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Abstract

A new method for multi-objective optimization of linear and mixed
programs based on Lagrange multiplier methods is developed. The method
resembles, but is distinct from, objective function weighting and goal
programming methods. A subgradient optimization algorithm for selecting
the multipliers is presented and analyzed. The method is illustrated by its
application to a model for determining the weekly re-distribution of railroad
cars from excess supply areas to excess demand areas, and to a model for
balancing cost minimization against order completion requirements for a
dynamic lot size model.
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Introduction

In this paper, we present a new approach to analyzing multi-objective
linear and mixed integer programs based on Lagrangean techniques. The

approach resembles classical methods for using non-negative weights to
combine multiple objectives into a single objective function. The weights in
our construction, however, are Lagrange multipliers whose selection is
determined iteratively by reference to targeted values for the objectives.
Thus, the Lagrangean approach also resembles goal programming due to the

central role played by the target values (goals) in determining the values of
the multipliers. The reader is referred to Steuer [1986] for a review of
weighting and goal programming methods in multi-objective optimization.

The plan of this paper is as follows. In the next section, we formulate
the multi-objective LP model as the LP Existence Problem. We then
demonstrate how to convert the LP Existence Problem to an optimization
problem by constructing an appropriate Lagrangean function. The dual
problem of minimizing the Lagrangean is related to finding a solution to the
LP Existence Problem, or proving that there is no feasible solution. In the
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following section, we provide an economic interpretation of efficient
solutions generated by the method. In the section after that, we present a
subgradient optimization algorithm for analyzing the LP Existence Problem
by optimizing the dual problem. This algorithm provides a sequence of
solutions which converge to a solution to the LP Existence Problem, if the
Problem has a solution. A summary of the computational methods is then
given. In the following section, we extend the analysis to the multi-objective
MIP model which is reformulated as the MIP Existence Problem.

The paper continues with two illustrative examples taken from actual
planning situations where the methods could be applied. One is the railroad
car redistribution problem (Maiwand [1989]) which has been modeled as a
multi-objective transportation model. The other application is cost vs. order
completion optimization of dynamic lot size problems. This application is an
example from a family of production and distribution problems of increasing
interest to practitioners. The paper concludes with a brief discussion of areas
of future research and applications.

Statement of the Linear Programming Existence Problem and Lagrangean
Formulation

We formulate the multi-objective linear programming model as the
LP Existence Problem: Does there exist an xRn satisfying

Ax < b (1)

ckx gk for k = 1,2, ... , K (2)

x 0 (3)

In this formulation, the matrix A is mxn, each ck is a lxn objective

function vector, and each gk is a target value for the kth objective function.

We assume for convenience that the set

X = (x l Ax < b, x 0 (4)
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is non-empty and bounded. We let xr for r=1, ... , R denote the extreme
points of X . For future reference, we define the Kxn matrix

C = i

and the Kxl vector g with coefficients gk . We say that the vector g in the

LP Existence Problem is attainable if there is an xEX such that Cx g;
otherwise, the vector g is unattainable.

Letting it = ( 1 , 2 , *--, 7K) 0 denote Lagrange multipliers associated
with the K objectives, we price out the constraints (2) to form the Lagrangean

L (X) = - g + maximum Cx

Subject to Ax < b (5)
x 0

We let x (X) denote an optimal solution to (5). The following definition and
result, which is well known and therefore stated without proof, characterizes
these solutions.

DEFINITION: The solution xX is efficient (undominated) if there does not
exist a yX such that Cy Cx with strict inequality holding for at least one
component.

THEOREM 1: Any solution x () that is optimal in the Lagrangean (5) is
efficient if nik > 0 for k=1, 2, ... ,K .

