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ABSTRACT

We consider generalizations of the steepest descent algorithm for

solving asymmetric systems of equations. We first show that if the

system is linear and is defined by a matrix M, then the method converges

if M2 is positive definite. We also establish easy to verify conditions

on the matrix M that ensure that M is positive definite, and develop a

scaling procedure that extends the class of matrices that satisfy the

convergence conditions. In addition, we establish a local convergence

result for nonlinear systems defined by uniformly monotone maps, and

discuss a class of general descent methods. Finally, we show that a

variant of the Frank-Wolfe method will solve a certain class of varia-

tional inequality problems.

All of the methods that we consider reduce to standard nonlinear

programming algorithms for equivalent optimization problems when the

Jacobian of the underlying problem map is symmetric. We interpret the

convergence conditions for the generalized steepest descent algorithms

as restricting the degree of asymmetry of the problem map.

KEYWORDS: variational inequalities, linear and nonlinear systems,

steepest descent, Frank-Wolfe Algorithm.
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1. INTRODUCTION

Historically, systems of equations and inequalities have been closely

linked with optimization problems. Theory and methods developed in one of

these problem contexts have often complemented and stimulated new results in

the other. In particular, equation and inequality systems are often viewed as

the optimality conditions for an auxiliary nonlinear program. For example, in

the physical sciences, variational principles (see Kaempffer [1967], for

example) identify equilibrium conditions for systems such as electrical

networks, chemical mixtures, and mechanical structures with equivalent

optimization problems (minimizing power losses, Gibbs free energy, or

potential energy). Similar identifications (e.g., identifying spatial price

equilibria and urban traffic equilibria with minimizing consumer plus producer

surplus (Samuelson [1952], Beckmann, McGuire and Winsten [1956])) have also

proved to be quite useful in studying social and economic systems.

Once a system of equations and inequalities has been posed as an

equivalent optimization problem, nonlinear programming algorithms can be used

to solve the system. Indeed, many noted nonlinear programming methods have

been adopted and used with considerable success to solve systems of equations

(e.g., Hestenes and Stiefel [1952], Ortega and Rheinboldt [1970]).

However, viewing a system of equations or inequalities as the optimality

conditions of an equivalent optimization problem requires that some form of

symmetry condition be imposed on the system. For example, consider the

general finite dimensional variational inequality problem VI(f,C): given a

mapping f:RnORn and a set C C Rn,

find x C C satisfying (x-x ) f(x ) 0 for every x c C. (1)

If f is continuously differentiable, then f(x) VF(x) for some map
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F:C C Rn+R if and only if Vf(x) is symmetric for all x c C. In this case

the variational inequality system can be viewed as the optimality conditions

for the optimization problem

min {F(x):x c C. (2)

Therefore, nonlinear programming methods can be applied to the optimization

problem (2) in order to solve the variational inequality (1).

Suppose now that Vf(x) is not symmetric, so that the variational

inequality has no equivalent optimization problem such as (2). Can analogues

of the nonlinear programming algorithms for (2) be applied directly to (1)?

If so, when will they converge and at what convergence rate?

This paper provides partial answers to these questions. In particular,

we focus on solving systems of asymmetric equations f(x ) O0, which for

purposes of interpretation we view as variational inequalities with C = Rn

in (1). In Sections 2-5 we introduce and study a generalized steepest descent

algorithm for solving the asymmetric system f(x ) O. Section 3 considers a

simplified problem setting in which f is an affine, strictly monotone

mapping. Section 4 extends these results to nonlinear, uniformly monotone

mappings. Section 5 shows that the convergence conditions for the generalized

steepest descent method can be weakened considerably if the problem mapping is

scaled in an appropriate manner. Section 6 extends the results for the

generalized steepest descent method to more general gradient methods.

Finally, in Section 7 we consider a generalization of the Frank-Wolfe

algorithm that is applicable to constrained variational inequalities.

To conclude this section, we briefly outline the notational conventions

and terminology to be used in this paper. Other definitions and notation will

be introduced in the text as needed.
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Let M be a real nxn matrix. In general, we define the definiteness

of M without regard to symmetry: e.g., M is positive definite if and only

Tif x Mx > 0 for every nonzero x C Rn. Recall that M is positive definiteif and only if the symmetric part of M, defined by M = (M + M ), is

positive definite.

An nxn positive definite symmetric matrix G defines an inner product

n
on R:

(x,y)G := xT Gy,

where = denotes definition and T denotes transposition. The inner

product defined by G induces a norm on Rn:

IXIIG = (XX) G X)

which in turn induces a norm on the nxn matrix A:

IA I := sup IIAx IG
IxIIGl-1

(By writing IIAI IG' we implicitly assume that A has the same dimensions as

G.)

The mapping f:C RnR is monotone on C if (x-y)T(f(x) - f(y)) 

for every x C, y C; strictly monotone on C if (x-y)T(f(x) - f(y)) > 0

for every x C, y C with x y; and uniformly (or strongly) monotone on

C if for some scalar k > 0, (x-y)T(f(x) - f(y)) kx-yj|2 for every

x C, y C, where I1 11 denotes the Euclidean norm.

Finally, for any two points x and d in Rn , we let [x;d] denote

the ray emanating from x in the direction d; i.e.,

[x;d] = {y : y - x + d, e 2 0}-
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2. BACKGROUND AND MOTIVATION

In this section, we introduce a generalized steepest descent algorithm

for asymmetric systems of equations and show that the algorithm's convergence

requires some restriction on the degree of asymmetry of the problem map.

Consider the unconstrained variational inequality problem VI(f,Rn),

where f is continuously differentiable and uniformly monotone. This

*T *
unconstrained problem seeks a zero of the mapping f, since (x-x ) f(x ) 0

for every x Rn if and only if f(x ) = 0.

If Vf(x) is symmetric for every x c Rn, then f is the gradient of

some uniformly convex functional F:Rn R, and the unique solution x

satisfying f(x ) 0 solves the convex minimization problem (2) with

C = Rn. In this case, the solution to the unconstrained variational

inequality problem can be found by using the steepest descent method to find

the point x at which F achieves its minimum over Rn.

Steepest Descent Algorithm for Unconstrained Minimization Problems

Step 0: Select x0 E R . Set k 0.

Step 1: Direction Choice. Compute -VF(xk). If VF(xk ) O 0,

k *
then stop: xk x . Otherwise, go to Step 2.

Step 2: One-Dimensional Minimization. Find

xk1 = arg min{F(x) : x c [xk-VF(xk)]}

Go to Step 1 with k k + 1. E

Curry [1944] and Courant [1943] have given early expositions on this

classical method. Curry attributes the method to Cauchy [1847], while Courant

attributes it to Hadamard [1907]. As is well-known (see, for example, Polak

[1971], or Bertsekas [1982]), if F is continuously differentiable and the



5

level set {x : F(x) F(x0)) is bounded, then the steepest descent algorithm

either terminates finitely with a point x satisfying VF(xN) 0 or it is

infinite, and every limit point x of the sequence {xk } (at least one

exists) satisfies VF(x ) = 0.

Local rate of convergence results can be obtained by approximating F(x)

by a quadratic function. In particular, suppose that F(x) = x-x *l Q for

some positive definite symmetric nxn matrix Q. Then if A and a are,

respectively, the largest and smallest eigenvalues of Q and

r = (A-a)/(A+a), the sequence {x k } generated by the steepest descent

algorithm satisfies

k+l - x*2 = F(k+ r2F(xk+l r2 IIxk - x I IQ (3)- I IQ -Q

When f is a gradient mapping, we can reformulate VI(f,Rn) as the

equivalent minimization problem (2) and use the steepest descent algorithm to

solve the minimization problem; equivalently, we can restate the steepest

descent algorithm in a form that can be applied directly to the variational

inequality problem. To do so, we eliminate any reference to F(x) in the

k+lalgorithm and refer only to f(x) = VF(x). Since F(x) is convex, x

solves the one-dimensional optimization problem in Step 2 if and only if the

k+l
directional derivative of F at x is nonnegative in all feasible

directions. Therefore, the algorithm can be restated in the following

equivalent form:

Generalized Steepest Descent Algorithm for the Unconstrained Variational
Inequality Problem

Step O: Select x0 E R . Set k 0.

Step 1: Direction Choice. Compute -f(x k). If f(x) 0, stop; x = x

Otherwise, go to Step 2.
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Step 2: One-Dimensional Variational Inequality. Find x E [x ;-f(xk)]

satisfying

(x-x k+)T f(x k + ) 0 for every x [x k;-f(xk)].

Go to Step 1 with k = k + 1. a

As stated, the algorithm is applicable to any unconstrained variational

inequality problem. It can be viewed as a method that moves through the

"vector field" defined by f by solving a sequence of one-dimensional

variational inequalities.

The generalized steepest descent algorithm will not solve every

unconstrained variational inequality problem, even if the underlying map is

uniformly monotone. If f is not a gradient mapping, the iterates generated

by the algorithm can cycle or diverge. The following example illustrates this

type of behavior.

