1 ; x E
X 2} (we refer to this linear program as LP1). This result implies that the optimal value to

LP1 is at most i1 times the optimal value to LP2. Note that the weak partition inequalities

are implied by the partition inequalities. Consequently, we can delete x E X 2 from LP1.

LP1 and LP2 differ when the righthand side of the weak partition inequalities is frac-

tional. If we show the maximum ratio between the righthand side of any partition inequal-

ity and its corresponding weak partition inequality is 1q, we have shown that the relative

strength of the partition inequalities with respect to the weak partition inequalities is .

(Since multiplying any solution that satisfies the weak partition inequalities by -1 gives a
solution that satisfies the partition inequalities.)

The righthand sides of the weak partition inequalities and the partition inequalities differ

by at most 0.5. This happens when the cardinality of the set i : econ(Ni) odd; and econ(N i ) 

3} is odd (i.e., for an odd number of sets, econ(Ni) is (i) odd, and (ii) greater than or equal

to 3). Noting that the partition contains at least two sets with the highest value of econ(Ni),

we find that the maximum ratio is obtained by considering a partition with three sets, each

with connectivity 3. The righthand side for the weak partition inequality is 4.5 and the

righthand side for the partition inequality is 5. The ratio is 1. ·

6 Odd-Hole Inequalities

Chopra and Rao [CR94a] introduced odd-hole inequalities for the Steiner tree problem.
These inequalities have the following form. Consider a graph Gp = (Np, Ep) with Np 
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(Tp U Zp), Tp = {ao, a, ... , ap the set of nodes with nonzero connectivity requirements,

and Zp = {bo, bl,..., bp} the set of nodes with zero connectivity requirements. The edge

set Ep consists of edges of the form {ai, bi, b ai, bi-} and {bi, bi-_} for i = 0,... ,p. Note

that we define b 1_ = bp, a-_ = ap, bp+l = bo and ap+l = ao. An odd-hole inequality is an

inequality of the form

E Xij > 2p.
{i,j}eEp

When p is even, the graph Gp is called an odd-hole.2 Chopra and Rao [CR94a] show that if

p is even and p > 2, then an odd-hole inequality defines a facet for the Steiner tree polytope

on the graph Gp.

We extend the definition of odd-hole inequalities to obtain the following valid inequalities

for the NDLC problem.

J 2(p + 1) if at least two nodes have a

xij > connectivity requirement of two;
J{ij}EEp 1 2p otherwise.

To prove that these inequalities are valid, we now show how to project these inequalities

from the improved undirected formulation.

Consider the odd-hole shown in Figure 5. Nodes ao and al have a connectivity require-

ment of 2, and a2, a3 and a4 have a connectivity requirement of 1. The improved undirected

formulation, with root node ao, has five commodities. Commodities 1, 2, 3 and 4 have ao

as the origin and al, a 2, a3 and a4 as the destination nodes. Commodity 5, which we will

also refer to as commodity 0, has al as the origin and ao as the destination. Note, with this

notation, each commodity i has destination ai.

In the example of Figure 5, for all commodities k = 0,..., 4, let v = 0 if i # ak, bk or

bk-1. Let Vkk = 2 and vbk = vk 1. Notice that with this choice of values
a ~ bk bk-1

VaiVb.i -- Vb-i l =a

i i i-1 i-1
ai - Vbi-1 = -- Vai

Vi-i i- 1 Vi+1 Vi+1 = 1
hi-1 bi Z bi bi-1

All other vik-v - = . Thus, for each edge {i, j}, EkEK max (O, v--vi) = kEK max (0,v ik -

v~k) = 1. Therefore in accordance with Theorem 4.3 we can set u(k +l) k Uak-1)k and

(k+l)(k-1) to 1 for k = 0, . . , 4, and uh = O otherwise. Since EkeKVak = 10, this choice
bkbkl 3 a

of variables defines the odd-hole inequality 'i,j}E 4 Xij > 10.
In general, let node ao be the root node. For each node al, select a commodity with

D(l) = al. For commodities k e {O,... ,p}, set

2 The odd in odd-hole refers to the number of nodes with nonzero connectivity requirements.
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Figure 5: Projecting odd-hole inequalities for a ten node example. (a) Connectivity re-
quirements (b) Value of the vo variables (c) Value of the v variables (d) Value of the viuieentsJ (b) Vllue of Ilthe v i v~I
variables (e) Value of the v variables (f) Value of te v variables.