We say that the solution x () spans the target vector Cx(nt) ; if xt has all
positive components, x (x) is an efficient solution for the Existence Problem
with this target vector.
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The two possible outcomes for the LP Existence Problem (the Problem
is either feasible or infeasible) can be analyzed simultaneously by optimizing
the Multi-Objective LP Dual Problem

D = minimize L ()

Subject to (6)

THEOREM 2: If the LP Existence Problem has a feasible solution, L () > 0
for all 7rc 0 and D = 0 . If the LP Existence Problem has no feasible

solution, there exists a X7 > 0 such that L(n ) < implying L (o*) -

as 0 - + oo and therefore D = -oo.

Proof:

It is easy to show that L () 0 for all 2> 0 when there exists an i > 0

satisfying Ax < b and Cx > g . For then, we have x (C - g) 0 for all

t > 0 which implies L () 0 since L(it) r R(Cx- g).

To complete the proof, we consider the phase one LP for evaluating the
LP Existence Problem

W = minimize
K

k=l

Subject to Ax < b (7)

ck X + k gk

x 0, sk 0

for k=1, ... , K

for k=l, ... , K .

The linear programming dual to this problem is

W = maximize - ob + ing

4
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-oA + C < 0

< Sk < 1 for k=l, ... , K

o 0, X > 0

, denote an optimal solution to the primal problem (7) found by
*F *

the simplex method, and let a , c denote an optimal solution to the dual
problem (8).

By LP duality, we have

W = -b + n g

*(b - Ax*)

A + C)x

W

(9)

(10)= 0

0

= -aAx +

(11)

g

--xCx + g

= f- x*(cx - g)

where the first equality follows from (9) and (10), and the second equality
If the LP Existence Problem has a feasible solution, we have

W = 0 and L( ) = Ir (C x - g) = 0 . This completes the first part of the

proof because iT must be optimal in (6) and D = 0 .
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If the LP Existence Problem does not have a solution, we have
W > 0 , or

I(C - g) = -W < 0

Our next step is to show L (n*) = - W.

To this end, consider any x 2 0 satisfying Ax^ < b . We have

(- A + * C)x < 0

since - A + C < 0 , implying

x Cx < o* Aix < o b

where the second inequality follows because o
sides of the inequality, we obtain

0 . Adding - g to both

x (Cx - g) <c b - g = -W = (Cx - g) (13)

Thus, L(7 ) = 7r*(Cx* - g) < 0 . Moreover, (13) implies for any 0 > 0 that

L(0i') = -W = (*)(Cx* - g) 0*(cx- t) 

This establishes the desired result in the case when the LP Existence Problem
is infeasible. x

It is well known and easy to show that L is a piecewise linear convex

function that is finite and therefore continuous on RK. Although L is not
everywhere differentiable, a generalization of the gradient exists everywhere.
A K-vector is called a subgradient of L at L if

6
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L() 2 L(X) + - a)

A necessary and Sufficient condition for Xt to be optimal in the Multi-
Objective LP Dual Problem is that there exist a subgradient of L at such
that

Xk = 0 if 1Ck > 0

(14)

tk 0 if k = 0

Algorithms for determining an optimal are based in part on exploiting this

condition characterizing optimality. The K-vectors Cx () - g are the

subgradients with which we will be working.

It is clear from the definition of the Lagrangean that L ( 7R) = L(()

for any r > 0 and any X > 0; that is, L is homogeneous of degree one.

Equivalently, for each extreme point xr E X , the set

({it1T>0 and L(r) X (Cxr - t) 

is a cone. The geometry is depicted in Figure 1 where r = Cxr - t for

r = 1, 2,3, 4

The implication of this structure to our analysis of the LP Existence
Problem is that we could restrict the vectors to lie on the simplex

Rk = 1, k 0 )

Theorem 2 can be re-stated as

Corollary 1: Suppose the multipliers are chosen to lie on the simplex S. If

the LP Existence Problem has a feasible solution, L () 0 for all X E S and

7
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D = 0. If the LP Existence Problem has no feasible solution, there exists a

X E S such that L r) < 0 .

For technical reasons, we choose not to explicitly add this constraint.