Example 1

Let f(x) = Mx, where x e R2 and M = P1 . Since M is positive

definite (because M = I), f is uniformly monotone. If p = O, f is a

gradient map (since Vf(x) = M I is symmetric) and the generalized

steepest descent algorithm will converge. If p > 0, f is not a gradient

mapping, since Vf(x) - M is not symmetric. Let x = [:] and consider the

progress of the generalized steepest descent algorithm when p - 1. As long

as x = [], the one-dimensional variational inequality subproblem on

th xtheonek+l
the kth iteration will solve at the point xk+1 at which the vector

f(xk + ) is orthogonal to f(x(xk), the direction of movement. In

this example, -f(xO) u_ [], which implies that xl [ ] since
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f x2 x3 -1 ][2] is orthogonal to [ 2 Similarly, x2 1] x [ ], and

x4 [] xO. Thus, in this case, the algorithm cycles about the four points

1[ i] [1 ], [ ] and [1 ]. Figure 1 illustrates this cyclic behavior. (In

the figure, the mapping has been scaled to emphasize the orientation of the

vector field.)

X

f(X3 ) = Mx'

f(X) = MX'

XI

f(X = Mx*

/

x

f(x') = M,x'

X = X4

movement direction -f(x') draws away
from solution as p Increases
from 0 to 1

- xl

-…__-------. f(x') = M,x'
X

Figure 1: The Steepest Descent Iterates
Need Not Converge If M is Asymmetric

The iterates produced by the generalized steepest descent algorithm do

not converge when p 1 because the matrix M is "too asymmetric": the
p

off-diagonal entries are too large in absolute value in comparison to the

diagonal entries. Geometrically, if p = 0, the vector field defined by f

points directly away from the solution x O; as p increases, the vector

field begins to twist, which causes the movement direction to draw away from

the solution until, when p 1, the algorithm no longer converges. In

fact, x [ P O x , so the iterates converge to the solution if

and only if IP I < 1.

I
I
I
I
I
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In the following analysis, we investigate conditions on f that ensure

that the generalized steepest descent algorithm solves an unconstrained

variational inequality problem that cannot necessarily be reformulated as an

equivalent minimization problem.

3. THE GENERALIZED STEEPEST DESCENT ALGORITHM FOR UNCONSTRAINED
PROBLEMS WITH AFFINE MAPS

In this section, we consider the unconstrained variational inequality

problem VI(f,Rn), where f is a uniformly monotone affine map. Thus, we

assume that f(x) = Mx-b, where M is an nxn real positive definite matrix

and b Rn.

3.1 Convergence of the Generalized Steepest Descent Method

When f is affine, we can easily find a closed form expression for the

th
steplength ek on the k-t h iteration.

Lemma 1

k th
Assume that f(x) = Mx-b. Let x be the k-h iterate generated by the

k *
generalized steepest descent method and assume that x j x . Then the

th
steplength determined on the k-t h iteration is

(Mx kb) T (Mxk b)
~k k_ )T k~. (4)

(Mxk -b) M(Mx -b)

Proof

Step 2 of the algorithm determines xk+1 £ [xk; -f(xk)] satisfying

(x-x k+)Tf(x k+ ) 0 for every x c [xk; -f(xk)]. (5)
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k+l k k (x k)
If x , inequality (5) with x - - f(x ) becomes

-fT(xk)f(xk) 2 0. But then f(x ) O, so the algorithm would have

k+l kterminated in Step 1. Hence, we assume that x ~ x , and therefore that

ek 0.

Substituting x x - ef(xk) and x + x - f(xk) into (5) gives

T k(ek-e)f (x )f(xk-Okf(xk)) 2 0.

Since this inequality is valid for all 6 0, and ek > , the condition

fT(xk)f(xk-kf(xk)) = 0 must hold. Substituting f(x) - Mx-b into this

expression and solving for ek yields the expression (4). o

When f is a gradient mapping, i.e. f(x) VF(x), convergence of the

steepest descent algorithm follows from the fact that F(x) is a descent

function for the algorithm. When the Jacobian of f(x) is not symmetric, no

function F satisfying VF(x) = f(x) exists, so in general this proof of

convergence does not apply. Instead, we will establish convergence of the

generalized steepest descent method by showing that the iterates produced by

the algorithm contract to the solution with respect to the M norm (recall

that M = (M + MT)). The M norm is a natural choice for establishing

convergence because it corresponds directly to the descent function F(x)

when f(x) - Mx-b and M is symmetric. In this case, F(x) (1/2)xTMx-bTx,

while 1x-x* 12 (x-x*)TM(x-x* ) = 2F(x) + x*TMx , so F(x) is a descent

function for the algorithm if and only if I x-x I | is a descent function

for the algorithm.

The following theorem states necessary and sufficient conditions on the

matrix M for the steepest descent method to contract from any starting point

with respect to the M norm.



10

Theorem 1

Let M be a positive definite matrix, and f(x) = Mx-b. Then the

sequence of iterates produced by the generalized steepest descent method is

guaranteed to contract in M norm to the solution x of the problem

VI(f,Rn) if and only if the matrix M2 is positive definite.

Furthermore, the contraction constant is given by

r - inf ((Mx)T(Mx) xTM2x 1/2

L xO x Mx (Mx) M(Mx)

Proof

*k th
For ease of notation, let x j x be the kth i

algorithm, let e = ek, and let x be the (k+l)st it

x x - (Mx - b), where (Mx-b)(Mx-b) wil
(Mx-b) M(Mx-b)

exists a real number r c [0,1) that is independent of

| - l |IM S rnix - x*Il. Because r must satisfy

r T(x) := x - x I /I Ix - x ll for every x x ,

r := sup* T(x). r is clearly nonnegative, since T(x)
xfx

x x .

We

Because

I Ix-xI

terate generated by the

erate; then

1 show that there

x and satisfies

we define

> 0 for every

(6)

now show that r < 1 if and only if M2 is positive definite.

I Izil 2M z TMz for every z c R, we have that

|M - [(x-x* ) TM(x-x *)] , and

=- [(-(Mx-b)-x*)TM(x-(Mx-b)-x )-(M-b)- )]

= [(x-x ) TM(x-x*)-e(Mx-b)TM( x-x*)-(x-x )TM(Mx-b)+82(Mx-b)TM(Mx-b)]

x-x *)TM(x-*) [M(x-x )] [M(x-x ) [(x-x*)TM2 (x-x *) ]
[M(x-x )] M[M(x-x )]
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where the last equality follows after substituting for e and replacing

Mx - b - M(x - M b) with M(x - x ). Thus, T(x) [1-R(y)], where

* T T2
y x-x # 0 and R(y) := [(My) (My)][y My] Note that r - sup*T(x) =

[yTMy][(My) M(My) ] xx

sup [1-R(y)]l - [1-inf R(y)]½ < 1 if and only if inf R(y) > 0.
yO y/O y#O

Suppose that M is positive definite. Then M2 is positive definite,

and

inf R(y) = inf
y#O yO0

T
yTMy
T

y y

inf

my0

sup
yO0 yy

X (M2 )

min

[X (Max( max

M2y

T

(My)TM(My)

(My)T(My)

yTM2y

T

sup (My) TM (My)

y~O (My) (My)

min(
)

A (M) )
max

where X in(A) and Ama (A) denote, respectively, the minimum and maximum

eigenvalues of the real symmetric matrix A. M , being positive definite and

symmetric, has positive real eigenvalues. Similarly, the positive

definiteness of M ensures that the eigenvalues of M are real and positive.

Consequently, inf R(y) > 0, and hence r < 1.
yfO

Conversely, if M2 is not positive definite, then yTM2y 0 for some

nonzero vector y. Because M is positive definite, (My)TM(My) > 0 and

yTMy > O. Moreover, y # 0 ensures that (My)T(My) > 0. Thus, R(y) 0,

which implies that r 1.

(7)
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The expression defining the contraction constant follows from the

convergence proof. O

Corollary

The contraction constant r is bounded from above by

min(M )

[r = - IL max(M) J

Proof

r is defined by r = [1 - inf R(y
yfO

[ i [ -T^ 2 ^ -1I

1 -2
max(M) 

. where

inf R(y) - inf
yfO y#O

yTM2y

y My

T
*(My) (My)

T (My) M(M)y)

inf
y#O

sup
y~o

yTM2y
yTMy
My

T

(My) (My)(y)T(my)

The numerator of the last expression can be rewritten as follows:

TM2
inf T 
yO0 yTMy

= yTM2y
= inf 

= inf Y Y 
yfO ( yTy

= inf 
ziO z z

Xmin(A),mmn

where A (M I)- TM2 (MJ)-1 and M½ is any matrix satisfying (Mi)T (M) M.

Now for any nxn matrix G, X is an eigenvalue of A if and only if is

(8)
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an eigenvalue of G AG, (see, for example, Strang [1976]). In particular,

, = , and hence-1if G -M, then G AG M , and hence

(9)min(A) - X (M N ).