2 if i=ak;

Vk = 1 if i = bk or i = bk-1;

0 otherwise,

and set all other vIk values to zero.

With this choice of the vk variables, we once again ensure that ZkEK max (0, v' - v) =

ZkeK max (0, v - vj) = 1 for any edge {i, j}. Thus, by choosing the values of uikjh as

indicated in Theorem 4.3, we find that rij = EkEKhEKKU is 1 for each edge {i,j};

and ro = ZkeKvDk) = 2(p + 1), since vD(k) = 2 for commodities 0,... ,p, and vD(k) = O
otherwise.

Suppose the graph Gp has more edges than Ep. What inequality is implied? Retain

the same choice of v/k variables and consider an edge {i, j} Ep. This edge can be of threeIrll~ U~I11~ WIVI~~ VI Vi
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types-{ai,bj}, {bi, bj} and {ai , aj}. For edges of type {ai, aj},

aj -Vai - Vai- a

For edges of type {ai, bj} Ep, j i and j f i - 1,

Vb -v i = V j + l -Vai+l -= 1

and
ai - = 2.Vai-Vbj

Finally, for edges of type {bi, bj} ~ Ep, j # i - 1 and j 7 i + 1,

i j ' j J+1 V +1 i i-l i+ 1.
Vbj -Vbi =vbj -. bi = Vbi - Vb = Vb i Vbj

Thus, for any edge {i, j} I Ep,

EkeK m ax (O, vk - v~) = EkK max (0, vj - vi ) = 2.

Selecting ukh values as prescribed by Theorem 4.3, shows that 7rij = EkEKEhEKUkJ h is 2

for each edge {i, j } Ep. The projected inequality

E xij+ E 2xij > 2(p + 1)
{i,j}EEp {i,j}EE\Ep

is called a lifted odd-hole inequality and is also a facet-defining inequality for the Steiner

tree problem (see Chopra and Rao [CR94a]).

If the problem has no node with a connectivity requirement of two, it does not contain

any commodity with destination the root node. Therefore we select p commodities, one for

each node al,..., ap, each with origin ao (the root node). With the same choice of vk for

commodities 1,... ,p, we obtain max (kEK max (0, v jk- v), EkEK max (0, v )) 1

for all edges {i, j} E Ep and max (kEK max (O vj - vk) EkCEK max (0, vk - v)) = 2 for

edges {i,j} E E\Ep. Since we have only p commodities, the resulting righthand side is
k=2p.

71o = EkEKVD(k) = 2p.

Both the odd-hole inequality and its lifted version are new valid inequalities for the

NDLC problem. By examining the cone element that generates the odd-hole inequality, we

can obtain valid odd-hole inequalities for the unitary NDC problem. In the next section,

we study a generalization of odd-hole inequalities called combinatorial design inequalities.

Therefore, to avoid repetition, we will not derive odd-hole inequalities for the unitary NDC

problem.
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7 Combinatorial Design Inequalities

Goemans [Goe94] introduced a new class of facet defining valid inequalities called combi-

natorial design inequalities for Steiner tree problems. He showed that under appropriate

conditions combinatorial design inequalities are facet defining for the Steiner tree problem.

He derives the combinatorial design inequalities by projecting from a node weighted (undi-

rected) extended formulation for the Steiner tree problem. We show how to project out

the combinatorial design inequalities from the improved undirected flow formulation (5),

and as a result generalize the combinatorial design inequality to the unitary NDC problem,

obtaining a new class of valid inequalities for this problem.

The description of the combinatorial design inequality is fairly involved. Let Tp =

{ao, ... , ap) be the set of nodes with nonzero connectivity requirements. Zq = N -Tp 

{bo, . . . , bq} is the set of nodes with zero connectivity requirements. Associate with each node

ai of Tp a subset Tai containing elements of Zq. Based on these subsets, we also define sets

Zbi associated with each node bi in Zq. Zbi contains those elements of Tp whose associated

subset contains the node bi. For example, consider the odd hole with p = 4 (see Figure 5).

T4 = {ao, al,a2, a3, a4} and Z4 = bo, bl, b2 , b3 , b4 }. Here Tao = {bo, b4 }, Tal = {bo bl},

Ta2 = {bl, b2}, Ta3 = {b2, b3}, Ta4 = {b3 , b4}. Thus, the sets associated with the elements in

Z4 are Zbo = {ao, al}, Zb1 = {al,a 2 }, Zb2 = {a 2, a3 }, Zb3 = {a 3 ,a4}, Zb4 = {a4, ao}. (The
odd-hole inequality is a special case of the combinatorial design inequality).

