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Abstract

We develop and study averaging schemes for solving fixed point and varia-

tional inequality problems. Typically, researchers have established convergence

results for solution methods for these problems by establishing contractive esti-

mates for their algorithmic maps. In this paper, we establish global convergence

results using nonexpansive estimates. After first establishing convergence for a

general iterative scheme for computing fixed points, we consider applications to

projection and relaxation algorithms for solving variational inequality problems

and to a generalized steepest descent method for solving systems of equations.

As part of our development, we also establish a new interpretation of a norm

condition typically used for establishing convergence of linearization schemes,

by associating it with a strong-f-monotonicity condition. We conclude by ap-

plying our results to transportation networks.
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1 Introduction

Fixed point and variational inequality theory provide natural frameworks for unify-

ing the treatment of equilibrium problems and optimization encountered in problem

areas as diverse as economics, game theory, transportation science, and regional

science. Therefore, algorithms for computing fixed points and solving variational

inequalities have widespread applicability.

The classical Banach fixed point theorem shows that for any contractive map

T(.) in Rn , the iterative algorithm Xk+l = T(xk) converges, from any starting point,

to the unique fixed point of T. When the map is nonexpansive instead of contractive,

this algorithm need not converge and, indeed, the map T need not have a fixed point

(or it might have several). Suppose that T does have a fixed point, though, and

that we "modulate" the algorithmic map by taking averages, that is, we set xk+l =

xl+T(xl)+ (xk). Do these points converge to a fixed point? In this paper, we show

that even with a more general averaging scheme, the iterates of this algorithm do

converge to a fixed point of T. Using this result, we also establish, under appropriate

conditions, the convergence of averages for projection and relaxation methods for

solving variational inequalities and of a generalized steepest descent algorithm for

solving systems of equations.

These results differ from prior averaging results in the literature. As we note in

Section 2, Baillon has considered averaging of the form xk = y1+..yk, where yk+l

T(yk). That is, he averages after perfoming the iterate Yk+1 = T(yk) rather than

averaging to determine the current iterate. Bruck [8] has considered averaging for

a projection algorithm applied to variational inequalities. As in Baillon's approach,

if yj is the jth iterate of the projection algorithm, he sets xk a+...+akYk He

chooses the weights aj in a very special way; aj is the same as the steplength

for the jth iteration of the projection algorithm. His convergence results require

summability conditions on the aj rather than nonexpansiveness of the underlying

map. Passty [42] has extended Bruck's results for the more general case of a forward-
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backward splitting method for finding a zero of the sum of two maximal monotone

operators.

The variational inequality problem (VIP) is the problem,

VI(f, K) : Find x* E K C R ' : f(x*)t(x - x*) > 0, Vx E K. (1)

In this formulation, f : K C Rn - Rn is a given function and x* denotes a solution

of the problem. This problem is closely related to the following fixed point problem

(see for example [43], [20]):

FP(T, K): Find x* E K C R h satisfying T(x*) = x*. (2)

In this problem statement, T: K C R - K is a given map defined over a closed,

convex (constraint) set K in R n . The close connection between the two problems

has motivated many algorithms for solving variational inequality problems (VIPs),

such as versions of projection and relaxation algorithms. Our goal in this paper is

twofold: (i) to develop and study averaging schemes for solving fixed point problems,

and (ii) to apply these results to variational inequality algorithms.

The literature contains a substantial number of algorithms for the numerical

solution of the variational inequality problem. The review papers of Harker and

Pang [19], Pang [36] and of Florian and Hearn [13], the Ph.D. thesis of Hammond

[16], the books by Harker [18] and Nagurney [33] summarize and categorize many

algorithms for the problem. Pang [36] provides a survey of solution methods and

underlying theory for the closely related nonlinear complementarity problem.

Projection and relaxation algorithms have a long tradition. Goldstein [15], and

independently Levitin and Polyak [44], developed projection algorithms for nonlin-

ear programming problems. Several authors, including Sibony [46], Bakusinskii and

Polyak [4], Auslender [2] and Dafermos [11], have studied projection algorithms for

variational inequalities while Dafermos [9], Bertsekas and Gafni [6] and others have

studied these algorithms for the traffic equilibrium problem. Projection algorithms

can be viewed as special cases of the linearization algorithms developed by Pang and
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Chan [41]. Ahn and Hogan developed relaxation algorithms for solving economic

equilibrium problems (the PIES algorithm [1]) and Dafermos considered this algo-

rithmic approach for the general VIP, as well as the traffic equilibrium problem

[11], [10]. All these algorithms are special cases of a general iterative framework

developed by Dafermos [11]. Researchers originally established the convergence of

projection algorithms assuming a condition of strong monotonicity on the underly-

ing problem map f. In this paper we use a weaker condition, strong-f-monotonicity,

to analyze these algorithms and establish the nonexpansiveness of their algorith-

mic maps (see also [14], [49], [27], [29], [43] and [31]). A problem function f is

strongly-f-monotone if

[f(x)- f(y)]t[x - y] > aI f(x)-f(Y)II2 Vx, y E K

for some positive constant a > 0. In 1983, Gabay [14] established, in a more general

context, the convergence of the projection algorithm and implicitly introduced the

concept of strong-f-monotonicity. Tseng [49], using the name co-coercivity, explicitly

stated this condition. Magnanti and Perakis ([27], [28], [29] and [43]) have used

the term strong-f-monotonicity for this condition in order to highlight the similarity

between this condition and strong monotonicity. Korpelevich [23] modified the basic

projection algorithm and showed that his extragradient algorithm converges under

the condition of ordinary monotonicity. Marcotte [30] tailored the extragradient

method for the solution of the traffic equilibrium problem.

The steepest descent method is a standard algorithm for solving unconstrained

minimization problems min{xERn} F(x), or when F is a continuously differentiable

function, systems of equations of the form, find x* E Rn satisfying f(x*) = VF(x*) =

O (see [5]). In this case, the Jacobian matrix of f is symmetric. Hammond and Mag-

nanti [17] studied the solution of general asymmetric systems of equations, that is,

find x* E Rn satisfying f(x*) = 0. They analyzed a generalized steepest descent

method which generalizes the steepest descent method for the general asymmetric

case (that is, when the Jacobian matrix of f is asymmetric). To obtain conver-
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gence results, they require the positive definiteness of the Jacobian matrix of f and

the positive definiteness of the squared Jacobian matrix of f. In this paper, using

weaker assumptions, we show that averaging schemes of the generalized steepest

descent method solve asymmetric systems of equations.

Another objective of this paper is to provide a better understanding of existing

convergence conditions such as Pang and Chan's norm condition, and to show an

"equivalency" between this norm condition (imposed on the algorithm function) and

the strong-f-monotonicity condition imposed on the problem function.

The literature contains many other methods for solving variational inequalities

and systems of equations. For example, Pang (see [37], [38], [39], [40]) has recently

extended the work by Robinson to develop globally convergent methods (the non-

smooth equation method approach) based on the solution of systems of equations

which are not F-differentiable.

Researchers have typically established convergence results for many of these

methods by establishing contractive estimates for their algorithmic maps T : K C

Rn - K. These methods typically generate a sequence of points xk in the feasible

set K by the iterative scheme {Xk+1 = T(xk)}k=0. In many cases, the convergence

of this sequence to an optimal solution follows from a contraction estimate. A map

T is a contractive map on K, relative to the 11.llG norm, if

IIT(x) - T(y)IIG < aflx - YIG, O < a < 1, Vx, y E K.

In this expression, 11·lIG denotes the fixed norm in R s induced by a symmetric,

positive definite matrix G as lIxliG = (xtGx)1 / 2 . In other cases, convergence results

follow from contractive estimates only around solutions x*, that is,

IT(x - T(x*)IIG < allx - x*G, O < a < 1, Vx E K.

The classical Banach fixed point theorem is a standard convergence theorem for es-

tablishing the convergence of algorithms when the algorithmic map is a contraction.
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In this paper, we consider nonexpansive estimates for these maps. A map T is

a nonexpansive map on K, relative to the 11l.IG norm, if

IIT(x) - T(y)jIj < lX - yI12 for all x, y E K.

In Section 2 we develop global convergence results for a general averaging scheme

induced by such nonexpansive maps. Using this result for fixed points, in Section

3 we establish the convergence of general averaging schemes for relaxation and pro-

jection algorithms for solving VIPs and a generalized steepest descent method for

solving general asymmetric systems of equations. Our convergence conditions are

weaker than those used for establishing the convergence of these methods. We also

establish an "equivalency" between the strong-f-monotonicity condition (imposed

on the problem function) and the norm condition (imposed on the algorithm func-

tion) for establishing the convergence of linearization and relaxation schemes. In

Section 4 we apply these results to equilibrium problems in congested transportation

networks.

Finally, in Section 5, we offer some concluding remarks and raise some open

questions. To conclude these introductory remarks, we review some facts concerning

matrices.

Definition 1 . A positive definite and symmetric matrix S defines an inner product

(x, y)s = xtSy. The inner product induces a norm with respect to the matrix S via

IIxlI1 = xtSX.