Finally,

sup (My) M(My) sup Mz 

yOf (My) (My) z z max

The result follows from (8), (9) and (10).

(10)

D

Note that a different upper bound on

(7) in the proof of Theorem 1:

r r := 1 -

r can be derived from inequality

[ 1-

In general,

corollary.

that S -IT

this bound is not

To see this, let

has positive real

as tight as the bound r given in the

S and T be symmetric matrices, and assume

eigenvalues. Then

X min(T) = min xTTxmin Ilxlil

'T -1 
S x SS Tx

= (S-lT)xTSx

'iA (S- T)· max xTSx
min ||XI||-

iX (S T)X (S),
min max

where is the eigenvector corresponding to the minimum eigenvalue of S- T.

Let S - M and T = M2 Then S-1T M-1 M2 has positive real eigenvaluesLet S - and T . Then S T M M has positive real eigenvalues

i I
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because it has the same set of eigenvalues as the positive definite symmetric

matrix (M)-TM (M)l. Thus,

.min(M M)

(M)max

X (M Q, i' A2 ( 2
which implies that r = min - in 2 r.

max) max)]

3.2 Discussion of M2

The theorem indicates that the key to convergence of the generalized

steepest descent method is the matrix M2 . If the positive definite matrix M

is symmetric, the convergence of the steepest descent algorithm for

unconstrained convex minimization problems follows immediately: M = MTM is

positive definite because M, being positive definite, is nonsingular. In

general, the condition that the square of the positive definite matrix M be

positive definite imposes a restriction on the degree to which M can differ

from M . To see this, note that M is positive definite if and only if

xTM2x = (MTx)T(Mx) > 0 for every x O0.

Thus, M2 is positive definite if and only if for every nonzero vector x,

the angle between the vectors MTx and Mx is acute.

The positive definiteness of M 2 does not imply an absolute upper bound

on the quantity 1 1M-MT 11 for any norm ||-|, because we can always

increase this quantity by multiplying M by a constant. However, if M2 is
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positive definite, then the normalized quantity j IM-MTI I/ M+MTII must be

less than 1. This result follows from the following proposition.

Proposition 1 (Anstreicher [1984])

Let M be an nxn real matrix. T

positive definite if and only if 

x 0.

Proof

M2 + (M2)T ' i[(M+MT) 2 +

Thus, xT(M2 )x > 0 -

In particular, if M i

hen, for any norm 11., M2 is

l(M-M )x < l(M+MT)xll for every

(M-MT)2]

xT(M2 + (M2) T)x > 

xT(M+MT)2x + xT(M-MT)2x > 0

xT(M+MT ) (M+MT)x > -xT(M-M T ) 2x xT(M M T ) (M-MT )x

I (M+MT)xll > (M-M T)xl. O

s positive definite, then

I IM- M I max IItm-m xll 'I Im - -M x I I < I I tMtm )X I I

I x 1=1

max II (M+MT)x I = I IM+MT I, where x - argmax C (M-MT )
I xlll I 1xl11

Consequently, I I- MT I1l/ IM+MI < 1.

For related results on the positive definiteness of M2 , see Johnson's

[1972] study of complex matrices whose hermitian part is positive definite

(see also Ballantine and Johnson [1975]). This thesis and subsequent paper

describe conditions under which the hermitian part of the square of such a

matrix is positive definite.

x I I .

T, , .T ,, , , - -T, , , , , -T% - II - I .... , T% - I I
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3.3 Discussion of the Bound on the Contraction Constant

Let us return to the problem defined in Example 1. The mapping

f(x) M x is affine and strictly monotone, since M .[1 -P is positive

P 2p 1-p 2definite. For this example, M ' , and ,

M is positive definite if and only if Ipi < . Moreover,

M -M 12/IM M 12 < 1 if and only if M is positive definite, since

11iN pM 2 12p M1-0 2T 2 2 0

P P 2 2pp2 ~0 2 21

For this example, the upper bound on the contraction constant given in

the corollary is tight. To see this, first note that M = I, so the M
p p

norm is equivalent to the Euclidean norm. Recall from the example that

k+1 0 k * 
x p[ Jx and x 0 O. Thus,

-1 0-

|IXk k1 |M | IIXk+ 112 (P2(Xk)TIX k)

i p112 l1I * olx 12 ' p I Ix X I-p

2 2hence the contraction constant for the problem is 1P|- The bound given
by the corollary is also Ipl, because min(M n) ami ) - - p

and X mx(M) , giving - [1-(l-p2 )] - ipi
max0



17

For affine problems defined by symmetric matrices, the bound r on the

contraction constant r may be quite loose. If M is symmetric, a tighter

upper bound on r found by diagonalizing M and applying the Kantorovich

inequality (see, for example, Luenberger [1973]) is

rmax - Xmin(M)
r + nM) . In terms of the condition number

k = X (M)/ in (M), r (k-l)/(k+l), while r = [(k-l)/k]. Thus,

for example, if k 1, then r = r 0; if k 1.5, then r - 0.2 and
S s

r - 0.58; if k = 3, then rs = 0.5 and r = 0.82; and if k 10, then

r - 0.82 and r - 0.95. This tighter upper bound on r cannot be derived

in the same way if M is not symmetric. A matrix M can be decomposed into

its spectral decomposition (and hence is unitarily equivalent to a diagonal

matrix) if and only if M is normal, which is true for a real matrix M if

T T
and only if M M = MM . Thus, if M is not symmetric, we cannot necessarily

diagonalize M and use the Kantorovich inequality to obtain the upper bound

r on the contraction constant r.
s

3.4 Sufficient Conditions for M2 to be Positive Definite

We now seek easy to verify conditions on the matrix M that will ensure

that the matrix M is positive definite. The following example shows that

the double (i.e., row and column) diagonal dominance condition, a necessary

and sufficient condition for convergence for the problem in Example 1, is not

in general a sufficiently strong condition for M2 to be positive definite.
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Example 2

2 0 0 4 0 0 8 2.97 2.97

2 M2Let M .99 1 0 . Then M - 2.97 1 0 and 2M - 2.97 2 0.99 0 1 _2.97 0 1 _2.97 0 2 _Since det(2M ) -3.2836, M is not positive definite, and therefore M2

is not positive definite. D

Results by Ahn and Hogan [1982], (see also Dafermos [1983] and Florian

and Spiess [1982]) imply that the norm condition ID BD I112 < , where

D - diag(M) and B - M-D, ensures that the Jacobi method will solve an

unconstrained variational inequality problem defined by an affine map.

(I ID BD- 112 < 1 implies the usual condition for convergence of the Jacobi

method for linear equations, p(D-1B) < 1, where p(A) is the spectral

radius of the matrix A, because p(D-1 B) < D- 1 BI ID ID½BD- 112 ) Pang

and Chan [1981] show that if M is doubly diagonally dominant, then

I ID-BD- 112 < 1. Example 2, therefore, also demonstrates that

ID- BD II2 < 1 is not a sufficiently strong condition on M to ensure that

M2 is positive definite.

The following theorem shows that stronger double diagonal dominance

conditions imposed on M guarantee that M2 is doubly diagonally dominant,

which in turn implies that M2 is positive definite.

Theorem 2

Let M - (Mij) be an nxn matrix with positive diagonal entries. If

for every i 1,2,...,n,

IM ijI < ct and InMjil < ct,
ji1 joi
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where t =
min{(Mii) : il,...,n}

max{Mii..: il,...,n}
and c = / - 1, then both M and M2

are doubly diagonally dominant, and therefore positive definite, matrices.

Proof

Let M.. be the (i,j)th
13is

is

element of M. Then the (i,j)th element of

2 n

(M )ij = MikMkj =
k=1

(Mii) + r MikMki
kfi

iiMij + MijMJj + i,j MikMkj

To show that M2 is doubly diagonally dominant, we must show that

(M2)ii > Z I(M 2 ) i I and (M 2)ii > Z I(M 2 )jil

i.e., that

and

JT''

(Mii) > -
k(i

(Mii) > - E
k~i

Jr.

Mik ki + Mii.M. + MijMjj + 
i~i ki,j

MikMkj I 

MikMki + z IMiiM i + MjiMjj + I M jkki
joi ki,j

(11)

(12)

To show that (11) holds, it is enough (by Cauchy's Inequality and the triangle

inequality) to show that

(Mi2 > IMikllMkil
k i

+ iij IMij I + Mi I ij
i jiJ

I + z IMikl MkIjl
jii ki,j

Because the last term in the righthand side of the above expression is equal

to ZE IMikMllkjl, the sum of the first and last terms in
kji j3i,k

the righthand side is

if i=j

if ij.
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| kl['M il + E 1\kj] E 'Mik [ £ 'kjl ].
kri jSi,k kii jok

Consequently, to show (11) is true, we show that

Mii IMik [ Ikjl] +Mii E Mij I + E Mi IMij i (13)
kJi ik 1f jji

To establish (13) (and hence (11)), we introduce the quantity t defined

in the statement of the theorem. Note that

(i) t Mii for every iil,...,n (since t (Mii) /Mii = M..ii for

every i), and

(ii) t Max{Mii: i-=l,...,n} (Mii) for every i=l,...,n.