Define the (q + 1) x (p + 1) matrix D = [dij] with dij = 1 if aj E Zbi and dij = 0

otherwise. The following two conditions are imposed on D: (i) rank(D) = p + 1, and

(ii) the unit vector e belongs to the cone generated by the columns of D; i.e., Dy = e for

some vector y E R(p+ l ). For any fixed d > 0, if we set P = dy, we see that D3 = de.

Letting ij denote the jth component of P (i.e., fj = dyj), we see that

E pj = d for all i = 0,1,...,q. (10)
aj EZbi

If we select d so that the greatest common divisor of 3ol, . ., p, and d is 1, the coefficients

of xij in the following combinatorial design inequalities will be integer and as small as

possible. For every edge {s, t}, define

J Zk:akE(Zbin)Zb/ {S,t} = {bi, bj} where bi, bj E Zp;

dst = ,/j {s,t} = {aj, bi} with bi E Taj;

0 otherwise.

For the Steiner tree problem, the inequality

{i,j}eE(d- dij)xij > dp,

is a combinatorial design inequality. The odd-hole inequality is a special case of the combi-

natorial design inequality when d = 2, j = 1 for j = 0,... ,p, and ITpl = ZqI.

29



We extend the definition of the combinatorial design inequality to obtain the following

valid inequalities for the NDLC problem.

d(p + 1) if at least two nodes have a
,:jiJJEE (d - _dij)xi > connectivity requirement of two; (11)

dp otherwise.

Let us now project the combinatorial design inequality from the improved undirected

flow formulation. In the improved undirected flow formulation, let node ao be the root

node. For each node al, select a commodity I with destination al and set

d if i =ak;

vk = A/k if i E Tak;

0 otherwise.

For all other commodities k set v to zero.

Consider an edge {s, t} = {aj,bi} with bi E Ta. When aj is the destination node,

vaj = d and v, = 3pj if i E Taj. Consider any node ak e Zbi\{aj}. v, O0 only if ak is a

destination node for commodity 1, i.e., I = k and, in this case, vk
= /k and vk = O. Note

that, vi -va = pk. Thus,3

k (10)
bi Vaj = 3 k = d - 3 VaVbi

akE{Zbi\{aj}} akE{Zbi\{aj}}

If ak ~ Zbi, then vk = vk = O. Therefore, EkK max (0, v -v) = EkEKmax(0, v k -aJ V6. 0. Lb.jkeKavj. bi.) LkEK Max bi-

va) - d- pj. By Theorem 4.3, in the projected inequality d - pj is the coefficient of an

edge {s, t = {aj, bi} with bi E Taj.

Consider an edge s, t} = bi, bj). For any commodity k with destination ak, v k and

vk differ only if exactly one of bi and bj belongs to Tak. If bi belongs to Tak then vbk = k

and v = O0. Thus vb -vkj = 3k. Summing over all sets Tak that contain node bi but not

node bj, we find that

kk =
Ek:biETGbj Ta Vb V = Ek:bi ETak;bTak

(0 d - k:bieTak ;bjE Ta 3k

Similarly, summing up over all sets Tak that contain node bj but not node bi, we find that

Ek:bETak;bioT.,kbj Vbi Eki:bjETa;bifTa A

d- Ek:bj ETh;bi ETajk k

3The notation= means that the equality follows from expression (10).
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Therefore, EkCK max (0, vb - vb) = kK max (0, v - vb) = d - Ek:bjeTak;bETakPk. By

Theorem 4.3, d - Ek:bjETak;biETak k is the coefficient of an edge s, t = bi, bj) in the

projected inequality.

All the other edges are either of the form s, t) = ai, aj or {s, t = aj, bi) with

bi Taj. For any edge of the form {ai, aj}, v - v -ai = d for commodities i

and j and vak = va = 0 otherwise. Consider an edge of the form {s,t} = {aj, bi} with

bi Tai . For all commodities k with ak E Zbi, i.e. ak is the destination, vbI - VI = k.