When reporting results, however, we will sometimes normalize the Irk so

K

that A irk = 1 . The normalization makes it easier for the decision-maker
k=l

to compare solutions.

L () = '1
L () = RT2

L () = IR4

Conic Structure of the Lagrangean
Figure 1
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Of course, the reader may have asked him(her)self why we need the

Lagrangean method when we can test feasibility of the LP Existence Problem

simply by solving the phase one linear program (7). The answer is that the

decision-maker is usually unsure about the specific target values gk that he

(she) wishes to set as goals. The Lagrangean formulation and the algorithm

discussed in the next section allow him (her) to interactively generate

efficient solutions (assuming all the k > 0 ) spanning target values in a

neighborhood of given targets gk if these given targets are attainable. If the

targets prove unattainable, undesirable, or simply uninteresting, the decision-

maker can adjust them and re-direct the exploration to a different range of

efficient solutions.

Economic Interpretation of Efficient Solutions

Frequently, one of the objective functions in the LP Existence Problem,

say cl, refers to money (e.g., maximize net revenues). In such a case, each

efficient solution generated by optimizing the Lagrangean function (5) lends

itself to an economic interpretation. Consider xt with xtk > 0 for all k,

and let x* denote an optimal solution to (5). Furthermore, let g* = Cx*. It

is easy to show that x* is optimal in the linear program

max cl x (15.1)

s. t. ckx 2 gk k = 2,..., K (15.2)

Ax < b (15.3)

x 0 (15.4)
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THEOREM 3: The quantities

-7k
tk = *

71

k = 2, ..., K

are optimal dual variables for the constraints (15.2) in the linear program (15).

Proof: The proof is similar to the proof of Theorem 1 and is omitted.

Thus, when the objective function cl refers to revenue maximization
or some other money quantity, each time the Lagrangean is optimized with

all I7k > 0, the quantities 7tk for k = 2,..., K given by (16) have the usual
LP shadow price interpretation. Namely, the rate of increase of maximal

revenue with respect to increasing objective k at the value g spanned by

the efficient solution x is approximated by

- k

The quantity is only approximative because the 7k may not be unique
optimal dual variables in the linear program (15) (see Shapiro [1979; pp. 34-38]
for further discussion of this point).

Subgradient Optimization Algorithm for Selecting Lagrange Multipliers

Subgradient optimization generates a sequence of K-vectors (w}
according to the rule:

10

(16)



1. If L (w) < 0 or nrw and Xw satisfy the optimality conditions (14),

stop. In the former case, the LP Existence Problem is infeasible. In the latter

case 17w is optimal in the Multi-Objective LP Dual Problem and

L (w) = 0 = D. Otherwise, go to Step 2.

2. For k = 1, ... , K

w+l,k = maximum 0, wk - [ Xw (18)

where Ar is any subgradient of L at ni , e1 < ow < 2 - 2 for c1 > 0 and

£2 > 0 , and II II denotes Euclidean norm. The subgradient typically chosen

in this method is w = Cxw - g where x is the computed optimal solution

to the Lagrangean at 7rw .

At each w, the algorithm proceeds by taking a step in the direction

- w; if the step causes one or more components of XL to go negative, rule

(18) says set that component to zero. The only specialization of the standard

subgradient optimization algorithm is the assumption in the formula (18)

that the minimum value D = 0 , and therefore that the step length is

determined by the value L (w) which is assumed to be positive.

The following theorem characterizes convergence of the algorithm as we

have stated it. The proof is a straightforward extension of a result by Polyak

[1967] (see also Shapiro [1979]); the reader is referred to those references for the

proof.

