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Abstract

An important special case of the economic lot-sizing problem is the one in

which there are no speculative motives to hold inventory, i.e., the marginal

cost of producing one unit in some period plus the cost of holding it until

some future period is at least the marginal production cost in the latter

period. It is already known that this special case can be solved in linear

time. In this paper we study the effects of reducing all setup costs by the

same amount. It turns out that the optimal solution changes in a very

structured way. This fact will be used to develop faster algorithms for

several problems that can be reformulated as parametric lot-sizing problems.

One result, worth a sepparate mention, is an algorithm for the so-called

dyna-mic lot-.sizing proble-m with learning effects in setups. This algorithm has

a complexity that is of the same order as the fastest algorithm known so far,

but it is valid for a more general class of models than usually considered.
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O Introduction

In 1958 Wagner and \Vhitin published their seminal paper on the "Dynamic

Version of the Economic Lot Size Model", in which they showed how to solve the

problem considered by a dynamic programming algorithm. It is well-known that

the same approach also solves a slightly more general problem to which we will

refer as the economic lot-sizing problem (ELS). Recently considerable

improvements have been made with respect to the complexity of solving ELS and

some of its special cases (see Aggarwal and Park, 1990, Federgruen and Tzur,

1989, and Wagelmans, Van Hoesel and Kolen, 1992). Similar improvements can

also be made for many extensions of ELS (see Van Hoesel, 1991).

An important special case of ELS is the one in which there are no speculative

motives to hold inventory, i.e., the marginal cost of producing one unit in

some period plls the cost of holding it until some future period is at least

the marginlal productioni cost in the latter period. It is already known that

this special case can e solved in linear time. In this paper we study the

effects of reducing all setup costs by the same amount. It turns out that the

optimal solutioni cha-inges in a very structured way. This fact will be used to

develop faster algorithms for several problems that can be reformulated as

parametric lot-sizing problems. One result, worth a separate mention, is an

algorithm for the so-called dynamic lot-sizing problem with learning effects

in setups. This algorithm has a complexity that is of the same order as the

fastest algorithm known so far, but it is valid for a more general class of

models than usually considered.

The paper is organized as follows. In Section 1 we introduce the economic

lot-sizing problem without speculative motives and describe briefly a linear

time algorithm to solve it. Section 2 deals with the parametric version of the

problem in whiiclh all sell ) costs are reduced by the same amount. We will

characterize how the optimal solution changes and present a linear time

algoritllm to calciilate the re(lliction for which the change actually occurs. In

Section 3 we (liscuss applications of the results of Section 2. Finally,

Section 4 contains somle coclullding remarks.

1 The economic lot-sizing problem without speculative motives

In the economic lot-sizing problem (ELS) one is asked to satisfy at minimum

cost the known demands for a specific commodity in a number of consecutive

periods (the planning horizon). It is possible to store units of the commodity
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to satisfy future demands, but backlogging is not allowed. For every period

the production costs consist of' two components: a cost per unit produced and a

fixed setup cost that is incurred whenever production occurs in the period. In

addition to the production costs there are holding costs which are linear in

the inventory level at the end of the period. Both the inventory at the

beginning and at the end of the planning horizon are assumed to be zero.

We will use the following notation:

T: the length of the planning horizon

di: the demand in period i{1,...,T}

Pi: the unit production cost in period ie{1,...,T}

fi: the setup cost in period i{1,...,T}

hi: the unit holding cost in period ie{1,...,T}

Furthermore, we define lij-E=idt for all i,j with 1<i<j<T.

As shown in \Vagelmans, Van iloesel and Kolen (1992) an equivalent problem

results when all tlnit hioldling costs are taken 0, and for all i {1,...,T} the

unit production cost i is replaced by ci, defined as

T
ci-Pi + E t iht

This reformulation can be carried out in linear time and it changes the

objective function value of all feasible solutions by the same amount. From

now on we will focus on the reformulated problem. Without loss of generality

we may assullle that ill the current problem formulation all demands and cost

coefficients are non-negative (see Van Hoesel, 1991, for details).

Furthermore, in this paper it is assumed that ci>ci+l for all iG{1,...,T-1}.

Note that if ci were less than cj for some j>i, then this could be perceived

as an incentive to hold inventory at the end of period i (in order to avoid

that the higher unit production cost in period j will have to be paid). Under

our assuIml)tioin ol the unit roduction costs this incentive is not present.