The bounds on the off-diagonal elements of M assumed in the statement

of the theorem ensure that the righthand side of (13) is bounded from above by

IM ik(ct) + Mii(ct) + Max{Mii: i=l,...,n}(ct)
k#i

< c2 t2 + Mii(ct) + (ct) Max{Mii: il,...,n}

2 2 2 2
- c (Mui) + c(MII) + c(Mii) by (i) and (ii).Thus, (13) holds if (Mii) (c + 2c) (Mii) 2 or, since (Mii) > 0, if

c + 2c - 1 0, which holds if and only if c e [-/'-1, /-1]. Thus, if

c /-1, (13), and therefore (11), must hold. Similarly, if c - -1,

then (12) must hold. These two results establish that M2 is doubly

diagonally dominant whenever the hypotheses of the theorem are satisfied.

The double diagonal dominance of M2 ensures that M2 is doubly

diagonally dominant. Because M1 is symmetric and row diagonally dominant,

by the Gershgorin Circle Theorem (Gershgorin [1931]), M has real, positive
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eigenvalues. Since M is symmetric and has positive eigenvalues, M is

positive definite, and hence M is positive definite.

The conditions that the theorem imposes on the off-diagonal elements of

M also ensure that M is doubly diagonally dominant, and hence that M is

positive definite. °

Because the assumption that M is doubly diagonally dominant is

stronger than the assumption that M is positive definite, the conditions

imposed on M in Theorem 2 are likely to be stronger than necessary to show

that M2 is positive definite. In a number of numerical examples, we have

compared the following three conditions:

(1) the conditions of Theorem 2;

(2) necessary and sufficient conditions for the matrix M2 to be doubly

diagonally dominant; and

(3) necessary and sufficient conditions for the matrix M2 to be

positive definite.

From the proof of Theorem 2, we know that conditions (1) imply conditions (2),

and conditions (2) imply conditions (3). The examples suggest that there is a

much larger "gap" between conditions (2) and (3) than between conditions (1)

and (2). Thus, it seems that we cannot find conditions much less restrictive

than the conditions of the theorem as long as we look for conditions that

imply that M2 is doubly diagonally dominant instead of showing directly that

M2 is positive definite.

The conditions that Theorem 2 imposes on the off-diagonal elements of M

are the least restrictive when the diagonal elements of M are all equal. In

Section 5, we show that by scaling the rows or the columns of M so that the
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scaled matrix has equal diagonal entries, we may be able to weaken

considerably the conditions imposed on M.

We close this section by noting that the positive definiteness of the

matrices M and M 2 is preserved under unitary transformations. As a

consequence, if M and M2 are positive definite, then the generalized

steepest descent method will solve any unconstrained variational inequality

problem defined by a mapping f(x) Mx-b, where M is unitarily equivalent

to M.

4. THE GENERALIZED STEEPEST DESCENT ALGORITHM FOR UNCONSTRAINED
PROBLEMS WITH NONLINEAR MAPS

If f:R n_ Rn is not affine, strict monotonicity is not a sufficiently

strong condition to ensure that a solution to the unconstrained problem

n x
VI(f,R ) exists. If, for example, n - 1 and f(x) - e , then VI(f,R1) has

no solution. Because the ground set R over which the problem is formulated

is not compact, some type of coercivity condition must be imposed on the

mapping f to ensure the existence of a solution. (See, for example,

Auslender [1976] and Kinderlehrer and Stampacchia [1980].) The existence of a

solution to VI(f,Rn) is ensured if f is strongly coercive and

hemicontinuous. Therefore, because uniform monotonicity implies strong

coercivity, in this section we restrict our attention to problems defined by

uniformly monotone mappings.

The following theorem establishes conditions under which the generalized

steepest descent method will solve an unconstrained variational inequality

problem with a nonlinear mapping f. In this case, the key to convergence is

the definiteness of the square of the Jacobian of f evaluated at the

*
solution x .
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Theorem 3

Let f: Rn Rn be uniformly monotone and twice Gateaux-differentiable.

Let M - Vf(x ), where x is the unique solution to VI(f,R ), and assume

that M 2 is positive definite. Then, if the initial iterate is sufficiently

close in M norm to the solution x , the sequence of iterates produced by

the generalized steepest descent algorithm contracts to the solution in M

norm.

Proof

To simplify notation, we let I |' denote the M norm throughout

this proof. Let x x be the initial iterate. We will show that if

E := IIX-X*11 > 0 is sufficiently small, then the iterates generated by the

algorithm contract to the solution x . We assume that < 1.

By Step 2 of the algorithm, x, the first iterate generated by the

algorithm, solves the one-dimensional variational inequality problem on the

ray [x; -f(x)] emanating from x in the direction -f(x). The proof of

Lemma 1 demonstrates that the solution x to this one-dimensional problem

satisfies fT (x)f(x) = O. Thus, if we parameterize the ray [x; -f(x)] as

x - f(x), then x - x - f(x), where the steplength e is defined by the

equation

fT(x)f(x - f(x)) 0. (14)

By Lemma 2, which follows, the value satisfying (14) is unique. In order

to determine an expression for 0, for any x S :" {x : IX - X | I = E}

we approximate f about x with a linear mapping and let v denote the

error in this linear approximation, i.e.,

f(x) - f(x ) + Vf(x )(x - x ) + v ' M(x - x ) + vx
X x
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Substituting M(x - f(x) - x ) + v- for f(x) in (14) yields the following
x

expression for :

fT(x)M(x - x ) + fT(x)v-
f T(x)Mf( x
fT (x)Mf(x)

To show that the iterates generated by the algorithm contract t,

solution in M norm, we show that there exists a real number r 

is independent of x and satisfies IIx - x i < rllx - x lI. Beca

must satisfy r T(x) := lix - x l/llx - x*l for every

x S , we define r sup T(x). r is clearly nonnegative, since
£ xcS

for every x S .

We now show that r < 1. Proceeding as in the proof of Theorem

have that T(x) = [1 - R(x)]½ , where

o the

0,1)

use

T(x)

that

r

> 0

1, we

-T 2fM* - *T 2
R(x) := fT(x)M(x - x ) + (x - x )TMf(x) - fT(x)Mf(x)

(x - x )TM(x - x )
(15)

Substituting for in (15) and replacing f(x) with M(x - x ) + vx we

have that

*)TMTMx* * *TM2 *
R(x) - [(x - x ) TMT(x - x )][(x - x ) (x - x )] - E(x)

[(M(x - x ) + vx] M[M(x - x ) + v )][(x - x* ) M(x - x )]x x

where the error term E(x) contains all terms involving v

given by

and v-,
x

(16)

and is

* Tv* *T T *T-{v M(x - x ) + vT[M(x - x ) + v x] }{(x - x ) Mv - v[M(x - x ) + v x]x x x x x x

+ (x - x ) M M(x - x ).{(x - x )TMv - v-[M(x - x ) + v ]}
x x x

+ (x - x*2(x - x ){v - x) v[M(x - x ) + vx )
x X x

I
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E(x) can be bounded from above using the triangle inequality, Cauchy's

inequality, and the fact that the matrix norm I A I satisfies I lAx I 

IIAII'[xjI for every vector x:

E(x) IE(x) 1 11 Ivxl I M l - X | + IIvx |.[MI l| I - X | + lvx |11]2
+ {( I IMTMI I + l M2 11)llx - x*1I 12

{I IxlI IMIIIX- x I II I+ II Iv '[ I MI'I I - x I + I I }1

< {kllix - x*113 + k2iix - X* 12 [k 3 x - x*11 + k4 11X - x*112]}2

+ k1X - x 12 {kll x - x*113 + k 2 llx - x |l

[k311x - x i + k4 lIx - x *12]}

kx - x 115

where the second inequality

inequality holds since x

k. O0.
1

Since

and only if

Dividing the

(recall that

we obtain

follows from Lemma 3, which follows,

- x 1 < 1 for every x S. k 0

r sup T(x) sup [1 - R(x)]' = I

xESC xcSC

inf R(x) > 0. We therefore show 1

numerator and denominator (16) by

I: I I denotes the M norm) and

and the third

since each

[1 - inf R(x)] , r < 1 if
xeS

that inf R(x) > 0.
xES

Ilx - x || [(x x*)TM M(x - x )]

using -E(x) - kllx - x 115,

inf R(x) 
xeSc

inf
XESE

(x - x*)TM2 (x - *) kl I - x *113

(x - x )TM(x - x) (x - x )TMM(x - x )

[M(x - x *) + v ]TM[M(x - x *) + x]

- x*TT(x - x*
(x - x ) M M(x - x )

- I
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inf (x - x*)TM2 (x - * ) sup kl|x - x 1 3
xS * T * xS * TMT *XcS ( - )TM(x - x ) XE (X - ) TMTM(x - )