THEOREM 4: If the LP Existence Problem is feasible (g is attainable), the

subgradient optimization algorithm will converge to a x such that

L (r*) = 0. If the LP Existence Problem is infeasible (g is unattainable), the

algorithm will converge to a c such that L (r) < 0 .
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If the LP Existence Problem is infeasible, the subgradient algorithm may
not converge finitely. In this case, the algorithm may generates subsequences

converging to Xt such that L **) = 0, and the algorithm fails to indicate
infeasibility. Of course, it is likely that the procedure will terminate finitely by

finding w such that L (n w) < 0. Alternatively, if we knew that the LP

Existence problem were infeasible, we could replace the term L (c w) in (18) by

L( w) + for 8 > 0 and the algorithm would converge to it such that

L (7**) --8. In effect, this is equivalent to giving the subgradient

optimization algorithm a target of -8 < 0 as a value for L. The danger is
that if we guess wrong and the Existence Problem is infeasible, then the
algorithm will ultimately oscillate and fail to converge.

Another drawback of the subgradient optimization algorithm is that
attainment of the optimality conditions (14) at an optimal solution xt may
require convexifying subgradients computed at that point. The generalized
primal dual simplex algorithm is an alternative approach to subgradient
optimization for selecting the Xt vectors that does not suffer from such a
deficiency. This issue is discussed again at the end of the section below on the
application of the method to a railroad car redistribution problem.

Summary of Computational Methods

A computational scheme based on our constructions thus far are

shown in Figure 2. Step 3, Compute L (t), is an LP optimization. Except for
the first such optimization, an advance starting basis is available for reducing
the computation time. Step 4, Display Solution, is a point at which the user
can exert control. After viewing the solution, he/she is asked if he/she

would like to adjust the targets. If not, and L () < 0, the user is faced with
the alternative of exiting with the information that the LP Existence Problem
is infeasible (and with a number of efficient solutions), or continuing by
adjusting the targets, even though he/she was not previously inclined to do
SO.

12



Computational Scheme
Figure 2
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On the other hand, if L (Tr) > 0, the method proceeds (Step 9) by

computing a subgradient of L at based on the optimal solution found in

Step 3. Then the optimality conditions (14) are checked (Step 10). If the

optimality conditions hold, the user is again faced with the alternative of

exiting, this time with the information that the LP Existence Problem is

feasible (and with a number of efficient solutions), or continuing by adjusting

the targets. If the optimality conditions do not hold, the method proceeds

(Step 11) by computing new multipliers based on the formula (18). Then the

process is repeated.

Extension to Multi-Objective Mixed Integer Programs

The MIP Existence Problem is: Does there exist x, y, with x E R,

y E R 2 satisfying

Ax + Qz < b

ckx + fkZ < gk

x 0,

Let Z = ((x,y) I Ax + Qz

z = z, we assume the set

for k = 1,..., K (19)

Zj = 0 or 1

< b, x > 0, j = 0 or 1). For each zero-one

Z(z) = (x I Ax b - Qz, x 0)

is bounded. Moreover, for at least one z, the set is also non-empty. Let C

denote the kxnl matrix with rows ck, and F denote the kxn 2 matrix with

rows fk-

For 2> 0, we define the Lagrangean

14



M(RT) = - g + max( )x + (F)y

s.t. Ax + Qz < b (20)

x 2 0, zj = 0 or 1

Let (x (), z ()) denote an optimal solution to (20). As before, we say the

solution (x, y) E Z is efficient if there does not exist (x, y) E Z such that

Cx + F z Cx + Fz with strict inequality holding for at least one

component. If T7k > 0 for k = 1, ..., K, any solution (x(4), z( ) in (20) is

efficient. Unlike the LP case, however, there may be efficient MIP solutions

for which no ir exists such that they are optimal in (20) (see Bitran [1977]).

This is not a serious drawback to our analysis in most cases since we wish

merely to systematically sample the set of efficient solutions, rather than

generate them all.