Therefore, we eferi to l. is secial case as the economic lot-sizing problem

withlout specnulative motives. Note that in the model originally considered by

Wagner and \Vhitin (1958) it is assumed that h i> O and pi=O for all i e{1,...,T}.
T

Because Ci = Pi + =ih/t, it is easily seen that this model is an example of a

lot-sizing problem without speculative motives.
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We will now briefly review how the problem under consideration can be solved

in O(T) time using dynamic programming (see Van Hoesel, 1991, for details). To

obtain a dynamic programming formulation the key observation is that it

suffices to consider only feasible solutions that have the zero-inventory

property, i.e., solutions in which the inventory at the beginning of

production periods is zero. The latter implies that if i and j are consecutive

production periods with i< j, then the amount produced in period i equals

dijl . From now on we will only consider solutions with this property. Also

note that we may assume that setups only take place in production periods,

even if some of the setup costs are 0. Hence, solutions can completely be

described by their production periods which coincide with the periods in which

the setups occur.

Let the variable F(i), i{1,..,T}, denote the value of the optimal production

plan for the instance of ELS with the planning horizon truncated after period

i, and define F(O)-O. For i=1,...,T the value of F(i) can be calculated using

the following forward recursion

F(i):= min i{F(t-l)+ft+ctdtj}

To determine F(i) when F(t-1) is already known for all t<i, we can proceed as

follows (see Figure 1): for each t<i we plot the point (dlt_l,F(t-l)+ft) and

draw the line with slope c, that passes through this point. It is easy to

verify that F(i) is equal to the value of the concave lower envelope of these

lines in coordinate dli on the horizontal axis. After constructing the line

with slope ci that passes through (dli,F(i)+fi+l), we update the lower

envelope and continue with the determination of F(i+l).

F(t -1) +ft
F(i)

0 d(l,t-1 dli

Figure 1: Determination of F(i)
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The running tinie of this algorithm depends on the complexity of evaluating the

lower envelope in certain points on the horizontal axis and the complexity of

updating the concave lower envelope. Because lines are added in order of

non-increasing slope, the total computational effort for updating the lower

envelope (i.e., over all T iterations) can be done in linear time. (We use a

stack to store the breakpoints and corresponding line segments of the lower

envelope.) The fact that the points in which the envelope is evaluated have a

non-decreasing horizontal coordinate can be used to establish an O(T) bound on

the total number of operations required for those evaluations. Hence, the

algorithm runs in linear time.

For convenience we will assume from this point on that dl> 0. Hence, period 1

is the first production period in every feasible solution. Let i {2,...,T),

then h {1,... i-l} is called an opti-mal predecessor of i if period h is the

last production period before i in some optimal solution in which i is a

production period. This means that h is such that F(i-1)={F(h-1)+fh+chdh,i-l}.

Period h is referred to as an optimal predecessor of T+1 if it is the last

production period in some optimal solution.

The following result is a slight generalization of the well-known planning

horizon theorem due to W\agner and Whitin. It will be used frequently later on.

Lemma 1 Let 1 < h < i < j <k < T +1 be such that h is an optimal predecessor of k and i

is an optimal predecessor of j, then both h and i are optimal predecessors of

both j and k.

Proof \\;e know that,

F(. - I) [(i-l ) +f l +i'i + c d F'(-l ) + f, cdh,j- (1)

and

F(k - 1) =F(h-1)+ fl,_ cdl, kl < F(i-1)+fi + cidi,kl (2)

Combining these inequalities leads to

Chbdj,k- < cidj,k- 1

It is easily seen that the lemma holds if dj,k = 0. Assuming dj,k-1 > 0, we
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obtain Ch< ci. Because h <i we already know that Ch> ci . Therefore it must hold

that ch = ci. Substituting this into (1) and (2) leads to

F(i-l ) + fi < F(h- ) + f, + Chd,i-

respectively

F(h-l ) + f + Chldhli-l < F(i-l ) + fi

Hence, equality must hold in both (1) and (2), which implies the desired

result. O

In the next section we consider a parametric version of the economic

lot-sizing probleln without speculative motives.