For commodity j, aj is the destination and vaj - i = d. For all other commodities k,

va = vk = 0. Therefore, for both edges of the form {s, t = ai, aj} and s, t} = aj, bi}
Vaj J'bi

with bi Taj, we find that ZkEKmax(O,v k - vt) = keKmax (, vk -vt) = d. By

Theorem 4.3, d is the coefficient of these edges in the projected inequality.

The righthand side of the projected inequality is 7r0 = kVI(k) = d(p+1) since VD(k)

for commodities 0, ... , p, and VD(k) = 0 otherwise.

If the problem has exactly one node or no nodes with a connectivity requirement of 2,

with the same choice of v~ variables we obtain the same coefficients for xij and a righthand

side of dp (there will be no commodity with destination the root node ao).

7.1 Combinatorial Design Inequalities for the Unitary NDC Problem

To conclude this discussion, we examine the valid inequality for the unitary NDC problem

that is implied by the cone element that generates the combinatorial design inequality for

the NDLC problem.

For each node ak, k = 0,..., p, we select a commodity k with destination ak as follows. If

the maximum connectivity requirement rak of node ak is greater than or equal to 2, then we

select a commodity k with destination node ak and flow requirement rak /2. If the maximum

connectivity requirement rak of node ak is equal to 1, then we select a commodity k with

destination node ak and flow requirement 1. Retain the same choice of variables v/k. The

projected inequality is

_.(d - dij) xij > dp if L 2 - (12)
(12)

{ij}E(d di)xi > d(½ ZEtL2 r1 + L1i) otherwise.

In this inequality LI = {i : i E Tp, ri = 1} and L2 = {i : i E Tp,ri > 2} (ri denotes the

maximum connectivity requirement of a node).

Once again, noting that the lefthand side should be integer if the x variables are integer,

we can round up the righthand side, giving the inequality

( izi dp if L 2 = (13)

{ij}EE {- ([2 EIEL2 rll + d L1l) otherwise.

We refer to inequalities (12) and (13) as weak combinatorial design and combinatorial

design inequalities. Noting that d > 1, it is easy to prove a result similar to Theorem 5.1-

31



namely, if edge replication is permitted, the value of the linear program determined by

the weak combinatorial design inequalities is at least 10ths the value of the linear program

determined by the combinatorial design inequalities.

8 Nonunitary Problems

So far we have restricted our attention to unitary problems. We now examine nonunitary

NDC problems. Our starting point will be the special case of the Steiner forest problem.

Recall that in the Steiner forest problem we are given a graph G = (N, E) and node sets

T 1, T2 ,..., Tp with Ti n Tj = b for all node set pairs (i j). We wish to design a graph

at minimum cost that connects the nodes in each node set (possibly by including multiple

node sets in any connected component of the graph).

For the unitary NDC problem, we derived a stronger formulation by generalizing a well-

known directing procedure for the Steiner tree problem. The essential idea used was to

direct the bridge edges of a solution to the unitary NDC problem in a manner akin to the

directing procedure for the Steiner tree. Analogously, to strengthen the formulation for

the nonunitary NDC problem we will first determine how to strengthen the Steiner forest

problem-a nonunitary NDC problem with each rst E {0, 1}-by directing it.

To our knowledge, we are unaware of any models stronger than the cutset model for the

Steiner forest problem. We believe the model we present is the first directed model in the

literature for this problem.

8.1 Directing the Steiner Forest Problem

For convenience, we once again describe the cutset and undirected flow formulations for the

NDC problem as applied to the Steiner forest problem.

Cutset formulation for the Steiner forest problem

Minimize E cijxij (14a)
{i,j}EE

subject to: E 3 > 1 for all S, C S C N,
ibjeEt(S) S fn Ti 0 and (N\S) n T i q0 for some i,

xij < 1 for all i,j E E (14c)

xij > 0 and integer. (14d)

In the following undirected flow formulation for the Steiner forest problem, we select a

root node for each node set and send one unit of flow from the root node of each node set

to every node in that node set. Recall that K denotes the set of all commodities in this
formulation.
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Undirected flow formulation for Steiner forest problem:

Minimize E cijxij (15a)
{i,j}EE

-1 ifi = O(k);

subject to: I f>i- f/~ = 1 if i = D(k); for all i E N and k E K (15b)
jeN IeN { 0 otherwise;

f } < xij for all {i,j} E E and k K (15c)

~CZ Fef3i > for all {i,j} E E and k E K (15d)

xij < 1 for all {i, j} E E (15e)

Xij > 0 and integer; for all {i,j} E E. (15f)

If we assume each cij > 0, these formulations always have a Steiner forest as an optimal

solution, and so each component of the forest is a tree. Nodes belonging to any node set Ti,

for any i, lie in the same component. As an example, Figure 6a shows the optimal solution

to a Steiner forest problem with five components. One component contains the two node

sets T1 and T4. All the other components do not contain nodes from other node sets.