The Multi-Objective MIP Dual Problem is

E = minimize M ()

Subject to r > 0 (21)

The following theorem, which we state without proof since it draws on well

known results about the relationship of a mixed integer program to its

Lagrangean relaxation, generalizes Theorem 2. First, we state the MIP

Relaxed Existence Problem: Does there exist x, y with x E Rm', x E Rm2

satisfying

Ax + Qy < b

ckx + fkz gk for k = 1,...,K

x 0, 0 < zj _ 1
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THEOREM 5: If the MIP Existence Problem has a feasible solution, M () 0

for all 7r > 0 and E = 0. If the MIP Existence Problem has no solution but

the MIP Relaxed Existence Problem does, M () 0 for all > 0 and

E = 0. Finally, if the MIP Existence Problem and the MIP Relaxed Existence

Problem both have no feasible solution, there exists a 2> 0 such that

M(it) < 0 implying M (07) - - as 0 + and therefore E = -o.

The subgradient optimization algorithm given above for optimizing

the Multi-Objective LP Dual Problem can be applied to iteratively select the

multipliers for optimizing the Multi-Objective MIP Dual Problem. By

Theorem 5, however, we run the risk that M () 0 for all > 0 but the

MIP Existence Problem is infeasible. A resolution of this difficulty is to imbed

the entire procedure in a branch-and-bound scheme, an approach that would

add another worthwhile dimension of user control to the exploration process.

Railroad Car Redistribution Problem

We illustrate the Lagrangean method for multi-optimization of linear

programs with a specific example drawn from the railroad industry (Maiwand

[1989]). A railroad company wishes to minimize the cost of relocating its

railroad cars for the coming week. Distribution areas 1 through 6 are

forecasted to have a surplus (supply exceeds demand) of cars whereas

distribution areas 7 through 14 are forecasted to have a deficit (demand

exceeds supply). Unit transportation costs are shown in Table 1, surpluses for

distribution areas 1 through 6 in Table 2, and deficits for distribution areas 7

through 14 in Table 3. Storage of excess cars at each of the 14 locations are
limited to a maximum of 20.
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7 8 9 10 11 12 13 14

1 58 86 150 100 130 110 80 85
2 77 58 62 90 92 114 110 125

3 170 142 112 114 100 97 127 128

4 160 130 72 140 120 145 150 175

5 160 135 55 75 60 75 90 103

6 150 130 141 92 94 70 80 58

Unit Transportation costs cij

Table 1

Distribution Area 1 2 3 4 5 6

Surpluses 102 85 60 25 78 44

Surpluses Si

Table 2

Distribution Area 7 8 9 10 11 12 13 14

Deficits 48 31 30 6 27 25 44 39

Deficits Di

Table 3

Management is also concerned with other objectives for the week's

redistribution plan. First, they would like to minimize the flow on the link

from location 2 to location 8 because work is scheduled for the roadbed.

Second, they would like to maximize the flow to locations 7 because they

anticipate added demand there.

The relocation problem can be formulated as the following multi-

objective linear program.

Indices:
i =

j = 7,...,14
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Decision Variables:

xij = number of cars to be transported from distribution area i to

distribution area j.
Ei = number of excess cars at distribution area i.

Ej = number of excess cars at distribution area j.

Constraints:

14

E Xij + Ei = Si
j=7

6

Z xij - Ej = D
i=1

0 Ei, Ej < 20

Xij 0

for i = 1,...,6

for j = 7, ... , 14

for i = 1, ... , 6; j = 7,..., 14.

fori = 1,..., 6; j = 7,..., 14.

Objective functions:

* Minimize cost

6 14

Z = E Cij xij
i=1 j--7

* Minimize flow on link (2, 8)

Z 2 = 28

* Maximize flow to distribution area 7

18



6

Z3 = I Xi7
i=l

We begin our analysis by optimizing the model with respect to the first
objective function. The result is

Objective: Minimize Z 1 (cost)

Solution:

ZI =

Z 2 =

Z 3 =

19222

51

48

This data is used by the decision-maker in setting reasonable targets on the
three objectives:

6 14

cij x 20000
i=1 j=7

X28 30

I Xi7 58
i=1

Taking into account that the cost and flow objectives are minimizing

ones of the form ck x < gk' we multiply by -1 to put the Existence Problem

in standard form. In addition, to enhance computational efficiency and
stability, we scale the cost targets and objective function by .001 to make them
commensurate with the other two. We now form the Lagrangean as detailed
in the previous section and apply the subgradient optimization algorithm.
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(Actually, we applied a modified and heuristic version of the algorithm
outlined above that ensures ic vectors with positive components are
generated at each iteration. For further details, see Ramakrishnan [1990]).