2. The parametric problem

In the parametric version of the economic lot-sizing problem without

speculative motives that we will consider, it is assumed that the setup costs

are of the form fi - A, i=1, .... , T. All the coefficients fi are assumed to be

non-negative and the domain of the parameter A is the interval [0, A], where

A <mii=l,1 ., T{fi}. The main issue we will deal with is the following. Suppose

we are given an optimal solution for the lot-sizing problem for A = 0. Assume

that the set of' I)rolllction l)eriods is {il,...,iq}, where =il<i2<... <iq and

q<T; also define iq+,l-' + . \\hen A is increased, solutions with more than q

setups become relatively more attractive (and solutions with less than q

setups become less attractive). We would like to determine the smallest value

of A[0,[O A], if any, such that there exists an optimal solution with at least

q+1 setups. Frtfhermore, we are also interested in that optimal solution

itself.

Let A' denote the parameter value we are looking for. We will use an approach

to find this value which is based on a natural decomposition of the problem.

To this end we define ELS(t), t{2,...,q+1}, as the parametric lot-sizing

problem with planning horizon consisting of the first i t - 1 periods.

Furthermore, we let At,, t{2,...,q+l}, denote the smallest value in [0,A] for

which there exist an optimal solution for ELS(t) with at least t setups; At is

defined to be x,% if there does not exist such a solution for any A[O0,A].

Clearly, A' exists and is eqial to Aq+ 1 if and only if the latter value is
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finite.

In the sequel the values F(t), t=1,...T, have the same interpretation as in

Section 1, i.e., they correspond to A=0. We make the following observations.

Lemma 2 For all te{2,...,q+l1} the set {i,...,it_l} is an optimal set of

production periods for ELS(t) as long as O<A<min{At, A}. Moreover, the value of

this solution is F(i, - 1)-(t-1)A.

Proof Trivial.

Lemma 3 The values At, 2<t< q+1, are non-increasing in t.

Proof Suppose 2< p <r<q+l and let Ap be finite. For A Ap there exists an

optimal solution of ELS(p) with at least p setups. Denote the set of

production periods in this solution by S; hence, SI >p. If Ar>Ap, then ELS(r)

does not have an optimal solution with at least r setups if A = Ap. Lemma 2

states that {il,,ip,. -,ir- 1} is an optimal set of production periods for

ELS(r) as long as 0<A<Ar. However, S{ip,... ,ir l} must also be an optimal

solution and ISU {i,...,i,_l} >+ (r- p) = r. This is a contradiction. Therefore,

it must hold that Ar<Ap. ]

Lemma, 3 will 1)e used in the proof' Theorem 1 below. This theorem will enable us

to calculate the values At, 2< t <q+ 1, efficiently in order of increasing index.

For nota tional convenience we define A-co and we let <t 1,t 2 > denote the

(possibly empty) set {teNJltl<t<t2} for every pair of indices t and t 2 with

tl < t2.

Theorem I Iet r E{2,..., ,+l} and suppose Ar<Ar-l, then ELS(r) has an optimal

solution for A=Ar. with the following properties:

- there are exactly r production periods h <... <h r

- there exists an mE{1,...,r-1} such that

it = lht for all t = 1,..., m

htE <itl1,it> for all t=m +,..., r

6
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i 1 i ,, i 1 ,.+1 r- 1 Zr

I II1 1 1 11 I I I
h h,'l1+ l hr- I hr

Figure 2: Structure of optimal solution in Theorem 1

Proof Consider ELS(r) when A = Ar. By definition there exists an optimal

solution with at least r production periods. Let k <... <k s be the production

periods in such a solution; hence, s>r. Let n be the largest index such that

kne{il,...,irl}. Suppose kn=il, then both {il...,i_l} and {kl,...,knl} are

optimal sets of production periods for ELS(1) when A=Ar. Because Ar<Ar-l<.Al,

ELS(1) does not have an optimal solution with more than -1 production

periods. Hence, I{kl,...,kn1l}1 is at most equal to 1- = {i,...,ill} . Now

it follows that {i1 ,..., i l l } u {kn,... k,} is an optimal set of production

periods for ELS(r) with at least r elements.