Recall that every positive definite matrix S has a square root, that is a matrix

S1/2 satisfying S1/2S 1 / 2 = S. The inner product (x, y)s is related to the Euclidean

distance since

IxIls (x, x)/2 = (xtSx)1/2 = IIS1/2X12

This norm, in turn, induces an operator norm on any operator B. Namely,

IJBIls= sup [IBxIls.
IIXllS=
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The operator norms IIBIls and IIBII IIBIII are related since

IBIls = sup IIBxls = sup IISl/2BxII2 =
IIXIIs=1 IIS"/2xll2=1

- sup llS1/2BS-1/ 2S1/2x112 = llS1/ 2 BS-1/2112.
IS112 X112=1

So,

IIBIls = IISl/2BS-1 211

and, similarly,

IIBII= llS-1/2BSl/ 2 11s.

2 Averaging schemes for solving fixed point problems

We begin by studying averaging schemes for solving fixed point problems. The

analysis of these schemes rests on the nonexpansiveness of the problem maps. We

also review an ergodic theorem of J.B. Baillon [3] for nonlinear nonexpansive maps

which establishes the convergence of another type of an averaging scheme.

Consider a closed and convex subset K of R n and a nonlinear map T: K -

K. This map could be an algorithmic map whose fixed points solve a variational

inequality or, more generally, a fixed point problem of the form FP(T, K). We wish

to show that if the map is nonexpansive and we use the following averaging scheme

al1 X1 + a2 T(xl) + ... + ak+lT(xk)

al + ... + ak+1

for some appropriately chosen values of the averaging constants ak > 0, then the

iterates converge to a fixed point of T (assuming one exists). Setting a(k + 1) =

ak+1
+ak+l , we could also view this scheme as an iterative method of the form xk+1 =

xk+a(k+ 1)[T(xk)--xk]. Another way to view this scheme is by setting Yk = T(xk-1),

then the induced sequence is

Yk = T(alyl + a2Y2 + ... + ak-lYk-1 )
al + ... + aak-1

We first prove some preliminary propositions and lemmas.
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LEMMA 1:

For every fixed point x* of the nonexpansive map T, the sequence Illxk - x*G is a

decreasing, convergent sequence.

Proof: Since x* is a fixed point of the map T, T is nonexpansive, and k+l1

Xk + a(k + 1)[T(xk) - Xk].

jIXk+1 - X*IIG < (1 - a(k + 1))llxk - X*IIG + a(k + 1)IIT(xk) - T(x*)IIG <

(1 - a(k + 1))IIxk - X*IG + a(k + 1)Ixk - X*|| = [Ixk - X*IIG.

Therefore, 0 < IIxk - x*G is a decreasing sequence, and so it converges. Q.E.D.

LEMMA 2:

The sequence IIT(xk)- xklG is a decreasing, convergent sequence.

Proof: Since (k+l-xk) = a(k+1)[T(xk)-xk] and xk = kl+a(k)[T(xk-_)-xk_1],

Xk+l - Xk T(k)( 1-a(k) - 1

a(k + 1) a(k) a(k)

T(k) + ( )(k) (Xk- + a(k)[T(Xk-l)- Xk-1] 

T k)a(k)1- a(k)

T(xk) - T(xk-1) + ( a(k) )(k - Xk-1).

The nonexpansiveness of the map T and the triangle inequality imply that

Xk+l - G< xk - xk-11IG + ( ) --k Xk-1IG 
a(k + 1) - a(k) ) - - = a(k)

Since T(xk)-xk = aTk+l) this result implies that 0 < IIT(xk)-xkllG < IIT(xk_1)-

xk-lIIG, and so IIT(xk)-xk|lG is a decreasing and, therefore, a convergent sequence.

Q.E.D.

Proposition 1:

Let Ck = ck(x*) = llxk-l -T(zxk-~)IG. Then the following inequality is valid:

IIXk IG -
Ilxk - *ll < e min(l k )min(a(k),l -

a(k))[Xk-1 -X*112G

Proof: Since xk = Xk-1 + a(k)[T(xk 1) - Xk-1],

Xk - * = [1 - a(k)](xk_l - x*) + a(k)[T(xk-1) - x*].
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Therefore,

Ilxk - x*11 = (3)

a(k)21 IT(xkl)-x* I I+(a(k)2 -2a(k)+1)l k_ l-X*II+2a(k)(1-a(k))(T(xkl)-x*)t G(xk-l-x*)

Consider the following two cases.

1. Suppose a(k) < 1/2, then

(a) If (T(xk-l)- x*)tG(xk-1 - x*) < O, then expression (3) and the fact that

T is a nonexpansive map imply that

IXk - GIIG <

a(k)211T(xk-l) -x*lG + (a(k)2 - 2a(k) + 1)llxk_1 - *IIG

(2a(k)2 - a(k))Ilxk-1 - X*II- + (1 - a(k))llxkl - x*1G1 <

(1 - a(k))llxk_l - x*ll.

(b) If (T(xk-l)- Xopt)tG(Xk-1 - x*) > O. We first observe that

-a(k)(1-a(k))I IT(xkl)-xkll +a(k)[llT(xk-l)-X* G-IXkl-X l]+l xk-l--*l G 

a(k) 2 IIT(xk-1_l)- x*II + (a(k)2 - 2a(k) + 1)Ixk_1 - x*1l1+

2a(k)(1 - a(k))(T(k_l)- x*)tG(kl - X*)

(by adding and subtracting x* within the term IIT(kl)- xk_-112 of the first

expression). Therefore, since T(.) is nonexpansive,

iXk -*IIk II =

-a(k)(1-a(k))llT(xk-1)-Xk-lG+a(k)[T(xk-l)-X 
* G-| 2 k-JIG Xk-2 <

-a(k)(1 - a(k))T(xk_l) - Xk-l G + IIk-1 - x* =-

[-a(k)(1 - a(k))ck(x*) + 1]Ixk1 -1x* =

4* ) [1c k(X*)]]llk-- <[ck\ [1- 2a(k)]2 + [1 - X*]x1 - 1 <
4 4
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4 [1 2a(k)] + [1 - 4 11Xk-1 - *IIG =
~~4 ] ] 4 1x--*

[1- ck(*)a(k)]llxk-1- G'IIG12

since 0 < a(k) < 1/2. In this case,

JX*12 < [1 _ k(X*) a(k)]lxk-l - 113II~k - 2a(k)]Il2k-1 <[2

Combining (a) and (b), we conclude that

Ixk - x*112 < max[(1 - a(k)), (1- (X)a(k))]lxk-l - x*ll =-G - 2 G-

(1 - min(1, 2 )a(k))llxk_- - x*IIG

Since 1 - x < e- x whenever 0 < x < 1,

[IIk - x* * < e-min(l",)a(k) -

2. If a(k) > 1/2, then if we set b(k) = 1 - a(k) < 1/2, expression (3) becomes

llk - x*211 = (b(k) 2 - 2b(k) + 1)IIT(xk-1) - x*II + (4)

b(k) 2 1xk-1 - *112 + 2b(k)(1 - b(k))(T(xk-1) - x*) t G(xk-1 - *).

A similar argument as the case a(k) < 1/2, but using expression (4) in place

of (3), shows that

I Xk -- • min(1,)b(k)IXk - x*1I.llx - * < e-m2n(l 1|k-1 G-

Combining these results, we conclude that

IXk - X* _ < max[e-min(2 )(1-a(k)) e-mi n(l ,)a(k ) ] Ixk - *l2,

IXk - X*G < e1- min(l,c k )
min[(1

- a
(k)),a(k)] xk21 - I. Q.E.D.

Proposition 2:

The following two statements are equivalent:
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1. For some fixed point x*, zxk-1 - x*IGo -k-.oo 0

2. 11k-1 - T(xk-1) --- k--+oo 0-

Proof: "" IXk- -X*IIG -- k-4oo 0 for some solution x*, then the nonexpansiveness

of the map T implies that IIT(xk-1_)- zx*G -k--oo 0; that is, T(k-1l) -k--oo x*

and so Ilxkl - T(Xk_l)112 -- k-oo 0.

"¢" I IIkli - T(kl)112 )koo 0, then since by Lemma 1, for any fixed point

X**, |IXk-1JJG < IJ1 - x**IIG + 1x** IIG some subsequence xkj-1 converges to a point

y. But since T(xkj_l) converges to T(y) as well as to y, T(y) = y. Therefore, xkj-1

converges to a fixed point y. Since by Lemma 1 again the entire sequence llxk - ylG

is convergent, IlXk_-l - YI2G k- . 0 with x* = y. Q.E.D.

Corollary 1:

If for every fixed point x*, Ixk_1 - x*llG does not converge to zero, then there

are positive constants c(x*) and k0o satisfying the condition that for all k ko,

clc ll=[[xk-l-T(xk-)[l~ > C(*)
ck(X) = II -x*k1I G > c(X

Equipped with these results, we can now prove the claim stated in the beginning

of this section.

THEOREM 1:

Consider a map T: K -- i K defined on a closed, convex subset K of Rn and suppose

the fixed point problem (2) it defines has a solution. Then if T is a nonexpansive

map on K relative to the 11l.1G norm, the sequence

alxl + a2T(xl) + ... + akT(xk-l)
Xk , xl E K,

al + ... + ak

converges to a fixed point of the map T whenever each ak > 0, a(k) = L+ ..+k and

Yk°=l min(a(k), 1 - a(k)) = +oo. This fixed point is also the limit of the projection

of the points Xk on the set of fixed points of map T.

Proof:

Proposition 1 implies that

Ixk -x*12 < e-in(,lCk( 2 )min(a(k)l-a(k))Xk-1 -X*2
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with ck(X*)= IXk--T(xk-l 1 G.