The results of nine steps are given in Table 4. Each row corresponds to
a solution. The first column gives the value of L () and the next three

columns contain Z 1 (cost), Z 2 (flow on link (2, 8)) and Z 3 (flow to area 7)

respectively. The percentage increase over minimal cost (PIC) is also
provided to help the decision-maker's evaluation.

No. L () Z1 Z2 Z3 771 2 73 PIC

1 12.976 21029 0 68 0.334 0.333 0.333 9.4

2 6.569 21029 0 68 0.516 0.113 0.371 9.4

3 4.175 19556 35 68 0.608 0.001 0.391 1.7

4 7.347 21029 0 68 0.654 0.228 0.118 9.4

5 3.711 21029 0 68 0.757 0.103 0.140 9.4

6 1.878 21029 0 68 0.809 0.040 0.151 9.4

7 1.919 19572 31 68 0.835 0.008 0.157 1.8
8 1.937 21029 0 68 0.887 0.086 0.027 9.4
9 0.979 21029 0 68 0.914 0.053 0.033 9.4
10 0.721 19572 31 68 0.928 0.036 0.036 1.8

RR Car Redistribution Problem

Table 4

The results in Table 4 point out a deficiency of the subgradient
optimization algorithm for minimizing the piecewise linear convex function
L. Among the ten distinct dual vectors xr that were generated during the
descent, we find only three distinct efficient solutions to the Existence
Problem. This is partially, but not entirely, the result of the small size of the
illustrative example.

An alternative descent algorithm for MODP that would largely
eliminate this deficiency is one based on a generalized version of the primal-
dual simplex algorithm (see Shapiro [1979]). The generalized primal-dual is a
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local descent algorithm that converges finitely and monotonically to a R

optimal in MODP. Moreover, it easily allows the constraints

K

rk =1
k=l

to be added to MODP. It has, however, two disadvantages: (1) it is
complicated to program; and (2) for MODP's where L has a large or dense
number of piecewise linear segments, the algorithm would entail a large
number of small steps. Given the intended exploratory nature of the multi-

objective proceeding, it appears preferable to use the subgradient optimization
algorithm and present only distinct solutions to the decision-maker.

The generalized primal-dual algorithm can be viewed as a constructive
procedure for finding a subgradient satisfying the optimality conditions (14)

by taking convex combinations of the subgradients derived from extreme
points to X. Indeed, we may only be able to meet all our targets by taking
such a combination of extreme point solutions. This suggests a heuristic for
choosing an appropriate convex combination of the last two solutions in
Table 4. For example, if we weight the solution on row 9 by .032 and the

solution on row 10 by .968, we obtain a solution satisfying all three targets
with the values

Z1 = 19619

Z2 = 30

Z3 = 68

Taking the same convex combination of the multipliers associated with

solutions 9 and 10, and applying the result of Theorem 3, we obtain

RT2 = $48.30 as the (approximate) rate of increase of minimal cost with

respect to decreasing the flow on link (2, 8) at a flow level of 30, and

1r3 = $37.50 as the (approximate) rate of increase of minimal cost with
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respect to increasing the flow to distribution area 7 at a delivered flow level of
68.

Cost vs. Order Completion Optimization
of Dynamic Lot-Size Problems

The classic dynamic lot-size model is concerned with achieving an
optimal balance of set-up costs against inventory carrying costs in the face of
non-stationary demand for a single item over a multiple period planning
horizon (Wagner and Whitin [1958]). Through the years, this model and
numerous extensions have been studied by many researchers. A review is
given in Shapiro [1990].