If k+ l to kq are slch that every set <iZ+t li 1 +t> with te{1,...,r-l}

contains exactly one of thent, then the just constructed optimal solution has

the desired properties (with n=l):

I l l I III I- r

i, i I ZII I il 3: Solution of ks- 1 kdesired form

Figure 3: Solution of the desired form

Otherwise, let ?u he the largest index in {l,...,r- } such that <i, iu+l> does

not contain exactly one element of {kn+l,...,k). First suppose that <i,,i,,+>

contains several of these indices and let k and k+ 1 be the two largest of

those:

a l a ! l iu+l Z- r

I 1 - I !- I 1 [ I :.
kv kv+ 1 k s

Figur 4 <i, iu+l > contains several

elements of {kn+l,..., s)

Because i, is an optimal predecessor of i,,+ and k is an optimal predecessor
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of k+l, it follows from Lemma 1 that iu is an optimal predecessor of kv+1 .

Hence, {il,...,il} u {,v+l,... ,k is also an optimal set of production periods.

Moreover, this solution has the form stated in the theorem (with m=u):

il iu i u+l Zr-1
i1 11 i 1 11 1 

iZ iu v+ ku

Figure 5: Solution of the desired form

Now we are only left with the case that <iu, iu+> does not contain any element

of {kn+l,,,...,k}). By deducing a contradiction, it will be shown that this case

can not occur. From the fact that j{il,...,il}u{kn+l,...,k}I >r we obtain

I {k+l,... ,k,)} >r-l. Therefore, there must be at least one t{l,...,r-1}\{u)

such that < it, it+1 > contains several elements of {kn+l,..., k}. From the

definition of it follows that indices with this property must be smaller

than . Let w'e {/,...,u--)1} be the largest index with the property and let k.

and k+1 be the two largest indexed elements in <i, iw+, >:

il 
i l

i' iw+l iu+1 ir ir

kz kz+.... ks

Figure 6: <i,,i,,+l> does not contain

(any element of {k,7 l+,...-,k 8}

It follows from the (definition of and w that for all t {w+l,...,r-1} the set

< i., it+> contains at most one element of {kz+2,...,ks}. Because <i, iu+,>

does not contain any element of the latter set, it is now easy to show that

{il,. . . ,il}u{k,1 +, ... ,k ,}) = |{il,...,i l }u{kn+l*,..., k)} - [{kz+l,...,ks} [

>r-(r-w-1) =w+1

Furthermore, it follows from Lemma 1 that kz is an optimal predecessor of

iw+1. ence, {il,...,jil}{k,,+l,...,kk is an optimal set of production periods

for ELS( w + 1) when A = Ar . Iowever, because Ar < A-_ 1< Aw+l, ELS(w + 1) does not have

an optimal solution with more than w setups for Ar. Hence, we have obtained a

contradiction. This completes the proof. [



Theorem 1 is basically a characterization of how the structure of the optimal

solution changes - or to be more precise, may be assumed to change - when A

becomes equal to A'. Let r be the smallest index such that Ar = A', then there

exists an optimal solution with exactly q+l1 setups of which the production

periods before i are as described in the theorem and the other production

periods are ir to iq. This characterization resembles a result given by Murphy

and Soyster (1979), who consider the lot-sizing problem in which the setup and

unit production costs are non-increasing over time, and the holding costs in

each period are concave and non-decreasing functions of the inventory level at

the end of that period. They show that when all setup costs are decreased

proportionally (instead of by the same amount), then the number of production

periods is non-decreasing and the k-th production period in the perturbed

problem instance occurs not later than the k-th production period in the

original instance.

W\e now turn to the issue of determining A' and a corresponding optimal

solution with q+l setups efficiently. As noted before, we will determine the

values ,, 2 <t<q+l, in oder of increasing index. To explain our method we

need some additional notation. For every pair of indices t and t2 with tl<t 2

define <t1 ,t 2]--{teltl <t<t 2 }, i.e, <tl,t 2] = <tl,t2 > U{t2 }. Furthermore, G(j) is

defined for je {2,...,T} as follows:

-if jig: G(j) F(ir-l)+fi

- if je < ir-, >: G(j) the optimal value when A = 0 of the lot-sizing problem

with planning horizon consisting of the first i- 1

periods under the restriction that exactly one setup

occurs in <it, it+] for all te{1,...,r-2}, and j is

the only production period in <irl, ir >

The reason why these values are introduced is the following. Let re{2,...,q+1}

and suppose A,.<Ar-1 . Consider a fixed je <ir_li, > and note that the

restrictioll ill the (lefi itionJ of G(j) makes the corresponding optimal

solution a ca.nl idlate for the solution described in Theorem 1. Because this

solution has r setutps, its value equals G(j) -rA when A = Ar. Clearly, the

optimal solution of Theorem 1 is the best one among all candidates, i.e., its

value is mIinj<in< _ G{G((j)} -rA,. Obviously, this value equals

F(i,-1)-(r-1)A. (cf. Lemma 2), and therefore
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Ar = minjr<i r -l,>{G(j)} - F(ir - 1) (3)

Note that (3) holds under the assumption that Ar < Ar-. Because Ar < Ar-, Ar

equals min{Ar, minj<i,_li>{G(j)} - F(i r-1)}, unless this value is greater

than A. In the latter case Ar is set equal to oo.

\Ve will now show how the values G(j) can be calculated for all j <irl, ir>,

re{2,...,q+1}, given the values G(h) for all h <ir_2,irl]; where i-0. Note

that the latter values are defined with respect to the planning horizon with

total demand equal to dl,ir 1__ 1. Therefore, the following recursion holds:

G( r):= min {G(h)+ Chdir ,jl}+fj+cjdj,i 1 for j <irli,r> (4)GhE<ir - 2, ir-1 r-1

The minimization in (4) determines an optimal predecessor of j in the

restricted problem corresponding to G(j). Because the last two terms do not

depend on h, we are mainly concerned with calculating the values

minh<i 2,. ]{G(h)+chdi, ,jl for all je < ir_l,i r > To this end we

construct the lower envelope of the lines with constant term G(h) and slope cl

for he <ir2, i 1]. For a fixed j <i,_l,ir> the value of interest is found by

evaluating the lower envelope in coordinate dir ,j-1 on the horizontal axis.

Using siilar arguments as in Section 1, one can easily show that determining

minh< ' ]{c(h)+chdi , j- } in this way for all je <irl, r> takes a.

computational effort that is bounded by a constant times the sum of the

cardinalities of the sets < ir2, r-I] and < ir,ir>. Subsequently, the values

G(j) are easily obtained for all j <irlir] One can now determine Ar and

proceed with the analogous calculation of G(k) for all k <ir,i,+l>. The

complexity of this algorithml- to (letermine Aq+l, and thus A', is easily seen to

be 0(7'). Note that a solution with q+1 setups that is optimal for A=A' can be

constructed in linear time if we have stored an optimal predecessor of j when

calculating G(j). To summarize, we have the following result.

Theorem 2 It takes linear time to calculate A' (or to find out that it does

not exist) and to determine a solution with exactly q+1 production periods

that is optimal for this value.

We have only loole(l at the I)arametric problem in which all setup costs

are re(lllced wliell the )arallleter increases. It is left to the reader to verify

that similar results as presented in this section hold for the parametric
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problem in which all setup costs increase by the same amount when the

parameter increases. Therefore, we state the following theorem without proof.

Theorem 3 Consider an economic lot-sizing problem without speculative motives

that has an optimal solution with q>l1 production periods. Let A" be the

smallest amount such that there exists an optimal solution with less than

q production periods when all setup costs are increased by A". The value of A"

and a corresponding optimal solution with exactly q-1 setups can be determined

in linear time.

3 Applications

In this section we discuss applications of the algorithm given in Section 2.

Some of the problems we will look at are clearly parametric in nature, others

will be reformulated as parametric problems. Most of the problems have been

discussed before in the literature. Typically, for those problems we will

indicate that the results of Section 2 imply faster algorithms.