Assume that no subsequence of xk converges to a fixed point of map T. That is,

for every fixed point x*, the sequence IIxk - x*IIG is bounded away from zero. Then

the previous corollary implies for some positive constant c(x*) and for k0o sufficiently

large, ck(x*) > c(x*) for all k > k0o. Therefore, setting q = q(x*) = min(1, ck(X)) > 0

shows that for all k > ko

IIxk - *l2 < e-qmin(a(k),l-a(k))j1 k-1 - X*11.

But this inequality implies that

l - x*112 < e-q Ek= min(a(k),l-a(k))lIx 0 -- *112 k 0,Ikxk - I < e - x G k-oo 0,

since y=l min(a(k), 1 - a(k)) = +oo. This result contradicts our assumption that

for every fixed point x*, the sequence JIxk - *lIG is bounded away from zero. There-

fore, the sequence xk converges to a fixed point x* of T.

For every nonexpansive map, the set F(T) of fixed points of T is a closed, convex

set. The sequence Ik = PrF(T)(Xk) converges to * which is the limit of the sequence

xk, since * = PrF(T)(* ) = x*. Q.E.D.

Corollary 2:

The sequence al+a2T(xl)+...+akT(k-) with x E K and with each ak > 0,

defines a sequence {Yk = T(xk-l)}. Whenever °=l min(a(k), 1- a(k)) = +oo, and

a(k) = ~afak this sequence converges to the same fixed point of the map T as

does the sequence xk.

Proof: Let x* be the fixed point of the map T to which the sequence xk converges,

as shown in Theorem 1. Then

IIYk+1 - X*I G = IIT(xk) - X*IIG < Ik - x* IG k-.oo 0.

Q.E.D.

Proposition 3:

If 1 > cl > a(k) > c2 > 0 infinitely often (or if a(k) has a convergent subsequence
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a(kj) converging to a point 1 > c > 0), then the averaging sequence Xk, converges

to a fixed point x* of the map T.

Proof: If 1 > cl > a(k) > c2 > 0 infinitely, then

Zk=l min(a(k), 1 - a(k)) > k=l min(cl, 1 - c 2) = +oo, and so Theorem 1 implies

this result.

In this case there is a simpler proof of this Proposition which does not require

the use of Theorem 1. Lemma 1 implies that IlXk-1JIG < Ilxo - X*lG + IIX*IIG-
Furthermore, since 1 > cl > a(k) > c2 > 0 infinitely often, the sequence {a(k)}

has a convergent subsequence {a(kj)} converging to a point 1 > c > 0. Then since

Ilxkj-lllG is bounded, perhaps going to a further subsequence, xkj-1 -kj-oo y.

Suppose y 0 T(y), then

Xk3 -kkicoo y' = (1 - c)y + cT(y).

Therefore, lY'- x*112 = 11(1 - c)(y - x*) + c(T(y) - T(x*)I12 <

(1 - c)1y - 11G + clT(y) - T(x* G < Ily - X*11G.

This result contradicts the fact that Ily - *IIG = IIY' - *11G, since Ilxk - *IIG is

a convergent sequence. Therefore, the limit point y of the subsequence, xkj-1 is a

fixed point of the map T. Furthermore, since llxk - YlG is a convergent sequence

converging to zero across a subsequence, the entire sequence xk converges to y, which

we have already shown to be a fixed point of T. Q.E.D.

Baillon [3] has proposed a different type of averaging scheme for solving fixed

point problems. He proved that the sequence of averages

x1 + T(xi) + ... + Tk(xl)
k +±1 , x 1 E ,

converges to a fixed point of the map T. This averaging scheme differs from the

one we have considered in two respects (i) each ak = 1, which is a special case of

our convergence condition, and (ii) this scheme considers averages of the original
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sequence zk = Tk(xl), while our averaging scheme considers the averages of the

previous iterates, that is

T(alyl + a2 Y2 + ... + ak-lYk-1l

al + ... + ak

The following theorem summarizes Baillon's result.

THEOREM 2 (Baillon [3]):

Let T be a map, T: K --* K, defined on a closed, bounded and convex subset K

of a Hilbert space H. If T is a nonexpansive map on K relative to the 11.IG norm,

then the map

y + T(y) ... Tk-l(y)
Sk(y) = k Y EK,

converges weakly to a fixed point of map T, which is also the strong limit of the

projection of Tk(y) on the set of fixed points of map T.

Remarks:

1. The averaging sequence of the form alyl+a2y2+...+ak+lYk+l is sometimes referredal +l...+ak+ 

to in the literature as the Riesz process [21].

2. When ak = 1, a(k) = i. In this case, the series

k k-1 min(a(k), 1 - a(k)) = +oo since for the harmonic series, --=l = +.

When ak = ak with a > 1, a(k) = . Then a(k) converges to 1 - 1/a,

which is strictly less than 1 and strictly greater than 0, and Proposition 3 (or

Theorem 1) implies the convergence result.

3. In Theorem 1 we did not need to assume the feasible set K to be bounded.

4. The convergence proof of Theorem 1 rests primarily on the fact that T is

a nonexpansive map, with respect to the G norm, around the solutions x*.

Only in the proof of Lemma 2, where we prove the convergence of the se-

quence IT(xk) - xkG, did we also require the nonexpansiveness of map T

around every feasible point. If we assume a stronger assumption on the series
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Zk min(a(k), 1 - a(k)) namely, that for every subsequence {a(kj)}kjeN the se-

ries EkjeN min(a(kj), 1 - a(kj)) = +oo, then we can still establish the results

of Theorem 1 with the only requirement that T is a nonexpansive map, with

respect to the G norm, around the solutions x*. Letting ak = ak with a > 1

defines such a sequence. Using this observation, we can obtain the conver-

gence of averaging schemes of "Riesz" type for maps that are nonexpansive

only around the fixed points. This type of result is useful because for some

algorithms (for example, the generalized steepest descent method for solving

VIPs), it is less restrictive to establish nonexpansiveness only around the fixed

point solutions. Baillon's averaging scheme does not permit us to exploit this

possibility.

3 On the convergence of sequences of averages for VIP

algorithms

In this section we consider variational inequality problems. Computational methods

for computing solutions to variational inequalities often reduce the problem to a fixed

point problem either by (i) iteratively using an ("easily computable") approximation

f'(x) = g(x, y) of the mapping f(x) around a given point (iterate) y, with g defined

so that y solves VI(f', K) if and only if y solves VI(f, K), or (ii) modeling the

variational inequality directly as a fixed point problem. In the first case, we define

the image of the underlying map T(y) as a point y that solves VI(f', K). We

consider this type model in Subsection 3.1. One direct approach models VI(f, K)

as a fixed point to a projection problem. Let PrGs(y) denote the projection of the

point y onto the set K with respect to the norm induced by the positive define matrix

G. If K is a convex set, then the optimality conditions of the problem minxinK(y -

x)tG(y - x) imply that x* is a fixed point of the map T(x) = Pr (x - pG - lf(x))

for any constant p > 0 if and only if x* solves the variational inequality problem

VI(f, K). In this section, we study the application of Theorems 1 and 2 to both
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of these approaches. We show that when the problem function of a VIP satisfies

a norm condition, the sequences of averages (of Section 2) induced by relaxation

algorithms converge to an optimal solution x* of the problem. Then we establish

a similar result for projection algorithms when the step size is sufficiently small

and the problem function is strongly-f-monotone. Finally, we establish a similar

result for a generalized steepest descent method for solving systems of equations (or

unconstrained VIPs) when the Jacobian matrix is positive definite and the squared

Jacobian matrix is positive semidefinite.

3.1 Averaging on a relaxation scheme

We consider a relaxation scheme that reduces the solution of the variational inequal-

ity problem to a succession of solutions of variational inequality problems with a

simpler structure that can be solved by available efficient algorithms.

We consider a smooth function g: K x K - Rn satisfying the condition that

g(x,x)=f(x) for all x E K.

We also define g(x, y) so that the matrix gx(x, y) is symmetric and positive definite.

A Relaxation Scheme

STEP 0:

Choose an arbitrary point x0o E K.

STEP k + 1:

Find k+ E K satisfying the inequality

9g(k+1, k) t (x-- Xk+l) Vx E K. (5)

The conditions imposed upon g(.,.) imply that the variational inequality from

step k + 1 is equivalent to a strictly convex minimization problem with the ob-

jective function F(x) = fo g(y, xk)dy. The original relaxation algorithms used by

Ahn and Hogan [1] to compute equilibria in economic equilibrium problems used
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9i(xk+1, Xk) ( ,--i X +1 Xi+l, ... x) for i = 1,2,..., n. This method is

known as the PIES algorithm. Subsequently, Dafermos developed and analyzed a

general relaxation scheme with the more general choice of g (as described above)

in the context of both the traffic equilibrium problem [10] as well as the general

variational inequality problem [11].

The papers [1], [10] and [11], and the references they cite, describe more details of

these approaches. We wish to show that under appropriate assumptions, sequences

of averages induced by the sequence {xk}k=l converge to a solution of the original

asymmetric VIP.

The following theorem summarizes the convergence results of Dafermos [10], [11]

and of Ahn and Hogan [1].

THEOREM 3:

Let K be a convex, compact subset of Rn and consider the relaxation scheme. Let

T : K -- Rn be the map which carries a point in K to the solution of the relaxation

scheme (5). Suppose that the algorithm function g satisfies the following conditions:

1. g(x, x) = f().