How might we direct the Steiner forest problem? Since each component in the optimal

solution is a tree, we could arbitrarily choose a node in each component and direct each tree

away from it. Unfortunately, before we solve the problem, although we know that nodes in

each node set will lie in the same component, we do not know the number of components

in the optimal solution and the node sets they contain. The problem is to determine, a

priori, the root node for each component. For this reason, directing the Steiner forest

problem raises difficulties not encountered in directing the Steiner tree (and the unitary

NDC) problem.

To direct the Steiner forest, for each set Ti, we choose an arbitrary root node ri E Ti. We

then direct each component (tree) away from the lowest indexed root node that it contains.

In the example shown in Figure 6(a), one component contains two node sets T 1 and T 4.

Since T1 is the lowest indexed node set in this component, we have directed the component

away from the root node rl of node set T1. All the other components contain nodes from

only one node set Ti, for i = 1, 2, 3, 4, 5, and we direct each of them away from the root

node ri of node set Ti. Figure 6(b) shows the forest after we have applied the directing

procedure.

For notation, if j E Ti, we let p(j) = ri denote the root node of the node set Ti that

contains node j. We refer to ri as node j's root node. We also define T = T1 U T2 U ... Tp,

and let R be the set of all root nodes, that is, R = {rl, r2,..., rp}.
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Figure 6: Example of the directing procedure.
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8.2 Improved Flow Formulation for the Steiner Forest Problem

We model the Steiner forest problem using multicommodity flows. Since the network we

obtain after directing the Steiner forest contains a directed path from the lowest indexed

root node in a component to all other nodes in that component, we can send a unit of flow

from the root node of each directed component to every node in that component.

For each node j E Ti, with j 4 ri, and for each p < i, we define a commodity with

origin node rp and destination node j, and for each root node ri and for each p < i, we

define a commodity with origin node rp and destination node ri. In the optimal solution,

it is possible to send a unit of flow from the lowest indexed root node of a component to

each required node in that component. Let CO(q) denote the set of all commodities that

have node q as their origin, and CD(q) denote the set of all nodes that have node q as

their destination and let K denote the set of all commodities. We also define 71 = {S:
S C K, and IS n CO(rj)J = for all j = 1,... ,P}. That is, each member of 1 is a set of

commodities with exactly one commodity having each root node as its origin.

Let xij be 1 if the network design contains edge {i, j} and be 0 otherwise. The improved

undirected flow formulation for the Steiner forest problem has the following form.

Improved undirected flow formulation for Steiner forest problem:

Minimize E cijxij (16a)
(i,j)EE

> -1 if i = O(k); i E N;
subject to E fi- z f < 1 if i- = D(k); and (16b)

jeN lE=N 0 otherwise; k E K;

E fJD(k) = 1 for all i E T\R (16c)
kECD(i) jEN

V i E T\R, Vk E CD(i),

fD(k) < fk* s.t. O(k) = O(k*), and (16d)fjeN () - jD(k*N
jEN jEN D(k*) = p(i);

~+fke < for all {i,j E E, and (16e)

keH kE l all H, H pairs in 7

NElZ f 1 for all j E N, and (16f
jENkEH all H in 7-1

fk0 0 for all I E N, and (16g)
D(k)l k E K

}> O > 0 for all {i,j} E E, and (16h)

x E {0,1} for all {, E. (16i)
Xij E {0,1} for all {ij} E. (16i)
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Constraints (16b), (16c), and (16g) ensure that each node i in T\R obtains a unit of flow

from either its root node, or the root node of a lower indexed node set. Constraints (16d)

and (16g) ensure that if node i E Tj, i rj, is supplied by a commodity k whose origin
is not the root node of set Tj, then its root node also is supplied from the origin of com-

modity k (i.e., its root node belongs to the same component that it belongs to). Note that

constraint (16g) simply states that flow of a commodity out of its destination node is zero,

and so allows us to simplify notation in constraints (16c) and (16d) (they contain only terms

for flow into the destination node). Constraint (16e) follows from the property that in an
optimal solution flow travels in only one direction across an edge, and all the flow across an

edge originates from the same source (the root node of the component the edge belongs to).