3.1 Computing stability regions of the stationary cost model

Richter (1987) considers tire economic lot-sizing model with stationary cost

coefficients, i.e., fi= 0, = h > 0 and pi= p for all iE{1,...,T}. Without loss

of generality we may assume io=0 and therefore only the values of f and h are

relevant. It is easily seen that not the absolute of these coefficients, but

rather their ratio determines the optimal solution. Hence, the non-negative

quadrant of the (f,h)-space can be partitioned into convex cones, each of

which corresponds to another optimal solution. Moreover, there are at most T

of these cones, each corresponding to another number of setups in the optimal

solution. For fixed f and ho and a given optimal solution Richter determines

the corresponding convex cone ("stability region") using an algorithm that

runs in at least O(T 2 ) time. Van Hoesel and Wagelmans (1991b) point out that

this time bound can actually be achieved. However, Theorems 2 and 3 imply an

even stronger result. To use those theorems we fix the unit holding cost to ho

and consider the two parametric problems that result when A is subtracted from

f 0, respectively addled to fo. Both A' and A", defined as before, can be

calculated ii lirear tine. It. is easily seen that the given solution is

optimal for all pairs (f,h) that satisfy (fo-A')/ho<f/h<(fo+A")/ho, and not

for any otliher )air. leiice, comlputing the stability region can be done in

linear time.
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3.2 Computing the value function and efficient solutions

Zangwill (1987) studies the implications of setup cost reduction in the

economic lot-sizing model by performing a parametric analysis (see also

Zangwill, 1985). His main motivation is to analyze the concepts of the Zero

Inventory philosophy, which states that the inventory levels should be as

small as possible and that this can be accomplished by reducing the setup

costs. Zangwill shows that reducing all setup costs by the same amount may

sometimes increase total holding costs. However, if the setup costs and unit

production costs are stationary (fi=f and pi=p for all ie{1,...,T}), then

setup cost reduction leads to reduction of both the total holding costs and

the number of periods with positive inventory.

Zangwill's results are partly based on the analysis of the value function,

i.e., the function that gives the optimal value of the lot-sizing problem for

every A [,[0, 1]. It is easily seen that the value function is piecewise linear,

decreasing ad colcave. NMloreover, the function has at most T linear segments.

To construct this function Zangwill proposes an algorithm that runs in O(T3 ).

Instead of this slecialized algorithm one may use a well-known general method

that is often attributed to Eisner and Severance (1976). This method

constructs the value functioni by solving at most 2T+ 1 non-parametric

lot-sizing plrol)le]ns. If the \Vagner-Whitin algorithm is used to solve the

latter problelns again an O(T3 ) time bound results. However, we may also use

the linear time algorithm, because only lot-sizing problems without

speculative motives are considered. Hence, the value function can be

constructed in O(T 2 ) time.

Theorem 2 implies yet another approach to construct the value function. We may

apply the procedure given in Section 2 repeatedly. Starting with an optimal

solution for ,\ =0, we first find A', the largest value of A for which the

given solution is opltimal. At, the same time we find a solution that is optimal

for A' and tlhat has one setup less than the original optimal solution. We now

proceed by letting A' play the role of A°. Clearly, we will find the complete

value funlction after at most T-1 applications of our procedure. Hence, this

approach also takes O(T2 ) time, and from a complexity point of view it does

not perform better than the Eisner-Severance method. However, we will discuss

a few applications for which this approach is particularly useful.

Richter (1.986) analyzes the stationary cost model with respect to the criteria,

total costs and total inventory. The goal is to find all efficient solutions,
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i.e., all solutions for which there does not exist another solution that is

better on one criterion and not worse on the other. Assume that the there

exists an optimal solution (w.r.t. total costs) that has q<T production

periods. One can show that the total inventory is non-increasing in the number

of setups; for instance, this follows from the result by Zangwill (1987)

mentioned earlier and also from Theorem 4 in the next subsection. Hence, to

find all efficient solutions it suffices to determine for all k e {q,...,T} the

optimal value of the problem in which the number of setups is restricted to be

exactly k. The latter can be done by calculating the value function of the

parametric problem in the way indicated above (where A equals the setup cost).

This approach has a lower running time than the one used by Richter, which is

based on the \\agner-\\hitin algorithm and runs in O(T3 ) time or worse (no

complexity analysis is given). W\e should also mention that the

Eisner-Severaince method can not be used, because it does not necessarily

determine optimal solutions for all k E{q,...,T}. In particular the latter may

happen if for some k {q,...,T} the corresponding solution is only optimal for

one value of ,\ E[O, A].

3.3 Setup costs depending on the number of setups

Before discussing this application, we will first prove a new result. Consider

a lot-sizinig p)roblem without speculative motives and suppose that there exists

an optimal solution with q>1 setups. For k{1,...,q} we let TC(k) denote the

optimal value of the problem in which the number of setups is restricted to be

exactly k.