L * T *
SUP [M(x - x ) + vX] M[M(x - x ) + v ]sup X X

XES
(x - x )TM TM (x - x )

Considering each of these three expressions separately, we have:

(X - X ) M (X - x )

(x - x ) TM(x - x )

inf (x-x*) TM2(x- x*)
xcS *T *

(x - x )(x - x )

sup (x- x )TM(x - x*)

xcS (X - x )T(x - x )

X (M2 )
min

kmax ( )

and M are positive definite;

kl Ix - x I13

(x - x ) MTM(x - x )

(x-x )TM(x-x*)

kllx - x II (x-x *)T(x-x* )= sup

E **
(X - x ) (X - x )

kcm x (M)maxin )

X (M M)m2.n

where b : k.e ax(M)/ i n(MT M) 2 0; and

[M(x - x ) + vx ]TM[M(x -x ) + vx]

* TMTM *(x - x ) M M(x - x )

sup [(M(x - x ) ]TM[M(x - x)] +

X xS [M(x - x )].[M(x - x )] xES
E

vTM (x - x )sup x
+ (X - )TMTMv + VTMvx x x

(x - x )TMTM(x - x*)

up I I1 I IM2· I IX - x1 I+ I - x*1-I I IMTMI1 - I I x I1+ I I I IMI I I IVx I

xESc (x- x ) TMTM(x - x*)

inf
xES

g

since M2

> 0

sup
xcS

C

sup
x ES

£

= be ,

;S ~max (M) +
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sup(M)+ cI x - x II

I max(M) + ( x )TTM(x - x )

<X (M) +max

sup sup (x-x ) TM(x-x*)
xESE clix - x XESc (-x ) T(x-x )

*TT *
inf (x - x )TM M(x - x )
xcS * T(X - X ) ( - )

C ACE max(M)
=X (M) + ma

max (MM)
min

= X (M) + a,max

where c 0, and hence a :- cX (M)/X in(MTM) a 0.

Combining these inequalities gives

inf R(x) a
X£S

c

X (M2)
mbin

- bc
x (M)
max

X (M) + aEmax

which is greater than zero if is sufficiently

is positive, X (M2)/X (M) > 0, and b 0.min max

constant r is less than 1.

Lemma 2

If f is

unique > 0

is the modulus

small, since the denominator

Hence, the contraction

uniformly monotone, then, for a given x x , there exists a

satisfying fT(x)f(x - Bf(x)) - 0. Moreover 7 9 -, where a

of monotonicity of f.
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Proof

e a 0 solves the one-dimensional variational inequality problem

[x - f(x) - (x - f(x))] f(x - f(x)) 0 for every e 0,

i.e., e satisfies -(8 - )f (x)f(x - f(x)) a 0 for every 0.

Thus, e solves VI(g,R 1), where g(e) : -fT(x)f(x - ef(x)). The existence

and uniqueness of 6 follow, because, for a given x, g is uniformly

monotone with modulus of monotonicity allf(x) 112:

(e02-1)[g(e 2 )-g(e 1 )] (e 2 e 1 )fT(x)[f(x-elf(x)) - f(x-6 2f(x))]

= [(x-elf(x)) - (x-62f(x))] [f(x-el )_f))-f(x-2f(x))]

lIx - elf(x) - x + e2f(x) 112

- [Illf(x) l2] ( 2 - 1)2 (17)

Moreover, 11 * 2
Moreover, e is positive, because x x implies that g(O) - f(x)j2 < 0.

To show that o < -, we set 02 = e and 81 '0 in expression (17).

Since f (x)f(x - ef(x)) - 0, this substitution gives

-T -2 T
fT(x)f(x) ae2fT(x)f(x).

Using the fact that e > 0 and f(x) # 0 (because x $ x ), we see that

a0 1. Therefore, since a > 0, e <- 

Lemma 3

Assume that f has a second Gateaux derivative on the open set

S : { : I I - 11 < 1}. Let x x - ef(x), where e is chosen so that

fT(x)f(x) - O. Let v - f(x) - M(x - x ), let v- - f(x) - M(x - x ), and
denote the M norm.

let 1.11 denote the M norm.
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Then, for i 1, 2 and 3, there exist constants Ci 0 that satisfy

the following conditions for any x S:

(i) Ilvxll clIx - x*112;

I x - x*I; and

(iii) lIv-11 c3 lx - x*112.

Proof

(i) IlVxll = I f(x) - M(x - x ) I 

- If(x) - f(x ) - Vf(x )(x - X*) 11

I sup I IV2 f[x *

0;5t;1
+ t(x - x ) i ,x -* 2x*12

<-sup sup IjV 2 f[x*

xcES 0 O<t-1
+ t - )]II1}1Ix -

- clllx - X*11 2 .

where the first inequality follows from an extended mean value theorem stated

as Theorem 3.3.6 in Ortega and Rheinboldt

< IIx - x + ·IM i IX

[1970].

Ix - [M(x - x ) + vx] - xx

Clearly, c 0.

II

- x*II + IIx - x*112

. c211x-x II.

where the first inequality follows from Lemma 2 and (i), and

because IIMII > 0, C1
c1IMI + a > O2 := 1 +2 a~~~~c

(ii) Ix - *1 c2

x* 12

k 0, and a > 0.

(ii) II - X*11
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-= f(a) - f(x*) - Vf(x*)(x - x )1l

S sup tV2f[x + t(x - x )]!l~x - x 112

up* sup II2f[x* + t(x - X*)1i I- x)]*112
{x:llx-x 11c 2} o0tl

- C311 - 112

-C3 2 * 12
c3c21Ix - x 1 = 311x- x 

where the last inequality follows from (ii) and c3 O because c3
k 0 and

2
c 2 >0. o

5. SCALING THE MAPPING OF AN UNCONSTRAINED VARIATIONAL INEQUALITY
PROBLEM

In this section, we consider a procedure for scaling the mapping of an

unconstrained variational inequality problem that is to be solved by the

generalized steepest descent algorithm. We first consider the problem

VI(f,R n) defined by the affine mapping f(x) Mx-b. We show that by scaling

either the rows or the columns of M in an appropriate manner before applying

the generalized steepest descent algorithm, we can weaken, perhaps

considerably, the convergence conditions that Theorem 2 imposes on M.

When f(x) - Mx-b, the unconstrained problem VI(f,R n ) is equivalent to

the problem of finding a solution to the linear equation Mx - b. If A is a

nonsingular nxn matrix, then the linear systems Mx = b and (AM)x - Ab are

equivalent. We can, therefore, find the solution to VI(f,Rn) by solving the

equivalent problem VI(Af,Rn), where Af(x) - AMx-Ab. The generalized

steepest descent method will solve VI(Af,Rn ) if both AM and (AM)2 are
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positive definite matrices. In particular, suppose that M has positive

diagonal entries and let D = diag(M). Then D is nonsingular, and the

generalized steepest descent method will solve VI(D-lf,Rn ) if (D-1M) and

(D 1M) 2 are both positive definite matrices, which is true, by Theorem 2, if

for every i = 1,2,...,n,

Z l(D M)ij < ct and Z j(D M) I < ct, (18)
J~i joi ji

min{[(D- 1M)ii]2: i = 1,...,n}
where c = / - 1 and t =ii

max{(D- M) : i = l,...,n}

Since D is diagonal, and (D )ii = (Mii) , then for each i and j,

(D- M) = M /M
('ij ij/Mii'

(Note that all diagonal entries of D M are equal.) Conditions (18) can

therefore be simplified, establishing the following result.

Theorem 4

Let M = (Mij) be an nxn matrix with positive diagonal entries,

and let D = [diag(M)] 1. If for every i = 1,2,...,n,

|MilI < cM and j < c, (19)
JSi i ii joi M

where c - 1, then (D -1M) and (D 1M)2 are positive definite

matrices.
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The conditions that Theorem 4 imposes on M can be considerably less

restrictive than the analogous conditions that Theorem 2 imposes on M; namely,

for every i 1,2,...,n,

IMij I < ct and
joi joi

(20)IMjil < ct,

where c = / - 1 and t =
min{(Mii)2: i = 1,...,n}

max{Mii: i = 1,...,n}

The conditions on the row sums of M in

as those in (19), because t Mii for every

true for the column sum conditions: because

column conditions in (20) imply that Z IM ji
jfi j

(20) are at least as restrictive

i = 1,2,...,n. This is also

t min{Mii: i = 1,...,n},- the

< c min{Mii: i 1,...,n}, and

hence MJ < E n Mii -I- < c. The conditions specified in

(20) are equivalent to those given in (19) if, and only if, all of the

diagonal entries of M are identical.

The following example allows us to compare conditions (19) and (20) for

the problem VI(f,Rn ) defined by an affine map f(x) - Mx-b.

Example 3

Consider the effect of scaling the matrix M defined as

N 0 0 1/N 0 0 1

M - a He 1 0 , and D M - a

b 0 1 0 0 1 b

0 0

1 0

0 1 

Conditions (19) for the scaled problem reduce to the inequality
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la + bi < - 1.