2. The matrix gx(x, y) is positive definite and symmetric Vx, y E K.

3. If = infx,yEK (min eigenvalue g(x, y)), then

sup IIgy(x, y) < Aa for some 0 < A < 1. (6)
x,yEK

Then the sequence {Tk(x°))}, with x°0 E K, converges to the solution of the original

variational inequality problem.

We now give an example that violates condition (6) and for which the relaxation

algorithm does not converge.
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Example:

Consider the variational inequality problem with problem function f(x) = Mx with

b -b
M =

b b

This matrix is asymmetric but positive definite. On the other hand, the matrix

gx (x, Y) =]
0 b

is symmetric and positive definite. Moreover, ac = infx,yEK (min eigenvalue gx(x, y))

b > O, while

gy(x,y)= =
-b 0

Then

b2

lsgy(x y)112 s=up L b2sup

xoO xtX

This problem satisfies the norm condition Ilgy(x, y)II < c, but not the norm condition

Ilgy(x, y)I < At for some 0 < A < 1.

Suppose we apply the relaxation scheme (5) to this problem function using as feasible

a set the unit cube,

K = {x = (x 1 ,x2 ) E R 2 : -1 < xl < 1,- 1 x2 < 1}. The solution to this

variational inequality problem is the point x* = (0, 0). Starting from the point

x° = (1, 1), the algorithm selects the points x1 = (1,-1), 2 = (-1,-1), 3

(-1, 1) and x4 = x1 = (1, 1). Therefore, the algorithm sequence cycles around the

solution. Note, however, that the sequence of the averages induced by the relaxation

algorithm converges to the solution point x* = (0, 0).

This example prompts us to relax the previous assumptions and establish results

for the convergence of sequences of averages using the results of Section 2.

The main property we need to establish for the map T is that it is nonexpansive on
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K .

Proposition 4:

Consider the algorithm function g : K x K - R of the relaxation scheme (5).

Suppose it satisfies the following conditions:

1. g(x, x) = f(x).

2. The matrix gx(x, y) is positive definite and symmetric Vx, y E K.

3. If a = infx,yeK (min eigenvalue gx(x, y)), then

sup llgy(x,y) < ce.
x,yEK

Then T is a nonexpansive map in K.

Proof:

To establish this result, we need to show that

IT(yl)- T(y 2 )I • Ily - Y211 Vyl,y 2 E K.

Fix yl, Y2 e K and set T(yi) = x1 and T(y 2 ) = x 2 . Then the definition of T yields:

g(xl,yl)t(x- xl) > 0 Vx K, (7)

9g( 2 , 2 )t(x- 2 ) > O Vx E K. (8)

Setting x = x 2 in (7) and x = x in (8) and adding the resulting inequalities, we

obtain

[g(x2, Y2) - g(x, yl)]t(Xl - x2 ) > 0. (9)

By adding and subtracting g(x 2, Yl), we can rewrite this expression as

[g(x2, y2) - g(x2, yl)]t(xl - x2) > [g(xl, yi) - g(x2, yl)]t(Xl - 2) (10)

Applying a mean value theorem on the righthand side of the inequality, we obtain

[g(x2, Y2) - g(2, yl)]t(Xl - X2) > [x1 - x 2]t[g(x', yl)][Xl - X2], x' E [; X2]. (11)
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Since the matrix gx(x, y) is positive definite and symmetric Vx, y E K (by assump-

tion) and c = infx,yEK (min eigenvalue gx(x, y)),

[g(x2, Y2)- g(x 2, yl)]t(Xl - x2 ) > cllxl - x 2 112 . (12)

Moreover, by applying a mean value theorem to the lefthand side of the inequality,

we obtain:

[Y2 - y 1]t[gy(x 2, y')](x1 - 2) > allxl - 2112, y' E [Y2; Y1] (13)

Furthermore, Cauchy's inequality and the operator norm inequality implies that

IIY1 - y21111gy(x 2 , y')Illlxl - x2 11 > aolxl - x2 112 , y' E [Y2; Y1] (14)

Dividing both sides of this inequality by lxl - 211 gives

IIY1 - y21111gy(x2, Y')ll > 0Ilx - x2 11, y' E [Y2; Y1] (15)

Finally, the second assumption of this proposition, namely,

sup Ilgy(x,Y)ll < ,
x,yEK

implies that the map T is nonexpansive. This is true because this inequality implies

that

allyl - Y211 > alxl - X211 (16)

Therefore, T is a nonexpansive map since,

IIT(yl)- T(y2) 1 < I Il - Y21 Vy 1l,y 2 E K.

Q.E.D.

Using this proposition, we now establish the convergence of sequences of averages

induced by this relaxation algorithm.

Part (a) and part (b) in the following theorem use the finite dimensional versions

of Theorems 1 and 2, respectively.
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THEOREM 4:

Let K be a convex, closed subset of Rn (the feasible set of the original VIP) and let

T : K -- R n be the map that carries a point in K to the solution of the relaxation

scheme (5).

Suppose the algorithm function g satisfies conditions of Proposition 4,

1. g(x, x) = f(x).

2. The matrix gx(x, y) is positive definite and symmetric Vx, y E K.

3. If a = infx,yeK (min eigenvalue gx(x, y)), then

sup llgy(x, y)l < ca.
x,yEK

(a) The sequence of averages

al xI -+ a2T(xl) + ... + akT(Xk) x E K
al ... ak

Yk=l min(a(k), 1 - a(k)) = +oo, with a(k) = aa converges to a

solution of the original asymmetric VIP.

(b) Furthermore, the sequence of averages

Sk(y) = + T(y) + ... + Tk(y)
Sk () = Y yEK

converges to a solution of the original asymmetric VIP.

Proof:

(a) Theorem 1 guarantees that the sequence of "Riesz" averages {xk}k con-

verges to an optimal solution of the VIP, since the map T is nonexpan-

sive.

(b) The finite dimensional version of Theorem 2 guarantees that the sequence

of averages

Sk(y) = Y + T(y) + ... + Tk(y)
k-b1
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converges to an optimal solution of the VIP, since the map T is nonex-

pansive. Q.E.D.

The next theorem gives the more general version of Theorem 4 which guarantees

convergence of the averaging scheme induced by the relaxation algorithm.

THEOREM 5:

Let K be a convex, closed subset of Rn (the feasible set of the original VIP) and

T: K - Rn be the map that carries a point in K to the solution of the relaxation

scheme (5).

Suppose the algorithm function g satisfies,

1. g(x, ) = f (x).

2. The matrix gx(x, y) is positive definite and symmetric Vx, y E K.

3. For some positive definite matrix G, with symmetric part S = G+Gt gx(x, y)-

G is a positive semidefinite matrix for all x, y E K satisfying the condition

IIS-1[g(x, yi) - g(x, Y2)]jls < IIY1 - Y211s

for all x, yl, Y2 E K.

(a) If a(k) -= alak' then the sequence of averages

al 1xl + a2 T(xl) + ... + akT(xk) xi E K
al + ... + ak

with = min(a(k), 1 - a(k)) = +oo, converges to a solution of the

original asymmetric VIP.

(b) Furthermore, the sequence of averages

Sk(y) = y + T(y) + ... + Tk(y) E K,
k+1

converges to a solution of the original asymmetric VIP.

Proof: The proof is similar to that of Proposition 4 and Theorem 4.
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Remarks:

1. Observe that in part (b) we used finite dimensional version of Baillon's The-

orem. In the infinite dimensional version we need to assume that the feasible

set K is compact. In the second part of Theorems 4 and 5 we do not as-

sume that the feasible set K is compact. In this case, since the sequence {xk}

is nonexpansive around any solution, if the problem has a solution x*, then

ljxkll < jxo - x*11 + IIx*1l and, therefore, the points xk lie in a bounded set.

2. We do not need to assume the symmetry of the matrix gx(x, y). The analysis

of Theorems 4 and 5 is valid provided that we replace the matrix gx(x, y) in

Proposition 4 by its symmetric part.

3. If we set G = clI, and a = infx,yeK (min eigenvalue gx(x, y)), then the matrix

gx(x, y) - eI is a positive semidefinite matrix for all x, y E K. In this case,

the condition of Theorem 5, namely,

IS-1 [g(x, Y) - g(x, Y2)]lls < ly1 - Y21ls,

for all yl, Y2, x E K, becomes

Ilg(x, Y1) - g(x, y2)l < allyl - y211, for all Y1, Y2, x E K.

Observe that the weak norm condition of Theorem 4, supx,yeK Ilgy(x, Y)11 < a,

also implies this condition.

For linearization schemes, which we study later (see [41] for a more detailed

analysis), the norm condition of Theorem 5 becomes a more general version

of the norm condition of the global convergence Theorem 2.9 of [41], that

is, (i) for some positive definite matrix G, the matrix A(y)- G is positive

semidefinite for all y E K, and (ii) for some constant 0 < b < 1,

IlS- 1[f(x) - f(y) - A(y)(x - y)]Ils < blly - xls, Vy, x E K.

In our case, b can be also 1.
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4. In Section 2 we observed that we could require the nonexpansiveness of the

map T only around the solutions x*, provided that in the averaging scheme

Ek, min(a(kj), 1 - a(kj)) = +0 for all subsequences kj. In the case of the

previous relaxation scheme, the norm condition of Theorem 5 around the so-

lutions x* becomes:

IIS-1[g(x*, Y) - f(x*)]ls Iy- *lls, Vy e K, (17)

and in the case of linearization schemes [41], it becomes:

IIS-[f(x*) - f(y)- A(y)(x* - y)]lls < Ily - x*lls, Vy E K. (18)

Therefore, we obtain global convergence results by requiring a norm condition

(17) only around the solutions (or (18) in the case of linearization schemes).