Theorem 4 TC(k) is a non-increasing convex function of ke{1,...,q}. Moreover,

TC(1) to TC(n) canl be determined in O(nT) time for any ne{1,...,q}.

Proof \\e colisidler the parametric problem in which the setup cost in period i

is equal to fi+A -A\, whlere AXe[O,A] and A=cldlT. Hence, for A=A there exists an

optimal solutionl with q setupls and for A=O it is optimal to produce only in

period 1. It follows that there exist values 0=A0 <A < . .. < Aq = A such that for

every kE { 1,...,q} there are k setups in an optimal solution if and only if

AE[i [A ,A ]. The value of an optimal solution with k setups is equal to

TC(k)+kA -kA. For A = Ak, 1 < k < q, optimal solutions with k and k +1 setups exist.

Therefore,

TC(k) +kA - k' = TC(k+l) + (k + 1)A - (k + 1)Ak

13



or equ iva.leltly

TC(k)-TC(k + 1) = A-,\ (5)

Because the right hand side of this equality is non-negative, it follows that

TC(k) is non-increasing. Clearly, for 1<k<q it also holds that

TC(k-1) -TC(k) = A -A - 1

Combining this with (5) and A l<Ak, we obtain

TC(k) -TC(k- 1) • TC(k +1) -TC(k)

and this means that TC(k) convex.

The last part of the theoretii follows immediately from previous results. O

Rema.rk Note that the problen-i reformulation that we have carried (eliminating

the hol(ling costs anld replacing Pi by ci) does not affect this result, because

it has caused the value of all feasible solutions to change by the same

amount. For convenience we assume that TC(k) equals the solution value w.r.t.

the original objective fnction.

An obvious ap.llication of' Theorem 4 concerns the problem in which the number

of setups is restricted to be at most n. The theorem states that if the

unrestricted problell has an optimal solution with q>n production periods, then

there exists an optimal solution of the restricted problem with exactly n

setups and this solution can be determined in O(nT) time.

Theorem 4 generalizes a result by Chand and Sethi (1990), who consider the

special case in wiiclich i=p for all ie{1,...,T}. They define HC(k) to be the

minimul-lll oldillg cost if' the ilulnl)er of setups is restricted to ke{1,...,T} and

show that this function is non-increasing and convex. To see that this is a,

sl)ecial c(ase of 'Illeorelll .1, it, suffices to assume fi=pi=O for all i{1,...,T}

and to note that in that case q=T and TC(k)=HC(k) for all k{1,...,T}.

The main p)roblem stl(lied by Chand and Sethi is the lot sizing problem with

learning effects in the settp costs, i.e., the total setup cost is assumed to

be a noln-dcecreasilg concave function of the number of setups. Hence, in case

14



of k setups the total costs are equal to HC(k)+SC(k), with SC(k)

non-decreasing and concave in k {1,...,T}. The concavity assumption captures

both the worker learning in setups and the technological advances inspired by

the observations made by workers resulting in improved setup methods. Chand

and Sethi propose an O(T 3 ) dynamic programming algorithm to solve this

problem. They also provide results that may speed up this algorithm, but do

not lower the complexity. These computation reduction results are valid

because of the concavity assumption. Exploiting this assumption extensively,

Malik and \Vaug (1990) arrive at an O(T 2 ) algorithm. As we have indicated

already, 1C(k) can be determined for all ke{1,. . . ,T in O(T2 ) time by

performing a paralnetric analysis on the lot-sizing problem in which all setup

costs are taken equal to 0. Subsequently, it takes linear time to find a k

that minimizes IIC(k)+SC(k). Hence, this approach has the same complexity as

the one presented by Malik and Wang. However, it is applicable to more general

problems, because we do not need to assume that the function SC(k) is concave.

For instance, SC(k) may be of the following form:

SC(k) = fk + f [k/A1 for k = 1,..., T

The second term may reflect the maintenance costs of a machine which is

checked after every I times it has been used, or the costs of a resource that

is only available in indivisible units each of which can be used for at most I

setups. Note that SC(k) is neither convex nor concave.

As a fina.l remark, note tlat a similar approach can be used in case of

non-statioai.ar y llit proclduction costs Pi, provided that there are no

speculative motives.