In contrast, conditions (20) for the unscaled problem are

(/2- 1) N2 if 0 N 1

Ja| + Jb[ < - 1I( I- 1 ) N if N 1 .

The upper bound on a + bi imposed by the conditions (20) is tighter than

the upperbound (/ - 1) imposed on la + bI for the scaled problem unless

N = 1, in which case the bounds are the same. As the value of N moves away

from 1, the conditions imposed on a and IbI for the unscaled problem

becomes increasingly stringent. (As N 0 or N + , the conditions (19)

drive lal and IbI to zero). o

Analogous results can be obtained by column-scaling the matrix M. An

argument similar to our discussion of row-scaling shows that if for every

i = 1,2,...,n,

IM (21)
M. < c and Z Mji < cMii, where c - (21)

then MD- 1 and (MD-1) 2 are positive definite.

For a given problem, either the rows or the columns of M could be

scaled in order to satisfy one of the sets of conditions that ensure

convergence of the generalized steepest descent method. For a given

matrix, one of these scaling procedures could define a matrix for which the

algorithm will work, even if the other does not. If we column-scale the

matrix of Example 3, then conditions (21) reduce to
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lal + bI ' (r - 1)N.

Thus, in order to obtain the least restrictive conditions on M, it is better

to column scale for all positive values of N.

By using a row- or column-scaling procedure, it might be possible to

transform a variational inequality problem defined by a nonmonotone affine map

into a problem defined by a strictly monotone affine map. That is, D M or

-1
MD might be positive definite, even if M is not. The following example

illustrates such a situation.

Example 4

-1 0.51 2
Let M L . Neither M nor M is positive definite, since

8 10

det(M) - -8.0625 < 0 and det(M ) = -1665.5625 < 0. However, both D M and

(-1)2 D/~M
(D M) are positive definite, since det(D M) - 0.5775 > 0 and

det(D M) 0.27 > 0. Consequently, an unconstrained problem defined by

f(x) Mx-b, and this choice of the matrix M can be transformed, by

row-scaling, into an equivalent problem that can be solved by the generalized

steepest descent method, even though neither M nor M is positive

definite. Note that column-scaling will not produce a matrix satisfying the

steepest descent convergence properties: MD is not positive definite,

since det(D ) -15.2 < 0. O

These scaling procedures can also be used to transform a nonlinear

mapping into one that satisfies the convergence conditions

given in Theorem 3 for the generalized steepest descent algorithm. The

algorithm will converge in a neighborhood of the solution x if
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(i) Df (or fD- 1 ) is uniformly monotone and twice Gateaux

differentiable; and

(ii) [D- Vf(x )]2 (or [Vf(x )D- 12) is positive definite,

where D = diag[Vf(x )].

6. GENERALIZED DESCENT ALGORITHMS

The steepest descent algorithm for the unconstrained minimization problem

Min {F(x):x R n }

generates a sequence of iterates {xk } by determining a point xk+1 Rn

that minimizes F in the direction -VF(x k ) from the previous iterate x .

In contrast, general descent (or gradient) methods generate a sequence of

iterates {x k } by determining a point x C R that minimizes F in the

k k *
direction dk from x , where dk is any descent direction from x x ,

i.e., dkVF(xk) < 0. The set of descent directions for F from the point

k *
x x is given by

D(xk):- {-AkVF(xk): Ak is an nxn positive definite matrix}.

This general descent method reduces to the steepest descent method when

Ak = I for k 0,1,2,.... If Ak = [V2F(xk)] 1- for k = 0,1,2,..., then

this method becomes a "damped" or "limited-step" Newton method. If F is

uniformly convex and twice-continuously differentiable, then this modification

of Newton's method (i.e., Newton's method with a minimizing steplength) will

produce iterates converging to the unique critical point of F. (See, for

example, Ortega and Rheinboldt [1970].)

In this section, we analyze the convergence of gradient algorithms

adapted to solve unconstrained variational inequality problems.
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The generalized descent algorithm for the unconstrained problem VI(f,Rn)

can be stated as follows:

Generalized Descent Algorithm

Step : Select x0 Rn. Set k = 0.

Step 1: Scaling Choice. Compute the scaling matrix

Ak = A(x 0,xl,...,x ,k).

Step 2: Direction Choice. Compute -Akf(xk). If Akf(xk) = 0, stop:

k *
x x . Otherwise, go to Step 2.

Step 3: One-Dimensional Variational Inequality. Find

xk+1 C [xk; -Akf(xk)] satisfying

k+l T k+l k k
(x - x )Tf(x ) 0 for every x c [xk; -Akf(xk)].

Go to Step 1 with k - k + 1. O

The following result summarizes the convergence properties for this

algorithm when f is a strictly monotone affine mapping.

Theorem 5

Let M be a positive definite matrix, and f(x) - Mx-b. Let {Ak } be

the sequence of positive definite symmetric matrices and {xk } be the

sequence of iterates generated by the generalized descent algorithm applied to

VI(f,C). Then,

(a) the steplength ek determined on the kt iteration of the

algorithm is

(Mx b) Ak(Mxk-b)

ek k T k (22)
(Mx-b) AkMAk(Mx -b)
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(b) the sequence of iterates generated by the algorithm are guaranteed

to contract to the solution x in M norm by a fixed contraction

constant r < 1 if

(i) inf [X min(MAM)] > 0, and
A

(ii) inf [X min(A)] > 0;
A

where the infimum is taken over all positive definite symmetric

matrices A; and

(c) the contraction constant r is bounded from above by

M hT Hi_ -1 1/2
inf Xmi[(M (MAM)(M s

r = 1 A 
rt A

T
sup max[A M(A) 
A

Proof

(a) For ease of notation, let x be the k iterate, A be the kth

scaling matrix, e the kth steplength and x - x - Af(x) be the (k+l)St

iterate generated by the algorithm. As in the proof of the generalized

steepest descent method, we can assume that x x. (Otherwise, f(x) 0,

and the algorithm would have terminated in Step 2 of the kth iteration.)

Since x solves the unconstrained one-dimensional subproblem,

fT(x)Af(x) (Mx-b)TA[M(x - A(Mx-b)) - b] - 0.

Solving the last equality for gives expression (22).
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(b) The iterates generated by the algorithm are guaranteed to contract in M

norm to the solution x M b if and only if there exists a real number

r [0,1) that is independent of x and satisfies

I1 - II S rlx - x 1.
M M.

Thus, we define

r : sup *TA(),
A,xix

where

I lx - x* 11
TA (x) := M for x x .

As in the proof of Theorem 1, we obtain a simplified expression for

TA(x):

TA(X) = [1 - RA(y)] ,

where y x - x , and

T T
RA(Y) := [(My)TA(My)][(y) MAMy]

[(My) AMA(My) ][(y) My ]

Therefore, r sup * TA(X)
A,x#x

sup [1 - RA ( y ) ]
A,y#O

- [1 - inf
A,yO0

RA (y)] < 1A

if and only if inf RA(y) > 0. Hence, to prove (b), we show that
A,y#O

inf RA (y)
A,y#O

>0 if inf [Xmin (A)] > 0
A min

and inf [X (MAM)] > 0.
A min

If inf [A in(A)] > 0 and inf [ min( M AM ) , then
minA A min(A)l >0, thenA A
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A,yO0 sup
A,y#O

inf
A

sup
A

because sup [ ma(AMA)] > 0
A

of M. Thus, r < 1.

inf [(My)TA(My)]l inf [(y)TMAMy]
A,y#O (My)T(My) AY (y)Ty

[(My) AM A(My)l sup [(y)TMy]
(My)T(My)y A.yS (y)Ty

[X mi n (A)]. inf [X mi n MAM ) ]
A m 

. u,

[Amax(AMA)] Ama x ( M)

and X (M) > 0 by the positive definitenessmax

(c) By an argument analogous to the argument in the proof of the corollary to

Theorem 1,

inf RA(y)
A,y#O

inf (Y) TMAMy

Ay6O0 (y)TMy

sup (My) AMA(My)(

AYO 0(My)TA(My)) I

H -T Me -1
inf Amin [(M ) (MAM)(M ) ]
A

sup AX[A M(A) T ]

A max

The result follows from this inequality and the fact that r - [1 - inf RA(y)] i 
A,y#O

If the sequence {Ak} of scaling matrices is chosen before the sequence

of iterates {xk } is generated, (that is, if A is independent of

x0,...,x k ) then the statement in part (b) of the theorem can be strengthened.

In this case, a proof that generalizes the proof of Theorem 1 shows that the

12 Ivow
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sequence {x } is guaranteed to contract to the solution in M norm if and

only if

(i') inf [A min(MAkM)l > 0 and
k=0,1,...

(ii') inf [Imin(Ak)] > 0.
k=0,1,...