Constraint (16f) follows from the fact that flow into any node in a component originates

from a single node (the root node of that component).

Figure 7 shows that the improved undirected flow formulation is stronger than the cutset

formulation (or undirected flow formulation, since they are equivalent) for the Steiner forest
problem. In this example T1 = {a, d}, T2 = {b, c}, and each edge has a cost of 1 unit. The

optimal solution to the cutset formulation sets Xab = Xbd = Xdc = ca = 0.5 with a cost

of 2 units. In the improved undirected flow formulation, we select node a as the root

of node set T1, and select node b as the root of node set T 2. This formulation contains

four commodities. Commodities 1, 2, and 3 have origin node a and destinations nodes b,

c and d. Commodity 4 has origin node b and destination node c. The optimal solution

to the linear programming relaxation of the improved undirected flow formulation sets

Xab = Xbd = Xad = 1, f2 = falb = fa3b = fb3d = 1 (notice that all the commodities originate at

the node a, the lowest indexed root node of the optimal solution), and has a cost of 3 units.

Researchers have previously shown that the linear programming relaxations of the im-

proved undirected flow formulation provide integer solutions (i.e., the edge design vari-
ables are integer) for the Steiner tree problem when the underlying graph is series-parallel

(see [PLG85]). The example in Figure 7 suggests that a similar result might be true for

the Steiner forest problem (since the underlying graph in that example is series-parallel).

However, adding a single edge {b, c} with unit cost to the example in Figure 7 shows
that this property is not true. The optimal solution to the linear programming relax-

ation of the improved undirected flow formulation is Xab = Xbd = Xdc = ca = Xbc = 0.5,

f3b = f3d = f3c = f3d = flb = fac = 4 = 0.5, with a cost of 2.5. The optimal integer
solution and the optimal solution to the linear programming relaxation of the cutset for-
mulation (or undirected flow formulation) are the same as in the previous example with a
cost of 3 units and 2 units respectively. Thus improved flow-based models for Steiner forest

problems defined on series-parallel graphs need not have integer solutions.

In this section we modeled the directing procedure on an undirected graph by using
directed commodity flows. It is also possible to implement this directing procedure by
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Figure 7: (a) Graph with unit edge costs and T1 = {a,d}, and T 2 = {b,c}. (b) Optimal

solution to LP relaxation of cutset formulation. (c) Optimal solution to LP relaxation of

improved undirected flow formulation.

transforming the problem onto a directed graph. Raghavan [Rag95] describes equivalent

directed flow formulations for the Steiner forest problem.

To conclude this section, we note that we modeled the directing procedure using com-

modity flows. Unlike the unitary NDC problem, there does not seem to be any obvious way

to formulate a directed cut model. This shows the flexibility and power of flow models for

modeling network design problems with connectivity constraints.

9 Directing the NDC Problem

In this section we show how to generalize the directing procedure we have just presented for

the Steiner forest problem to obtain a directed model for all NDC problems. As a result,

we obtain a stronger formulation for the NDC model with edge-connectivity requirements.

To sketch the basic idea underlying the directing procedure, consider any solution to the

NDC problem. It consists of one or more connected components. By following the procedure

described in Section 3 for each connected component of the integer solution to the NDC

problem, we can direct each component. However, like the Steiner forest problem, because

the problem is nonunitary, we do not know a priori the number of connected components in

the optimal solution and the required nodes they contain. (We do know that if we delete the
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edges {s, t} with rst = 0 from the requirement spanning tree, then the nodes that belong to

the same tree (component) of the requirement forest will be in the same component of the

solution to the NDC problem.) By combining the directing procedure for the unitary NDC

problem and the directing procedure for the Steiner forest problem, we obtain a directed

model for the NDC problem.

The following commodity selection procedure outlines the essential idea of the directing

procedure. We first use the directing procedure described in Section 3.2 to direct the

problem for commodities with rst > 2. We then apply the Steiner forest problem's directing

procedure to direct the bridge edges in each component of the optimal integer solution to

the NDC problem.