Concluding remarks

By studying a palrametric version of the economic lot-sizing problem, we have

been able to design fast algorithms for related problems. Our approach differs

significantly from existing methods for these problems. We should note here

that some of the complexity results presented in Section 3 can also be

obtained using other approa.ches that are not based on the results of Section 2

(see Van Hoesel, 1991). However, we think that the characterization given in

Theorem 1 and the algorithm it suggests are particularly interesting. One

question that immediately arises is whether similar results hold for other

problems that are solval)le by dyia.naic programming. In Van Hoesel and Wagelmans
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(1991b) it is shown that this is true for the p-coverage problem on the real

line. Theorem 1 in that paper is almost identical to Theorem 1 given here (the

same holds for their proofs). The algorithm which is developed for the

p-coverage problem is analogous to the approach mentioned in Subsection 3.3

for the lot-sizing problem with an upper bound on the number of setups. For

some instances of the p-coverage problem it has a lower complexity than

already existing methods. Therefore, it seems worthwhile to identify other

dynamic programs that allow a similar parametric approach.

Acknowledgement

This research was carried out while the second author was visiting the

Operations Research Center at the Massachusetts Institute of Technology with

financial support of the Netherlands Organization for Scientific Research

(NWO). He would like to thank the students, staff and faculty affiliated with

the ORC for their kind hospitality.

References

Aggarwal, A.. andl .T.K. Palrk (1990), "Improved Algorithms for Economic Lot-Size

Problemus", \Vorkiilg Paper, Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge MA

Chand, S., and Sethi S.P. (1990), "A Dynamic Lot Sizing Model with Learning

in Setups", Operations Research 38, 644-655

Eisner, M..J., and D.G. Severance (1976), "Mathematical Techniques for

Efficient Recorl( Segmentation in Large Shared Databases", Journal of the

Association for Comnputing Machinery 23, 619-635

Federgruen, A., and M. Tzur (1989), "A Simple Forward Algorithm to Solve

General Dynamic Lot Sizing Models with n Periods in O(nlogn) or O(n)

Time", \\orlking Paper, Graduate School of Business, Columbia University,

New York NY

Malik, K., an(l \Va.ll, Y'. (1990), "An Improved Algorithm for Dynamic Lot Sizing

Problemi witl lIearning Effect in Setups", Working Paper 90-08, Johnson

Graduate School of Management, Cornell University, Ithaca NY

16

_ 1---�111_-4.11�__· 1141111111 �·�· .__1.1_.�_.·__ -. 1 ____ --_--- --- _11~_ 1 I11~ 111__ 111



Murphy, F.H-., and A.L. Soyster (1979), "Sensitivity Analysis of the Costs in

the Dynamic Lot Size Mlodel", AIIE Transactions 11, 245-249

Richter, K. (1986), "The Two-Criterial Dynamic Lot Size Problem", System

Analysis, 3Modelling, Simulation 1, 99-105

Richter, K. (1987), "Stability of the Constant Cost Dynamic Lot Size Model",

European Journal of Operational Research 31, 61-65

Van loesel, C.P.M. (1991), "Algorithms for Single Item Lot-Sizing Problems",

Ph.D. dissertation, Erasmus University Rotterdam, Rotterdam, The

Netherlands (to appear)

Van lHoese, C.P.MI., and A.P.N. \Vagelmans (1991a), "On the P-Coverage Problem

on the Real Line", \Vorking Paper OR 253-91, Operations Research Center,

Massachusetts Institute of Technology, Cambridge MA

Van H-loesel, C.P.M., and A.P.M. \agelmans (1991b), "A Note on "Stability of the

Constant Cost Dynamic Lot Size Model" by K. Richter", European Journal of

Operational Research (to appear)

Wagelmans, A.P.M., C.P.M. Van Hoesel and A.W.J. Kolen (1992), "Economic

Lot-Sizing: An O(nlogni) Algorithm that Runs in Linear Time in the

\Vagner-W\l-ittin C ase", Operations Research (to appear)

Wagner, I.M., and T.M. \Vhitin (1958), "Dynamic Version of the Economic Lot

Size Mlod(el", :lelrltlcent Science 5, 89-96

Zangwill, \\.1. (1985), "Set Up Cost Reduction in Series Facility Production",

\Vorking Paper, Graduate School of Business, University of Chicago,

Chicago IL

Zangwill, \.I. (1987), "From EOQ towards ZI", Management Science 33, 1209-1223

17