When Ak is independent of x,...,x , we can also ensure convergence of the

algorithm if conditions (i') and (ii') are replaced by the conditions:

(i") lim inf[Xmin( MAM)] > 0, and

(ii") lim inf[ min(A )] > O.
k+0

In this case, the iterates do not necessarily contract to the solution.

7. THE FRANK-WOLFE ALGORITHM

Consider the constrained variational inequality problem VI(f,C), where

f:C C Rn+Rn is continuously differentiable and strictly monotone and C is a

bounded polyhedron. In this constrained problem setting, how might we

generalize the descent methods that we have discussed for unconstrained

problems? The class of feasible direction algorithms are natural candidates

to consider. In this section, we study one of these methods: the Frank-Wolfe

algorithm.

If Vf(x) is symmetric for every x C, then f(x) - [VF(x)]T for

some strictly convex functional F:C-R 1, and the unique solution x to

VI(f,C) solves the minimization problem (2). Thus, when f is a gradient

mapping, the solution to the variational inequality problem may be found by

using the Frank-Wolfe method to find the minimum of F over C.
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Recall that Frank-Wolfe algorithm (Frank and Wolfe [1956]) is a linear

approximation method that iteratively approximates F(x) by Fk(x) : F(xk ) +

VF(xk)(x - xk). On the kt h iteration, the algorithm determines a vertex

solution v to the linear program

Min Fk(x),
xeC

k+l
and then chooses as the next iterate the point x that minimizes F on

the line segment [x , vk] .

Frank-Wolfe Algorithm for Linearly Constrained Convex Minimization
Problems

Step 0: Find x0 c C. Set k = 0.

Step 1: Direction Choice. Given xk, let v be a vertex solution to

the linear program Min xTVF(xk). If (vk)T k ) = (xk)T F(xk),
xcC

k *
then stop: x = x . Otherwise, go to Step 2.

Step 2: One-Dimensional Minimization. Let wk solve the one

dimensional minimization problem:

Min F((1-w)xk + wvk ).

k+1
Go to Step 1 with x - (l-wk)xk + wvk and k = k+ . O

This algorithm has been effective for solving large-scale traffic

equilibrium problems (see, for example, Bruynooghe et al. [1968], LeBlanc

et al. [1975], and Golden [1975].) In this context, the linear program in

Step 1 decomposes into a set of shortest path problems, one for each
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origin-destination pair. Therefore, the algorithm alternately solves shortest

path problems and one-dimensional minimization problems.

If F is pseudoconvex and continuously differentiable on the bounded

polyhedron C, then (see Martos [1975], for example) the Frank-Wolfe

algorithm produces a sequence {x k of feasible points that is either finite,

terminating with an optimal solution, or it is infinite, and has some

accumulation points, any of which is an optimal solution.

When f(x) = VF(x) for every x C, we can solve VI(f,C) by

reformulating the problem as the equivalent minimization problem and applying

the Frank-Wolfe method. Equivalently, we can adapt the Frank-Wolfe method to

solve the variational inequality problem directly by substituting f for VF

in Step 1 and replacing the minimization problem in Step 2 with its optimality

conditions, which are necessary and sufficient because F is convex. (For

other modifications of the Frank-Wolfe algorithm applicable to variational

inequalities, see Lawphongpanich and Hearn [1982] and Marcotte [1983].)

Generalized Frank-Wolfe Method for the Linearly Constrained Variational
Inequality Problem

Step 0: Find x0 c C. Set k = 0.

k k
Step 1: Direction Choice. Given x , let v be a vertex solution to

the linear program Min xTf(xk) If (xk)Tf(xk) = (vk)T f(xk
XEC

then stop: x is a solution to VI(f,C). Otherwise, go to

Step 2.

Step 2: One-Dimensional Variational Inequality. Let wk solve the

following one-dimensional variational inequality problem on the

k k
line segment [x , v : Find wk [0,1] satisfying
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{[ (1-w)x k+wvk ] - [ (1-Wk)X WkVk ]Tf [ (1-Wk)XkkVk ] 0

for every w E [0,1].

k+l k k
Go to Step 1 with x (-wk)x + Wvk and k = k+l. 

This generalization of the Frank-Wolfe method is applicable to any

linearly constrained variational inequality problem. If, however, f is not

a gradient mapping, the algorithm need not converge to the solution of the

problem. The following two examples illustrate situations for which the

sequence of iterates produced by the algorithms cycle among the extreme points

of the feasible region. The first is a simple two-dimensional example; the

second could model delay time in a traffic equilibrium problem with one

origin-destination pair and three parallel arcs. The mapping f is affine

and strictly monotone in each of these examples.

Example 5

Let f(x) - Mx-b, where M J and b - , and

C = {x = (xl,X2): x2 s 1/2, V/ x1 + x2 a -1, - x 1 + x2 a -1}.

The solution to VI(f,C) is x - i

Let x0 [ . The linear program of Step 1 of the
L 1/2

generalized Frank-Wolfe algorithm solves at vO = [ ], and the

variational inequality subproblem of Step 2 solves at xl [ ]

Continuing in this manner, the algorithm then generates v 1 - /
Li/2
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x2 [ 1 v2 = 12 , and x3 - 12 = x. Hence, the

1/2 - 1/2 1/2

iterates cycle about the three points x0, xl and x2. Figure 2 illustrates

this cyclic behavior. (In the figure, the mapping has been scaled to

emphasize the orientation of the vector field.)

f(x')

X

f(x')

',/

X,

XI

Figure 2: The Generalized Frank-Wolfe Algorithm Cycles

Example 6

Let f(x) Mx-b, where M

1

0

L I
1 0 O

1 1 and b - 0 ,

0 1 0

and let C - {x (Xl,x2,x3): x1 a 0, x2 2 O, x3 2 O, x 1 + x2 + x2 - 1.

The solution to VI(f,C) is x

1/3

= 1/3 ,

1/3

since

X
I
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(x - x ) f(x) 2/3(x 1 + x2 + x3 - 1) 0= for every x C.

Let x [ 0 . Then v0 1 , 1 , v1 - [ O

x2 [ v2 - and x3 [ ] x1

Hence, the iterates cycle about the 3 points x0, x and x2. D

The generalized Frank-Wolfe method does not converge in the above

examples because the matrix M is in some sense "too asymmetric." In all of

the examples we have analyzed, the algorithm cycles only when the Jacobian of

f is very asymmetric. Because the generalized Frank-Wolfe algorithm reduces

to the generalized steepest descent algorithm when the problem to which it is

being applied is unconstrained, it is likely that the conditions required for

the generalized Frank-Wolfe to converge are at least as strong as the

conditions required for the generalized steepest descent method to converge.

That is, it is likely that at least, M 2 must be positive definite. This

condition is satisfied in neither of the previous examples. In Example 5,

M2 = is clearly not positive definite. In Example 6, M
-2V3- -2

is not positive definite because the determinant of the first 2x2 principle

minor of M2 is negative.

Several difficulties arise when trying to prove convergence of the

generalized Frank-Wolfe method. First, the iterates generated by the

algorithm do not contract toward the constrained solution with respect to
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either the Euclidean norm or the M norm, where M = Vf(x ), even if M is

symmetric. (An example in Hammond [1984] illustrates this behavior.)

The proof of convergence of the Frank-Wolfe method for convex

minimization problems demonstrates convergence by showing that F(xk) is a

descent function. When f(x) Mx-b is a gradient mapping, instead of using

the usual descent argument, we can prove convergence of the generalized

Frank-Wolfe method with an argument that relies on the fact that the solution

of the constrained problem is the projection with respect to the M norm of

the unconstrained solution onto the feasible region. This is not true if M

is asymmetric, so the argument cannot be generalized to the asymmetric case.

Although the Frank-Wolfe algorithm itself does not converge for either of

Examples 5 or 6, the method will converge for these examples if in each

iteration the step length is reduced. In particular, consider a modified

version of the Frank-Wolfe method, where the step length on the kth

iteration is /k; that is, the algorithm generates iterates by the recursion

k+l k 1 k k )

x =x + (v -x),
k+1

where v is the solution to the linear programming subproblem in Step 1 of

the Frank-Wolfe method. This procedure can also be interpreted as an

extreme-point averaging scheme: we can iteratively substitute for xi for

i - k,k-l,...,1 to obtain

k+l 1 k i
x Ev

k+l vi

Thus, xk is the average of the extreme points generated by the linear

programming subproblems on the first k iterations. This variant of the
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Frank-Wolfe method will solve the problems given in Examples 5 and 6. In the

next subsection we show that it generalizes the "fictitious play" algorithm

for zero-sum two-person games.