To establish local convergence results of linearization schemes, Pang and Chan

[41] require (18) for a constant 0 < b < 1. The initial iterate x0 needs to satisfy

the condition IIxo - x*II < - , for some constant C > 0. Therefore, the closer

b is to 1, the closer the initial point needs to be to a solution. Our proof (see

Theorem 5) does not require this initial condition.

We will now try to provide some intuiton concerning the norm condition that

we imposed in Theorem 4. The question we address is,

what is the relationship, if any, between the norm condition of Theorem 4 and con-

ditions imposed upon the original problem function?

Pang and Chan have extensively studied linearization algorithms for solving VIPs.

Linearization schemes also fit in the framework of the general iterative scheme de-

veloped by Dafermos [11], which in general works as in (5).

In the case of the general iterative scheme, we impose the following more general

conditions on the scheme's function g:

1. g(x, x) = f(x),
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2. the Jacobian matrix of g(x, y) with respect to the x component, gx(x, y), when

evaluated at the point y = x, is a positive definite and symmetric matrix.

For linearization algorithms, g(x, y) = f(y) + A(y)(x - y) for some positive definite

matrix A(y) and constant 0 < p < 1. In most cases, researchers have chosen p is

equal to one.

In the context of these algorithms, the norm condition we need to impose (see

Pang and Chan [41] for more details) is

l(g-l1/2(xx))tgy(xx)g-1/2(X,) < 1 Vx E K, (19)

which can also be rewritten (see Section 1) as follows:

IIgx(x,x)gy(x,x)Ig.9 (x,x) < 1 Vx E K.

In particular, for the linearization algorithms, since

1
g(x, y) = f(y) + -A(y)(x - y),

p

gx(x, x) = A(x) is positive definite and symmetric (A(x) A(x)t),

gy(x, x) = Vf(x)- A(x), and so Vf(x) = gy(x, x) + g(x,x). The norm condition

becomes

II(A(x)- 11/ 2 )[pVf(x) - A(x)](A(x)-l/ 2 )11 = II - pA- 1/2 (x)Vf(x)A-1/2()II < 1.

Whenever A(y) = Vf(y) + Vf(y) t and p = 1, the norm condition becomes

II(Vf(x) + Vf(x)t)-l/ 2 (Vf(x))t(Vf() + Vf(x)t )-1 1/211 =

= I(Vf(x) + Vf(x)t)-l Vf(x)tvf(x)+vf(x)t < 1.

Notice that the norm condition used by Dafermos for the convergence of the general

iterative scheme, namely,

IgX-1/2(xl, y)gy(x2,y2)g-/2(x, 3) < 1 Vx1, Y1 ,x 2, Y2 , 3, Y3 E K,
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includes the norm conditions of Pang and Chan as special cases. This condition is

more difficult to verify, however, since it involves different points xl, yl, x2, Y2, x 3, y3.

The norm condition of Theorem 4,

sup Ilgy(x,Y)II < _e,
x,yeK

implies the norm condition (19) in a less than or equal form. This is true because

g1/2(X, )gy(X, X)g-1/2(x, x) < 1g-1l/2(x, x )lllgy(x,x)ljj g-1j2(X 1 _XI<

< -1/2.a.c-1/2 = 1 Vx E K

via the operator norm inequality and ce = infx,yEK (min eigenvalue gx(x, y)) > 0.

To provide some intuition concerning these norm conditions and the original

problem function, we will now investigate their relationship to the strong-f-monotonicity

condition. The next theorem shows that the differential form of strong-f-monotonicity

of f implies the norm condition (19) in a more general form, a less than or equal

form instead of a strictly inequality form. Furthermore, the theorem also demon-

strates a partial converse of this statement. Namely, (19) implies a weaker form of

the differential condition of strong-f-monotonicity.

Before analyzing the main theorem, we state and prove two useful lemmas.

LEMMA 3:

If A is a positive semidefinite matrix and G a positive definite, symmetric matrix,

then G-1 / 2 AG - 1 / 2 is also a positive semidefinite matrix.

Proof:

If x Rn and y = G-/2x, then xtG-l/2AG-1/2x = ytAy > 0 since A is a pos-

itive semidefinite matrix. Therefore, xtG-1/ 2AG-1/2x > 0 for all x E R n and so

G-1/2 AG - 1 / 2 is a positive semidefinite matrix. Q.E.D.

LEMMA 4:

Suppose that the matrix

Vf(x)t - aVf(x)tVf(x), Vx E K
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is positive semidefinite for some constant a > 0. Let G be a positive definite matrix,

g be the minimum eigenvalue of G, and a < ag. Then

(G-1/ 2Vf(x)G-1 1 2 )t(I - aG-1/2 Vf(x)G-1 / 2 ) is also positive semidefinite.

Proof:

Recall that for any vector v E R n , and for all y E R n ,

yt(G-1/2Vf(x)G-1/ 2)t(I - alG-1/2 Vf(x)G-1/2 )y >

(replacing a < ag, and z = G-1/2y, vt G-lv < gvtv, we obtain)

> (G-1/2y)t[Vf(x)t - agVf(x)tG-lVf(x)](G-1 /2 y) >

> zt[Vf(x) t - aVf(x) t Vf(x)]z > 0.

The last inequality follows from the assumption, and so the matrix

(G-1/ 2Vf(x)G-1/2)t(I - aG-1 / 2 Vf(x)G-1 / 2 ) is positive semidefinite. Q.E.D.

LEMMA 5: (see also Proposition 6)

The matrix B t[I - (a/2)B] is positive semidefinite if and only if the operator norm

III - aBiI < 1. Moreover, if both conditions are satisfied for any value a* of a, then

they are satisfied for all values a < a*.

Proof:

Recall that

III- aBII = sup 11( I - aB)y 12 <1.
yOO IllII -

Therefore,

II - aBil < 1

: sup yt[ I - (a B t + aB) + (aB)t(aB)]y < 1
yOO yty

<: yt [I - (aBt + aB) + (aB)t(aB)]y < yty Vy E Rn

< 2aytBy > a2 ytBtBy Vy E R n

<: ytBy > (a/2)ytBtBy Vy E Rn (20)

.~ ytBt[I- (a/2)B]y > O Vy E Rn
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These relationships show that III - aBjl < 1 if and only if the matrix Bt[I- (a/2)B]

is positive semidefinite. Moreover, (20) implies that if both conditions are valid for

any value a* of a, then they are valid for all values a < a*. Q.E.D.

This Lemma also is valid in another form: Bt[I- (a/2)B] positive definite if and

only if III - aBII < 1.

We are now ready to prove a theorem relating the norm codition to the differential

form of strong-f-monotonicity.

THEOREM 6:

Consider the general iterative scheme and assume that gx(x, x) is a positive definite

and symmetric matrix. Then the following results are valid.

1. If the differential form of the strong-f-monotonicity condition holds for a constant

a > 0 and if 1 < 2 gmina for gmin = infXEK [min eigenvalue gx(x, x)], then the norm

condition holds in a less than or equal to form (that is, expression (19) with <

instead of <).

2. Conversely, if the norm condition (19) holds in a less than or equal to form, then

for some constant 0 < a < 2gaIx ,where gmax = supXEK [max eigenvalue gx(x, x)],

the matrix Vf(x)t - aVf(x)tVf(x) is positive semidefinite for all x E K.

Proof:

1. We want to show that the following norm condition holds:

JIg-1/2(xx)gy(x )g1/2(xx)ll < 1 Vx e K.

Since

gy(x, x) = Vf() - gX(x, x),

if we let G = gx(x, x), the norm condition becomes:

1IG-"/2[Vf(x) - G]G-1/ 2 1 = II - G-1/2 Vf(x)G-1/ 2 11 < 1.

By assumption, G is a positive definite and symmetric matrix. Let

gmin = inf [min eigenvalue G],
XEK
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which is positive since K is a compact set. Also, let B = G-1/2Vf(x)G -1 / 2 . Lemma

4 shows that if al = agmin, the matrix

Bt[I - alB] = (G-1/2Vf(x)G-1/2)t(I - alG-1/2Vf(x)G-1 / 2 )

is positive semidefinite. Lemma 5 implies that if

0 < 1 < 2al = 2agmin,, III - Bl < 1.

Making the replacement B = G-1/2Vf(x)G -1 / 2 , we see that for 0 < 1 < 2al =

2 agmin,

[G-1/2 gy(X, X)G - 1/ 2 11 = IIG-1/2[Vf(x) - G]G-1 / 2 1 =

= III - G-1/2Vf(x)G-1 /211 < 1, Vx E K.

Therefore, for G = gx(x, x),

Vx E K.

2. In the second part of the theorem we want to prove that if the norm condition

llg-/2(x, x)gy(x, x)g-1l/2(x, )11 < 1, Vx E K,

holds, then the matrix

Vf(x) t - avf(x) t Vf(x),

is positive semidefinite for some a > 0 and Vx E K.

Let G = gx(x, x). Since

gxl/2(x, )gy(X, X)gl 1/2(x, x)|| = I G-1/ 2 [Vf() - GG-1 /211 -

= III - G-1/2f()G-1/2 11 < 1 Vx E K,

setting, as before, B = G-/2Vf(x)G-/ 2 , we see from Lemma 5 that if

II - BIl < 1,
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for any value al < 1/2, then the matrix Bt[I - aB] is positive semidefinite. Let

gmax = sup[max eigenvalue G].
xEK

Then if 1 > 2al > 2agmax,

ytBty > alytBtBy > aytBtGBy Vy E Rn .