Recognizing that demand is frequently composed of a number of
smaller, individual orders, a production manager has the option of adjusting
demand, and thereby reducing costs, by deciding which orders to complete in
a given period. Such decision options can be explicitly incorporated in the
classic models, but require a multi-objective approach to reconcile the
opposing objectives of cost and customer service. Models for this type of
analysis are timely since measuring the impact of customer service (and
quality) on product pricing strategies has recently become a topic of increased
managerial interest (CRA [1991], Shycon [1991]).

In this section, we apply our Lagrange multiplier method to a single
item dynamic lot-size model to which the order completion decisions are
added. Our main purpose is to illustrate the multi-objective approach to a
potentially important class of problems and associated models. Research is
underway to extend the approach to multi-item, dynamic lot-size problems,
and to distribution planning problems.

First, we state the classic model. After that, we discuss its extension to
incorporate order completion decisions, and how the Lagrange multiplier
method can be used to evaluate them. The section concludes with a
numerical example.
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Parameters:
f = set-up cost ($)
h = inventory carrying cost ($/unit)
r t = demand in period t (units)

M t = upper bound on production in period t (units)

yT = lower bound on inventory at the end of the planning horizon

Decision Variables:

Yt = inventory at the end of period t
x t = production during period t

1 if production occurs during period t

at =
0 otherwise

CLASSIC DYNAMIC LOT-SIZE MODEL

T

v = min (f at
t=-

+ hyt)

Subject to

yt = yt-1 + Xt - rt

xt - Mt 6t < 0

yo given, yT 

Yt 0, x t 0, t = 0 or

for t=l, ... , T

yT

1

23
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In this formulation, the objective function (22) includes production set-
up costs and inventory carrying costs, but not direct production costs since
they cannot be avoided. The constraints (23) are the usual inventory balance
and fixed charge constraints. Since yt 0 , no backlogging is allowed. In
(24), note that a lower bound (which may be zero) on inventory at the end of
the planning horizon is included. Selecting this lower bound is actually a
third objective that could be analyzing by our Lagrange multiplier methods.

Suppose now that demand consists entirely of orders of size wj for
j = 1, ... , N , where each order has a promised completion (shipping) date tj

Suppose further than every order must be 100% complete before it is shipped.
Finally, suppose an order is allowed to be completed one or two periods after

the due date tj . Management is concerned with limiting late deliveries, or
somewhat equivalently, with penalizing late shipments.

We extend the classic model and its optimization as follows.

Let

Jt = j tj = t}

This is the set of orders that the company promised to ship in period t. Our
assumption is that

rt = E wj for all t
j Jt

Let jo, ,jli, j2 denote zero-one variables that take on values of one only if

order j is completed in periods tj, tj + 1, tj + 2, respectively. Let go

and gl denote customer service targets for shipping orders on-time, and one

period late, respectively. The gk integers are less than or equal to J I, the

total number of orders. We would expect go < gl.
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The classic model becomes

COST VS. ORDER COMPLETION DYNAMIC LOT-SIZE MODEL

T

V = min 

t=1
(f t + hyt)

Subject to

yt = yt-1 + Xt -

xt - MtSt

wj jl + x
jE Jt-1 jE Jt-2

< 0

f for t =1,..., T

[jo + j + j2 = 1

k N

i E Pij 2 gk
1=0 j=1

yo given, YT YT

yt 0, Xt 0, t t 0, 

for j =1, ... , N

for k =0, 1

= 0 or 1, Pjk = 0 or

In this formulation, we have modified the inventory balance equation in (27)

to incorporate the effective demand satisfied. This is the term in parentheses
on the right expressing, for each t, orders promised in period t that were
shipped on-time, orders promised in period t-1 that were shipped one
period late, and orders promised in period t-2 that were shipped two periods
late. The multiple choice constraints (28) determine the timeliness of each
order j. The inequalities (29) describe the customer service requirements.
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For example, if JI = 25 and go = 20 and gl = 23, the customer service

requirement is at least 80% of the orders shipped on-time, and at least 92% of

the orders shipped more than one period late.