7.1 Fictitious Play Algorithm

Robinson 1951] shows that an equilibrium solution (x , y ) to a

finite, two-person zero-sum game can be found using the iterative method of

fictitious play. The game can be represented by its pay-off matrix

A = (aij). Each play consists of a row player choosing one of the m rows of

ththe matrix while a column player chooses one of the n columns. If the ithrow and the jth column are chosen, the column player pays the row player the

amount aij, i.e., the row player receives +aij and the column player

receives -aij. An equilibrium solution (x , y ) to the game is a pair of

points x Sm, yES n satisfying

xTAy < (x)Ay for every xcS, yesn,

k k
where S is the unit simplex in R

-k k th
The fictitious play method determines (x ,y ), the k play of the

game, by determining for each player the best pure strategy (i.e., the single

best row or column) against the accumulated strategies of the other

-k
player. Hence, at iteration k, the row player chooses the pure strategy x

k 1 k-1
that is the best reply to the average y : y of the first k plays

j=0

-If k ik -k
by the column player. If x is the best response to y , x must satisfy

xTAyk (k) TAyk
X Ay - xAy

for every xSm.
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-k
That is, x solves the (trivial) linear program

Max xTAyk

xeSm

-k
Similarly, y solves the linear program

kT k 1 k-1 
Min (xk)TAy where x xi
ym iwhere x 

k k
Robinson shows that the iterates (x , y ) generated by this method converge

to the equilibrium solution (x , y ) of the game.

To show that the Frank-Wolfe method "with averaging" is a generalization

of the fictitious play algorithm, we first reformulate the matrix game as the

variational inequality problem VI(f,C), where C - SmxS, z - [ and

f(z) Mz = [T ] [ ] [T ] . z solves VI(f,C) if and only

*T * T * *TT* T T **
if (z-z ) f(z ) (x-x ) (-Ay )+(y-y ) Ax (x ) Ay - x Ay 0 for every

xESm, ycS , that is, if and only if (x , y ) is a solution to the game.

The Frank-Wolfe method with averaging determines an extreme point of C

on the kt h iteration by solving the linear programming subproblem

Min z Tf(zk ).
xEC

-k -k -k T k Tk
(This subproblem determines x and y : z minimizes z f(zk ) - -xTAy +

-k k m -k
(xk) TAy over C if and only if x maximizes xAy over S and y

minimizes (xk)TAy over S n.) The algorithm then determines the next iterate

k k k
k+l -1 k+l 1 -i k+1 1 J E
z I k+ : that is, x + x and y Z

k+1 i-k k+I '
i=O i=O J-O
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Thus we can view the Frank-Wolfe algorithm with averaging as a generalized

fictitious play algorithm.

The following theorem shows that this generalized fictitious play

algorithm will solve a certain class of variational inequality problems.

Shapley [1964] has devised an example that shows that the method of fictitious

play need not solve general bimatrix games (and hence general variational

inequality problems). However, the mapping in his example is not monotone.

Theorem 6

The fictitious play algorithm will produce a sequence of iterates that

converge to the solution of the variational inequality problem VI(f,C) if

(i) f is continuously differentiable and monotone;

(ii) C is compact and strongly convex; and

(iii) no point x in the ground set C satisfies f(x) = 0.

Proof

The algorithm fits into the framework of Auslender's [1976] descent

k T k
algorithm procedure, because v solves the subproblem min{xTf(xk):xEC}

th kand the stepsize wk = 1/k at the kt h iteration satisfies w > 0,

Z Wk = +X, and lim wk = 0. O
ken-W k k k

Two of the conditions specified by the theorem are more restrictive than

we might wish. First, if C is strongly convex, then C cannot be

polyhedral. This framework, therefore, does not show that the algorithm

converges for the many problem settings that cast the variational inequality

problem over a polyhedral ground set. Since an important feature of this

algorithm is that the subproblem is a linear program when the ground set C
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is polyhedral, this restriction eliminates many of the applications for which

the algorithm is most attractive. Secondly, the condition that f(x) # 0 for

xcC may be too restrictive in some problem settings. One setting for which

this condition is not overly restrictive is the traffic equilibrium problem.

If we assume that the demand between at least one OD pair is positive, then we

can assume that the cost of any feasible flow on the network is nonzero.

Powell and Sheffi [1982] show that iterative methods with "fixed step

sizes" such as this one will solve convex minimization problems under certain

conditions. Their proof does not extend to variational inequality problems

defined by maps that have asymmetric Jacobians. Although we do not currently

have a convergence proof for the fictitious play algorithm for solving

variational inequality problems, we believe that it is likely that the

algorithm will converge. We therefore end this section with the following

conjecture:

Conjecture

If f is uniformly monotone and C is a bounded polyhedron, then the

fictitious play algorithm will solve the variational inequality problem

VI(f,C).

8. CONCLUSION

In general, when nonlinear programming algorithms are adapted to

variational inequality problems, their convergence requires a restriction on

the degree of asymmetry of the Jacobian of the problem map. Analyzing the

effect that an asymmetric Jacobian has on the vector field defined by the

problem map suggests why this restriction is required. Consider the

difference between the vector fields defined by two monotone affine maps, one
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having a symmetric Jacobian matrix and one having an asymmetric Jacobian

matrix.

Let f(x) - Mx-b. When M is a symmetric positive definite matrix, the

* T. x~x*
equation (x-x ) M(x-x ) - c describes an ellipsoid whose axes are in the

direction of the eigenvectors of M. The set of equations

* T. ~x*
(x-x ) M(x-x ) c, therefore, describe concentric ellipsoids about the

solution. For any point x on the boundary of one of these ellipsoidal level

sets, the vector f(x) Mx-b is normal to the hyperplane supporting the set

a (-*T ~-* T) 2M(x -1
at the point x, since ax(x-x ) M(x-x) (M+M )(x-x 2(x - M b)

2f(x).

If M is not symmetric, the set of equations (x-x ) M(x-x ) =

(x-x ) M(x-x ) = c again describe concentric ellipsoids about the solution:

the axes are in the direction of the eigenvectors of M. In this instance,

though, the vector f(x) = Mx-b is not normal to the hyperplane supporting

the ellipsoidal level set at the point x. Figure 3 illustrates the vector

fields and ellipsoidal level sets for a symmetric matrix and an asymmetric

matrix. In general, the more asymmetric the matrix M, the more the vector

field "twists" about the origin.

Nonlinear programming algorithms are designed to solve problems defined

by maps that have symmetric Jacobians. In general, these algorithms move

iteratively in "good" feasible descent directions. That is, for the

minimization problem (2), on the kt h iteration, the algorithm determines a

feasible direction dk satisfying dkVF(xk) < 0. Many algorithms attempt to

choose dk "sufficiently close" to the steepest descent direction -VF(xk).

When these algorithms are adapted to solve variational inequality problems,

they determine a direction dk satisfying df(xk) < O., with dk close to

the direction -f(xk). As long as the Jacobian of f is nearly symmetric,
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ascent"
ins

( M ) = 

(X.x)TM(x .X) = C

M Symmetric M Asymmetric

Figure 3: f(x) - Mx-b is Normal to the Tangent Plane to the Ellipsoidal
Level Set if and only if M is Symmetric

such a direction is a "good" direction for the problem VI(f,C), because a

move in the direction dk is a move towards the solution. If, however, the

Jacobian of f is very asymmetric, a move in the direction dk may be a move

away from the solution. Figure 3 illustrates the set of "descent" directions

for both the symmetric and asymmetric cases. The illustrations show that

-f(xk), the direction that a nonlinear programming algorithm considers to be

a "good" direction, can be a poor direction if the matrix is very asymmetric.

Projection algorithms are widely used to solve variational inequality

problems. A fundamental difference between the nonlinear programming

4Xl

range c
dir
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algorithms that we consider in this paper and projection methods is that the

algorithms we consider use a "full" steplength; in contrast, projection

methods use a small fixed steplength, or a steplength defined by a convergent

sequence of real numbers. Although full steplength algorithms such as the

generalized steepest descent and Frank-Wolfe algorithms require more work per

iteration than those using a constant or convergent sequence step size, they

move fairly quickly to a neighborhood of the solution. Taking a full

steplength poses a problem, however, when the Jacobian of the mapping is very

asymmetric. In this case the "twisting" vector field may not only cause the

algorithm to choose a less than ideal direction of movement, but, having done

so, will cause the algorithm to determine a much longer step than it would

choose if the mapping was nearly symmetric. The asymmetry is not as much of a

problem if the step size is small, because the algorithm will not pull as far

away from the solution even if the direction of movement is poor. Figure 4

illustrates the effect of asymmetry on the full steplength. By our previous

observations, algorithms that take a full step size will converge only if a

bound is imposed on the degree of asymmetry of the Jacobian. Projection

methods do not require this type of condition. The algorithms that we

consider in this paper will converge even if the problem mapping is very

asymmetric as long as the full steplength is replaced by a sufficiently small

steplength. The steepest descent algorithm for unconstrained variational

inequality problems becomes a projection algorithm if the stepsize is

sufficiently small. Theorem 6 shows that the Frank-Wolfe method will converge

for a class of variational inequality problems if the stepsize is defined by a

convergent sequence.
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X,

k f(xk)

Xt

M Symmetric M Asymmetric

Figure 4: A Full Steplength Pulls the Iterate Further
from the Solution when the Map is Very Asymmetric

) = c2 >c

k)

X') = C1
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