Making the replacement B = G-1/2Vf(x)G -1 / 2 , we obtain

yt[G-1/ 2Vf(x)t(I - aVf (x))G-1/2 ]y > 0.

Finally, setting z = G-1/2 y, we see that zt[Vf(x)t(I - aVf(x))]z > 0.

These results show that for any a < 2 1 the matrix

Vf(x)t(I- aVf(x)) Vx E K

is positive semidefinite. Q.E.D.

Remark:

The differential condition of strong-f-monotonicity implies that the norm condition

holds in a less than or equal form. [41] requires a strict inequality form of the norm

condition. This happens when the differential form of strong-f-monotonicity holds

in some form of a strict inequality, i.e.,

[Vf(x) t(I - aVf(y))]

is positive semidefinite and the matrix Vf(x) is nonsingular. The norm condition

(19) then holds as a strict inequality. Therefore, (19) implies that the original

problem function f is strictly monotone. Finally, we would like to note that when

the norm condition (19) becomes:

Igx-1/2(x,x)gy(X,x)gx1/2(x,x)l < A < 1 Vx E K, then this condition becomes

equivalent to the differential form of strong monotonicity on the problem function

f.
The following Proposition formalizes this result.
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Proposition 5:

Consider the general iterative scheme in which g(x,x) = f(x) and gx(x,x) is a

positive definite and symmetric matrix. Then the following results are valid.

1. If the differential form of strong-f-monotonicity condition holds as a strict

inequality, i.e., the matrix

Vf(x) t - aVf(x)tVf(y) Vx, y E K,

is positive semidefinite for some constant a > 0, and the matrix Vf(x) is

nonsingular, then the norm condition (19) holds as a strict inequality.

2. If the differential form of the strong monotonicity condition holds, then for

some 0 < A < 1 the following norm condition holds,

[g-l1/2(x x)gy(x, x)g-1/2(x, x)II < A Vx E K.

3. If for some 0 < A < 1, the norm condition (19) holds, then for some constant

a > 0, the matrix

Vf(x) t - aVf(x) t Vf(x)

is positive definite Vx E K.

4. If the norm condition

lg9-1/2(x x)gy(x, x)g71/2(x, x)II < A Vx E K,

holds, then the differential form of the strong monotonicity condition holds.

The proof of this Proposition is similar to that of Theorem 6.

This discussion shows that various forms of the norm condition (19) have "equiv-

alent", in some sense, formulations as monotonicity conditions (in their differential

forms).

For linearization algorithms, the underlined conditions behind their convergence

to the optimal solution of the variational inequality problem, are the differential

form of strong-f-monotonicity and the assumption that Vf(x) is positive definite.
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3.2 Averaging for the projection algorithm

Since fixed points of the map T(x) = PrG(x - pG-l f(x)) are identical to solutions

to the variational inequality problem VI(f, K), and since the projection operator

PrK-(y) is nonexpansive with respect to the G-norm, the mapping T(x) will be

nonexpansive whenever the map T'(x) = x- pG-lf(x) is. As noted by Magnanti

and Perakis [29], if G = I, the identify matrix, then T'(x) is a nonexpansive mapping,

(which they state as Lipschitz continuity over K for a Lipschitz constant of 1) if and

only if the map f is strongly-f-monotone with respect to the monotonicity constant

a = p/2. The following result generalizes this observation.

Proposition 6:

Consider the variational inequality problem VI(f, K). Let G be a positive definite,

symmetric matrix and let gmin and gmax be its smallest and largest eigenvalues.

The map T'(x) = x - pG-1f(x) is nonexpansive on the feasible set K, with respect

to the G-norm, if the map f is strongly-f-monotone with respect to the constant

a > 2gpf . Conversely, if the map T' is nonexpansive on the feasible set K, with

respect to the G-norm then the map f is strongly-f-monotone with respect to the

constant a = P2g . In the special case G = I, gmin = gmax = 1 and, therefore,

a = p/ 2 , as stated in [29].

Proof: First observe that

IIT'(x) - T'(y)ll = x - pG-lf(x) - y + pG-lf(y)ll =

IIx - yl1 + p2 (f(x) - f(y))t G-(f(x) - f(y)) - 2p(f(x) - f(y)) t(x - y). (21)

" j" Let gmin be the smallest eigenvalue of the matrix G. Then, (21) implies that

2

IT'(x) - T'(y)II -< lix - Yl2 + P f(x) - f(y)112 - 2p(f(x) - f(y)) t (x - y).
gmin

Therefore, if f is a strongly-f-monotone map with respect to the constant a > P
2gmin

then the map T' is nonexpansive.

" <=" Conversely, if the map T' is nonexpansive, then using (21) and a similar
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argument, we conclude that f is a strongly-f-monotone map with respect to the

constant a = 2gP and the largest eigenvalue gmax of the matrix G. Q.E.D.

Corollary 3:

Let gin be the smallest eigenvalue of the matrix G. If the map f is Lipschitz

continuous with constant L > 0 and strongly monotone with constant a > p2L

then the map T'(x) = x- pG- 1 f(x) is a contraction on the feasible set K, with

respect to the G-norm, with constant 0 < b = 1- P (2a- pL
2 ) < 1. Conversely,

if the map T' is contraction on the feasible set K, with respect to the G-norm

with constant 0 < b < 1, then the map f is strongly monotone with constant

(1-b
2

)gmn
2p

The proof of this corollary is similar to that of Proposition 6.

We now establish the convergence of sequences of averages induced by the pro-

jection algorithm. To establish these results, we first recall the projection algorithm.

The Projection Algorithm

Fix a positive definite and symmetric matrix G and a positive scalar p, whose value

we will select below.

STEP 0:

Start with some x0o E K.

STEP k + 1:

Compute Xk+l E K by solving the variational inequality VIk:

[pf(Xk) + G(xk+l - Xk)]t(x - Xk+1) > 0, Vx E K. (22)

If we let PrG(y) denote the projection of the vector y onto the feasible set K, with

respect to the 11.lIG norm, we can view this step as the following projection operation:

Xk1 = Pr(xk - pG f (xk)).

Note that this algorithm is a special case of the general iterative scheme [11] and

the linearization algorithms [41], with g(x, y) = pf(y) + A(y)(x - y) and A(y) = G.
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In this section we establish the convergence of sequences of averages induced by

the projection algorithm.

For the subsequent analysis, let us define Tp K --+ Rn as the map that carries

Xk E K into the minimizer over K of the function Fk(.). Therefore, xk+1 = Tp(xk).

The following lemma describes the relevance of the map Tp and shows the connection

between the variational inequality problem and a fixed point problem.

LEMMA 6: (see Dafermos [9])

Every fixed point of the map Tp is a solution of the original asymmetric variational

inequality problem.

Theorems 1 and 2 require the nonexpansiveness of map Tp, which we establish in

the following lemma.

LEMMA 7:

Let gmin be the minimum eigenvalue of the positive definite, symmetric matrix G,

and b = 1 If 0 < < 2 and f is a strongly-f-monotone map (with respect to

the constant a), then the map Tp is a nonexpansive map on the feasible set K with

respect to the norm IIxIIG = (xtGx)/ 2 . That is,

IITp(yl) - T(Y2)11G < IIY1 - Y21G Vyi, Y2 E K.

Proof: Let y1,Y2 E K and set xl = T(y 1) and x2 = Tp(y 2). The definition of map

Tp shows that

(Gxl + hl)t(x - xi) = (Gx + pf(yi) - Gyl)t(x - xi) > 0 Vx E K, (23)

(Gx2 + h2 )t(x - x2 ) = (Gx2 + Pf(y2) - Gy2)t(x - x2 ) > 0 Vx E K. (24)

Setting x = x2 in (23) and x = xi in (24) and adding the two inequalities, we see that

11X - X21 1 < {Y1 - Y2 - PG-1[f(y1 ) - f(y2)]} t G(x1 - 2).

Applying Cauchy's inequality, we find that

][x1 - X2 21G ly1 - Y2 - pG-l[f(y 1) - f(Y2)llIGxl1 - X211G-
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Dividing through by 1l1 - 211G, squaring, and expanding the righthand side, we

obtain

lxi - X2IG < IT'(yi) - T(Y2)I G,

where T'(x) = x- pG-lf(x) is the map we define in Proposition 6. Therefore, as we

show in Proposition 6, the strong-f-monotonicity of map f and the symmetry and

positive definiteness of matrix G, together with this result, imply that if 0 < p < _

then

IITp(Y1)- Tp(Y 2)IIG = lX1 - X211G <_ IY1 - Y2llG

Q.E.D.

THEOREM 7:

Let K be a convex, closed subset of R n (the feasible set of the VIP and Tp : K

R n be the map that carries x E K into the solution of (22). Also, let A be the

minimum eigenvalue of the positive definite, symmetric matrix G and let b = 1
9rin

1. Let a(k) = a~+.+ak and ak > 0 be given constants. Assume in the projection

algorithm that 0 < p < 2a. Then, if f is a strongly-f-monotone map, the

sequence of averages

aixl + a2Tp(xl) + ... + akTp(xk)
Xk+l - lE K,al + ... + ak

where 'k=l min(a(k), 1 - a(k)) = +oo, converges to a solution of the original

asymmetric variational inequality problem.