Commodity selection procedure for Formulation (17)

1. Find the requirement spanning tree.

2. Delete all edges with rst = 0 from the requirement spanning tree.

3. For each edge {s, t} of the requirement spanning tree with rst > 2, create two com-

modities: one with origin node s and destination node t, and the other with origin

node t and destination node s; each of these commodities has a flow requirement

of rst/2 . Let L denote this set of commodities.

4. Contract each edge {s, t} with rt > 2 in the requirement spanning tree, creating

a forest F in which rij = 1 for all edges {i, j}. Identify the connected components

T 1, T2, ... , Tp of this forest. Denote any node in F created by contraction by any of

the nodes it contains in the original requirement spanning tree (e.g., if contracting

nodes s and t creates a node in F, then we denote the contracted node by s). Select

a contracted node in each set Ti as the root node ri of the node set Ti. (If node set Ti

does not contain a contracted node, then arbitrarily select any one of the nodes as

the root node.) Now create commodities as described for the Steiner forest problem

with node sets T 1, T 2,..., Tp, and root nodes rl, r 2,... rp. Let K denote this set of

commodities.

Using this set of commodities we obtain the following improved undirected flow formu-

lation.

Improved undirected flow formulation for NDC problem:

Minimize E cijxij (17a)
(i,j)EE

> -1 if i = O(k); Vi E N;
subject to Efk - fi < 1 if i = D(k); and (17b)

jEN lEN 0 otherwise; k E K;
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E fj~k- f k

jEN lEN

CD() jD(k)
kECD(i) jEN

Z fjkD(k)
jEN

E fk + fk
keH kEH

kE~fk,

iEN kEH
E k + h

f D(k)l
xij

xij

-qk

-- qk

0

= 1

jEN fj'L(k*
jEN

< xij

< 1

< Xij

= 0

< 1

> 0

> 0

if i = O(k); Vi E N;
if i = D(k); and

otherwise; J k E L;

for all i E T\R

V i E T\R, Vk E CD(i),
s.t. O(k) = O(k*), and

D(k*) = p(i);

for all {i,j) E E, and
all H, H pairs in 

for all j E N, and
all H in '7

for all k, h E KUL

for all I E N and k

for all {i,j} e E
for all {i,j} E E, ar

k EKUL

and integer, for all

In this formulation, T = T 1 U ... U Tp, R = {rl, ... , rp}, and p(j) denotes node j's

root node. CO(k), CD(k), and are defined as for the Steiner forest problem for the

commodities k E K.

If the requirement spanning tree contains no edge {s, t}, with rst = 1, Formulation (17)

contains no commodities in K, and so the model contains only constraints (17c), (17h), (17j),

(17k), and (171). In this case, an argument similar to the one we used in Section 3.2 shows

that this formulation is equivalent to the undirected flow formulation. Consequently, the

improved formulation for the NDC problem is stronger than the undirected flow formulation

only when the maximum spanning tree of the requirement graph contains some edge {s, t}

with rt = 1.

10 Concluding Remarks

In this paper we showed how to improve formulations for NDC problems by generalizing

directing procedures for NDC problems that have connectivity requirements rst of 0 or

1. For unitary NDC problems, we generalized the directing procedure for the Steiner tree

problem and for nonunitary NDC problems, we generalized a new directing procedure for

the Steiner forest problem.

For unitary NDC problems we also showed that the projection of the new formulations
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Figure 8: The flow formulation does not always give integer solutions. The LP solution is

7.5 and the optimal solution to the problem has cost 8.

onto the space of the edge design variables contains three classes of valid inequalities (par-

tition, odd-hole, and combinatorial design) that are generalizations of valid inequalities for

the Steiner tree problem. For nonunitary NDC problems, we have not fully investigated the
projection of the improved models (the projection cones are quite complex!) to determine

valid inequalities implied by them in the space of the original edge variables. This is one

potential direction of future research.