2. If 0 < p < , then the strong-f-monotonicity of map f implies that the

sequence of averages

+ T(y) + ... + T-(y)
Sp(Y) k , yEK

converges to a solution of the original asymmetric variational inequality prob-

lem.

Proof: From Lemma 7, if 0 < p < 2a in the projection algorithm and if f is strongly-

f-monotone, then the map Tp is nonexpansive relative to the 11.lIG norm.
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1. The finite dimensional version of Theorem 2 guarantees that

S (y) = + T(y) + ... + Tk-l (y) K
kk'

converges to the fixed point of the map Tp. Lemma 6 shows that every fixed

point of the map Tp is a solution of the original asymmetric variational in-

equality problem.

2. If we assume that the feasible set is closed and convex, by applying Theorem

1 we can establish convergence for sequences of "Riesz" type averages.

Q.E.D.

Remarks:

1. If we choose 0 < p < and the function f is one-to-one, then Tp is not only

a nonexpansive map, but also a contractive map. In this case, the original

sequence induced by the projection algorithm converges to the the solution of

the VIP, which is unique (since f is strictly monotone). The convergence of

the original sequence follows from Banach's fixed point theorem (see also [9],

[11]).

2. Observe that the projection algorithm, described in this subection, is a special

case of the relaxation scheme (5) for the choice g(x, y) = pf(y)+G(x-y). Then

gx(x, y) = G which is positive definite and symmetric. Furthermore, choosing

S = G in Theorem 5, we observe that the norm condition of Theorem 5 is

valid if the problem function f is strongly-f-monotone and p is chosen as in

Theorem 7.

If we assume that the feasible set K is a closed and convex set and that p < 2, then

similar results hold for the sequence (not the averages) induced by the projection

algorithm.

THEOREM 8: (see Gabay [14])

If the variational inequality problem has at least one solution x*, the feasible set K
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is a closed, convex subset of R" , the problem function f is strongly-f-monotone, and

0 < p < in the projection algorithm, then the limit of the algorithm sequence

solves the variational inequality problem.

Remarks:

(a) Theorem 7 is an application of Theorem 1, developed in Section 2 and the er-

godic theorem of J.B. Baillon [3]. Using these theorem, establishes the convergence

of the sequences of averages induced by the algorithmic map T. On the other hand,

Theorem 8 is based on a convergence theorem established in [34] by Z. Opial for

solving fixed point problems of nonexpansive maps. This theorem, which does not

consider averages, establishes the convergence of the original sequence under certain

assumptions.

Opial's Theorem (Opial [34])

Let T be a map, T: K - K, defined on a closed, and convex subset K of R n. If T

is a nonexpansive map on K relative to the 11.lIG norm, and for every point y E K,

T is asymptotically regular, that is, IITk+l(y) - Tk(y) 112 -- k-o 0, then the map

Tk(y) converges to a fixed point of map T.

This theorem not only requires nonexpansiveness of map T, but also requires the

additional property of asymptotic regularity. Nevertheless, it does not require the

boundedness of the feasible set K.

Finally, we observe that if the map T satisfies the condition of firmly nonexpansive-

ness (used, for example, by Lions and Mercier [25], Rockafellar [45] and Bertsekas

and Eckstein [12]) then it satisfies the asymptotic regularity condition. The conver-

gence of the original sequence then follows from Opial's lemma.

Definition 2 : A mapping T: K - K is firmly nonexpansive (or pseudocontrac-

tive) over the set K if

IlT(x) - T(y)112 < Ix - yll 2 - II[x - T(x)] - [y - T(y) 112 Vx, y E K

Expanding J1[x-T(x)]-[y-T(y)]ll 2 as IIx-y1 2 + llT(x)-T(y) 112 -2[T(x)-T(y)][x-y]

and rearranging shows that T is strongly-f-monotone with coefficient a = 1, that is,
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[T(x) - T(y)]t[x - y] > IIT(x) - T(y)112.

Corollary 3:

If T : K -- K is a firmly nonexpansive map, then the original sequence induced the

map T, that is {zk = T(zk-l)}k converges to the fixed point of T.

Proof: Since firmly nonexpansive maps are nonexpansive, Izk - x*IIG < zk-1 -

x*llG for any fixed point x* of the map T. This result together with the firmly

nonexpansiveness condition of T implies that

IlT(zk) - k IIG = - x* G + IIT(k) - x11 - 2(T(Zk) - T(x*))t (zk - x*) <

IIzk - X*|IG- IIT(Zk) - X IIG k -- oo 0.

This property is the asymptotic regularity property of the map T. Therefore, Opial's

lemma [34] implies the convergence of the sequence zk. Q.E.D.

(b) It is important to choose 0 < p < ?2 in the projection algorithm to ensure that

the sequence itself converges to a solution. The example of the previous section

f(x) = (bxl - bx 2,bx 2 + bxi) illustrates this point. In this case, the strong-f-

monotonicity constant is a -= , = 1 = p, and so Theorem 8 does not apply. As

we have already shown when we introduced this example, the sequence of averages

considered in Theorem 7 converges to a solution while the sequence itself cycles. If

G = I, the identity matrix, and constant p = 1, then the projection algorithm is

equivalent to the relaxation scheme that we considered in this example.

3.3 Averaging for the generalized steepest descent method

In this subsection we establish the convergence of sequences of averages induced by

the generalized steepest descent method [17] applied to the unconstrained VIP with

the underlying set K = R h; this problem is equivalent to the system of equations

f(x*) = 0.
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The Generalized Steepest Descent Method

STEP 0:

Start with some x0o E R n .

STEP k + 1:

Direction Choice:

Compute -f(xk). If f(xk) = 0, stop; k = x*. Otherwise continue.

One-Dimensional VIP:

Find Xk+1 E [k; -f(xk)] satisfying

f(xk+l)t( - k+l) > 0, VX E [Xk;-f(xk)]. (25)

In this description, [x; d] denotes the ray emanating from x in the direction d: i.e.,

[x; d] = {y : y = x + Id, I > 0}.

The following theorem summarizes the convergence results of Hammond and Mag-

nanti [17].

THEOREM 9:

Let M be a positive definte matrix and f(x) = Mx - b. Then the sequence of

iterates induced by the generalized steepest descent method contracts (with respect

to the II.lls norm induced by the matrix S = M+M t ) to the solution x* of the un-

constrained VIP if and only if the matrix M 2 is positive definite.

We establish the convergence of a sequence of averages induced by this method to

the solution.

THEOREM 10:

Let a(k) = -+ak' ak > 0 be given constants, let M be a positive definte

matrix, and assume f(x) = Mx - b. Consider the unconstrained VIP and let

T : Rn - R n be the map that carries x into the solution of (25). Suppose

Z{kj}eN min(a(k), 1 - a(k)) = +oo, for any subsequence {kj}EN of k, then if M 2 is

a positive semidefinite matrix, the sequence of averages

alxl + a2 T(xl) + ... + akT(xk)
Xk+1 = al + ... + ak
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converges to a solution of the asymmetric unconstrained variational inequality prob-

lem.

Proof: We first observe that T(x) = x - a(x)f(x), with a(x) X= ai12 and S =

M+Mt The fixed points of the map T are also the solutions of the unconstrained

VIP. When M 2 is positive semidefinite matrix

IIT(x) - T(x*)112 = 11x - *II - a(x)(x - *)'M2 (x - *) < lix - x*11.

Therefore, T is a nonexpansive map around the solutions x*. Remark 4 of Section

2 implies the convergence of the averaging scheme

alxl + a2T(xl) + ... + akT(xk)
Xk+ 1 --

al + ... + ak

whenever a(k) = ,ak , ak > O, and {k}jeN min(a(k), 1 - a(k)) = +oo for any

subsequence {kj}jEN of k. Q.E.D.

Remark:

As an example of such an a(k), we can select ak = ak, with a > 1; then a(k) =

ak(l-a)
a-ak

Observe that Baillon's Theorem does not apply in this case since it requires nonex-

pansiveness of map T around every point and not just around the solutions.

Example:

Consider the unconstrained VIP with f(x) Mx and

i -1
M=

I 1

This matrix is asymmetric but positive definite. The matrix

m\2 [0 -2
M2 _-]

2 0

is positive semidefinite. This example does not satisfy the assumptions of Theorem

9. In fact, if we initiate the steepest descent algorithm at the point x0 = [1, 1],
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the algorithm cycles between the four points [1, 1], [1,-1], [-1,-1] and [-1, 1].

Nevertheless, the assumptions of Theorem 10 hold and so, if ak = ak , with a > 1,

the averaging scheme we proposed in Section 2 converges to the solution, which is

in this case the point x* = [0, 0].

4 Applications in transportation networks

In this section we apply the results from the previous sections to transportation

networks. We first briefly outline the traffic equilibrium problem.

Consider a network G with links denoted by i, j,..., paths by p, q,... and origin-

destination (O-D) pairs of nodes by w, z,.... A fixed travel demand, denoted d,

is prescribed for every O-D pair w of the transportation network. Let Fp denote

the nonnegative flow on path p. We group together all the path flows into a vector

F E RN (N is the total number of paths in the network). The travel demand d,

associated with the typical O-D pair w is distributed among the paths of the network

that connect w. Thus,

dw = A Fp, for all 0-D pair w, (26)
p joining w

or, in vector form, d = BF, where B is a W x N O-D pair/path incidence matrix

whose (w,p) entry is 1 if path p connects O-D pair w and is 0 otherwise. The path

flow F induces a load vector f with components fi defined on every link i via

fi = Z Fp, (27)
p passing through i

or, in vector form, f = DF, where D is a n x N link/path incidence matrix whose

(i, p) entry is 1 if link i is contained in path p and is 0 otherwise. Let n be the total

number of links in the network.