Although we have shown that the improved flow formulation implies three classes of valid

inequalities, some classes of facet defining inequalities cannot be obtained by projecting from

the flow formulation. Consider the SND problem shown in Figure 8. In this SND problem,

nodes a, b, and c have a connectivity requirement of 2. Figure 8 shows the underlying

graph and the cost of the edges. One optimal integer solution to the problem has the edges

Xad = db = Xbc = xca = 1 and has cost 8. Assume that in the improved flow model,

commodity 1 is from node a to b, commodity 2 is from node a to c, commodity 3 is from

node b to a and commodity 4 is from node c to a. The optimal linear programming solution

to the improved undirected flow model (5) is fad = fdbl = facd = fdc = fbad2 = fd2a = fccd =

0 5, fal = facl fcabl f ab= fcl = f ccl = fba2 _ a2 = fbac2 = f = f = fbca2 = 0. 25

Xad = xbd = Xcd = 1 and ab = bc = ca = 0.5 with cost 7.5. Gr6tschel, Monma

and Stoer [GMS92b] introduced a class of inequalities for the SND problem, called r-cover

inequalities, that eliminates such fractional solutions in the cutset model. It is unlikely that

any polynomial size flow formulation implies the r-cover inequalities because, in a certain

sense, the r-cover inequalities are complements of the blossom inequalities of the matching

polytope. Therefore, if we can project out the r-cover inequalities from a polynomial size

flow-based formulation, then we will have a polynomial size extended formulation for the

matching polytope. However, Yanakakis [Yan88] showed that the matching polytope has

no polynomial size extended formulation unless P = MFP.

In this paper we did not consider node-connectivity requirements. Raghavan [Rag95]

describes formulations and algorithms for NDC problems with node-connectivity require-
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ments, as well as NDC problems with both edge- and node-connectivity requirements. We

note however that because node connectivity implies edge connectivity, all the valid in-

equalities derived for the edge-connectivity version of the NDC problem are valid for the

node-connectivity version. Consequently, the partition, odd-hole and combinatorial design

inequalities are valid for the node-connectivity version of the unitary NDC problem, and

in some instances they can be facet defining. For instance, Stoer [Sto92] shows that under

certain conditions, the partition inequalities are facet defining for the node-connectivity

version of the SND problem.

For the Steiner tree problem, Goemans and Myung [GM93] show that the choice of the

root node in the directing procedure does not affect the optimal objective value of linear

programming relaxation of the improved undirected flow formulation. Using this result it

is easy to show that the choice of the root node does not affect the value of the linear

programming relaxation of the improved undirected flow formulation for the unitary NDC

problem. A natural question to ask for the Steiner forest problem is whether (i) the choice

of root node for each node set, and (ii) the order of node sets, affects the optimal objective

value of the linear programming relaxation of the improved flow formulation for the Steiner

forest problem. Although we have not proved this result in this paper, it is possible to

establish this result. With some further argument, this result implies that for nonunitary

NDC problems, the choice of root node for each set, and the order of node sets does not

affect the optimal objective value of the linear programming relaxation of the improved flow

formulation.

We note that the strong formulation for the Steiner forest problem also leads to a

stronger formulation for a more general version of a problem called the Multi-Level Network

Design problem that has been studied in the literature (see [BMM94]). In the two-level

network design problem, we are given a network with two facility types available for each

edge-primary and secondary-and a partition of the nodes into two types-primary nodes

and secondary nodes. In this scenario, primary edges are more expensive than secondary

edges. We wish to design a minimum cost connected network that connects the primary

nodes to each other by primary edges. A more general version of this problem splits the

primary nodes into primary sets T 1,..., Tp with Ti n Tj = 0 for all primary node set pairs.

We wish to design a minimum cost connected network that connects the nodes in each

primary set by primary edges. We can interpret this problem as a Steiner forest problem

overlayed on a tree (the primary edges in the optimal solution define a forest, and the edges

in the optimal solution, both primary and secondary, define a tree). The stronger model for

the Steiner forest problem yields a stronger model for this two-level network design problem

(and for the multi-level network design problem).

Although we did not use Nash-Williams theorem to obtain stronger formulations for the

unitary NDC problem, the Nash-Williams result proves useful when designing dual-ascent

algorithms from the improved flow formulation. For example consider the NDLC problem.
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In this case because of Nash-Williams result, we can transform and thus formulate the prob-

lem on a directed graph (recall this transformation is only valid when rst E {0, 1, even})).

This, in turn, significantly simplifies the dual-ascent algorithm (as compared to performing

dual-ascent using the improved undirected flow formulation). In a companion paper [MR99]

we consider the NDLC problem and derive a dual-ascent algorithm using a directed flow

model on a directed graph. Computational experiments reported in that paper show that

the dual ascent algorithm applied to the directed flow model is able to solve problems with

up to 300 nodes and 3000 edges to within a few percent of optimality, indicating that the

linear programming relaxation of the improved flow formulation provides a good approxi-

mation to this mixed integer program model.
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