A load pattern f is feasible if some nonnegative path flow F, that is,

Fp > 0 for all paths p, (28)
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induces the link flow f through (27) and is connected to the demand vector d through

(26). It is easy to see that the set of feasible load patterns f is a compact, convex

subset K of R n .

Our goal is to determine the user optimizing traffic pattern with the equilibrium

property that once established, no user can decrease his/her travel cost by making a

unilateral decision to change his/her route. Therefore, in a user-optimizing network,

the user's criterion for selecting a travel path is personal travel cost. We assume

that each user on link i of the network has a travel cost c that depends, in an a

priori specified fashion, on the load pattern f, and that the link costs vector c = c(f)

is a continuously differentiable function, c : K -- R n . Finally, we let Cp = Cp(F)

denote the cost function on path p. The link and path cost functions are related as

follows:

Cp(F) = E ci(f), V paths p. (29)
iEpath p

Mathematically, a flow pattern is a user equilibrium flow pattern if

Vw (O-D pair), Vp connecting w: Cp(f) = vw if Fp > 0 and Cp(f) > vw if Fp = 0.

The user equilibrium property can also be cast as the following variational inequality:

f* E K is user optimized if and only if c(f*)t(f - f*) > 0, Vf E K. (30)

Several papers [9], [10], [26], [47], [16] and the references they cite elaborate in some

detail on this model and its extensions.

The analysis in the previous sections applies to the traffic equilibrium problem,

with the travel cost function c as the VIP function and with the link flow pattern

f as the problem variable. The strong-f-monotonicity condition becomes

[c(fl) _- c(f 2)]t [fl _ f 2] > allc(fl) - c(f2 )112 Vfl,f 2 e K,

for some positive constant a. As indicated in [27], we can verify this condition by

checking whether the matrix

Vc(f)t - aVc(f)tVc(f') Vf, f' E K
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is positive semidefinite for some a > 0. Theorems 4, 5 and 7 guarantee that the

sequence of averages of the "Riesz" type induced by relaxation and projection al-

gorithms converges to an equilibrium solution f* of the user optimizing network.

Furthermore, since the feasible set K in the traffic equilibrium example is always

bounded for any a priori fixed demand d, the second parts of Theorems 4, 5 and 7

also establish that the limit of the sequences of averages induced by the projection

algorithm as in [3] is a user optimizing load pattern whenever our choice of p < .

Finally, Theorem 8 establishes convergence for the sequence itself when 0 < p < 2.

Next, we study some traffic equilibrium examples that illustrate the importance

of the strong-f-monotonicity condition and allow us to apply the results in the pre-

vious sections.

Examples:

1. The simplest case arises when the travel cost function ci = ci(f) on every link

i depends solely, and linearly, upon the flow fi on that link i:

ci = ci(fi) = gifi + hi.

In this expression, gi and hi are nonnegative

gl

0
tion coefficient for link i. Then c(f) =

0

constants; gi denotes the conges-

0 ... gn
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gl 0 ... 0

Since Vc = 0 , the matrix Vc(f)t- aVc(f)tVc(f ') becomes

0 0 ... gn

gi - ag2 0 ... 0

0 g2 - ag2 0
Vct(I - aVc) = 2

0 O ... gn-agn

This matrix is positive semidefinite if gi - ag2 > 0 for i = 1, 2, ..., n.

This, in turn, is true if the congestion coefficients gi > 0 for i = 1, 2, ..., n

and a < 1
- maxl<i<n gi

If each gi > 0 and a < mxi he matrix is positive definite, and so the

function c is strongly monotone. It is positive semidefinite, and so is strongly-

f-monotone even if some gi = 0. Our analysis still applies even though some

or all the gs are zero. This example shows that strong-f-monotonicity might

permit some links of the network to be uncongested. This might very well be

the case in large scale networks.

2. We conclude this set of examples by considering a transportation network with

multiple equilibria, as specified by a network (see Figure 1) consisting of one

O-D pair w = (x,y) and three links connecting this O-D pair. The travel

demand is d = 20. The travel costs on the links are

cl(f) = fi + f2 + 5,

c2 (f) = fi + f2 + 5,

c3 (f) = 30.

The user equilibrium solution is not unique. In fact, the problem has infinitely

many user optimized solutions. Any point satisfying fi + f2 = 20 and f3 = 0
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1

Figure 1: The traffic equilibrium problem

is a solution to the user optimized problem, since cl = C2 = 25 < C3 =- 30.

The matrix Vc = M is
I 1 0

OM I I O O

This matrix is not positive definite. Nevertheless, the matrix

1- 2a 1- 2a 0

M t - aMtM = 1-2a 1-2a 0

0 0 0

is positive semidefinite for any a < 1/2. So the travel cost function c in this

case is strongly-f-monotone, but not strongly monotone.

We conclude this section by showing that if the link cost function is strongly-f-

monotone, then so is the path cost function. In establishing this result, we use the

following elementary lemma.
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LEMMA 8:

Any set of n real numbers xi E R for i = 1, 2, ..., n satisfy the following inequality:

n n

[~(xi)]2 < n -(xi) 2. (31)
i=1 i=l

This result is easy to establish by induction.

Proposition 7:

Let n be the total number of links in the network, and N be the total number of

paths. If the link cost function c = c(f) is strongly-f-monotone with respect to the

constant a, then the path cost function C = C(F) is also strongly-f-monotone with

respect to the constant a' = -.

Proof:

If the link cost function c = c(f) is strongly-f-monotone with respect to the constant

a > 0, then

[c(fl) - c(f2 )] t [fl _ f2] > allc(fl) - C(f2 )112 Vfflf 2 E K.

Making the replacements fi = Ep passing through i Fp, and Cp(F) = EiEpath p Ci(f),

and observing that

n

[c(fl) - c(f 2 )] t [fl _ f 2 ] = [i(fl) _ Ci(f 2 )][fl - f2],
i=1

we obtain

N

[c(fl)-c(f 2 )] t [fl _f
2 ] = Z[Cp(F1 )-Cp(F 2)][Fp-Fp 2 ] = [C(F1)_C(F 2 )]t [F 1 F2 ].

p= 1

The defining equality (29) and Lemma 8 imply that

N N

Z[Cp(F) - Cp(F 2)]2
= [ E (C(f(l)-i( 2 ))] 2

<
p=l p=1 iEpath p

N

< E, (n E [ci(fl) - C(f2)]2)
p=l iEpath p
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Since link i belongs to at most N paths, each term ci(f l ) - ci(f2 ) appears in the

last expression at most N times, so

N n

[Cp(F') - Cp(F 2 )] 2 < nN [ci(fl) -i(f2)] 2 .

p= 1
i=l

Combining these results shows that

[C(F1 ) - C(F 2 )]t [F1 - F2 ] = [c(fl) _ c(f 2 )]t [fl _ f 2 ] >

n N

> a[c(if) - Ci(f2 )1]2 > N [Cp(F1) - Cp(F 2)] 2 = a'lIC(F) -C(F2) 2,

if a' = a > O. Therefore, the path cost function C = C(F) is strongly-f-monotone.

Q.E.D.

This proposition shows that if the link cost function is strongly-f-monotone, then

so is the path cost function. The user optimizing path flow pattern should, therefore,

satisfy the following VIP:

find a feasible path flow FPt E K for which

C(Ft)t(F - FPt) > 0 VF E K.

Consequently, we can apply a path flow projection algorithm to solve the user opti-

mizing traffic equilibrium problem instead of a link flow one. The main step would

be the projection

Fk+1 = Pr (Fk - pG-1C(Fk)),

in the space of path flows F. Bertsekas and Gafni [6] discuss the advantages of

solving the problem in this space of path flows.

As our prior results show, we can consider networks that contain some uncon-

gested paths.
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5 Conclusions and open questions

In this paper we introduced an averaging scheme for solving fixed point problems.

We consider sequences of averages of the"Riesz" type. The convergence theorem

we established involves nonexpansive maps rather than contractive maps. In con-

trast to the averaging scheme of Baillon [3], at each iteration, our approach uses

as the current iterates the average of all prior iterates. Using both Baillon's and

our approaches, we established the convergence of the averages of sequences induced

by projection and relaxation schemes for variational inequalities, and the general-

ized steepest descent method for systems of equations. Under a norm condition

weaker than an existing one from the literature, we first established the conver-

gence of sequences of averages induced by relaxation algorithms. Assuming the

strong-f-monotonicity condition, we showed that averaging schemes induced by the

projection algorithm converge to a solution of the variational inequality problem.

Finally, assuming the positive semidefinite of the squared Jacobian matrix, we estab-

lished the convergence of sequences of averages induced by the generalized steepest

descent method. We have also shown the connection between strong-f-monotonicity

and the norm condition of Pang and Chan [41]. Finally, we applied these results to

transportation networks, permitting uncongested links. We showed that whenever

the link cost function is strongly-f-monotone then so is the path cost function.

The results in this paper suggest the following questions:

Can we provide convergence results for the sequence of averages of VIP algorithms

under weaker conditions?

Can some form of the strong-f-monotonicity condition imposed upon the problem

function f guarantee convergence of the sequence of averages induced by other VIP

algorithms, such as linearization algorithms and more general iterative schemes?
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