Clearly, the model just described is one of many possible formulations

describing cost vs order completion decisions. One could consider, for

example, delaying some orders for more than two weeks. The customer

service requirements (29) could be expressed in terms of total quantity

shipped, rather than by numbers of orders shipped, since some orders will be

much larger (and more important) than others. Or, there may be priority

classes of orders, with different customer service requirements for each.

Anyone of these generalizations, and many others as well, could be modeled

and analyzed in much the same manner.

As we have stated it, the Cost vs. Completion Dynamic Lot-Size Model

is not a multi-objective problem. We propose to treat it as such because the

customer service levels gk are somewhat arbitrary. Moreover, we can

presume that the production manager would like to investigate the tradeoff

between cost and customer service, rather than impose rigid service levels.

To this end, we elect to dualize the target constraints (29). The

Lagrangean is

M(no, r1) = rkgk
k=O

T N N

+ min (f St + hyt) - (To + 1) jo - E7 1 jl

Lt=1 j= j=1

Subject to yt , xt, It, Pjk satisfy (27), (28), (30), (31)

The o0, sl, are selected iteratively by the subgradient optimization

algorithm described above.
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We illustrate the approach with a numerical example. Consider
production of a single item with f = 3750, h = 7, yo = 300. Demand over the
next ten periods by promised shipping period for 25 orders is given by Table 5.
Inventory at the end of the 10 periods is constrained to be at least 200.

In formulating the model, to avoid end effects, we eliminated the
option of being two weeks late for orders 10, 24, and 25 since they fall at the
end of the planning horizon. We chose as our targets the quantities

go = 20, gl = 23.

Period Order No. - Size Total Demand

1 1-35; 11-100 135
2 2-50; 12-40; 13-75 165
3 3-90; 14-125; 15-60 275
4 4-60; 16-30 90
5 5-300; 17-100 400
6 6-25; 18-150; 19-40 215
7 7-75; 20-30 105
8 8-130; 21-50; 22-100 280
9 9-150; 23-35 185

10 10-20; 24-60; 25-80 160

Orders by Periods
Table 5

Table 6 contains the results of 6 Lagrangean optimizations at the
indicated multiplier values. Recall that these solutions are optimal for the

customer service levels they span. The sequence of values of 7o and 7nl
were selected by taking steps in subgradient directions.
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Solution Number 1 2 3 4 5 6
ico 100 340 460 720 600 780
~R1 100 220 340 580 460 400

Solution Cost 13905 4400 14400 17655 15855 17655
Lagrangean Value 15105 16080 16560 16355 16600 16595

Order No. Order Qty
1 35
2 50
3 90 1 wk
4 60
5 300 2 wks 1 wk 1 wk 1 wk 1 wk 1 wk
6 25 1 wk
7 75
8 130 2 wks 2 wks 2 wks 1 wk
9 150 2 wks 2 wks 2 wks 1 wk 1 wk

10 20
11 100
12 40
13 75
14 125 1 wk
15 60 1 wk
16 30 2 wks 2 wks 2 wks 2 wks 2 wks
17 100 2 wks 1 wk 1 wk 1 wk 1 wk 1 wk
18 150 1 wk
19 40 1 wk
20 30
21 50 2wks 2 wks 2wks 1 wk
22 100 2 wks 2 wks 2 wks 1 wk
23 35 1 wk 1 wk 1 wk
24 60
25 80 1 wk

Lagrangean Analysis
Table 6

Several points are worth noting. The initial values of o and tli are

insufficient to induce a strategy near the desired customer service levels. By

solution 4, however, the values of no and tl1 have increased significantly to

yield a strategy that exceeds the prescribed levels. In that strategy, 21 orders

are shipped on-time (the target is 20) and 24 orders are shipped no later than

one period late (the target is 23). This solution costs $17,655 compared to the
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cost $22,455 associated with the solution in which all orders must be shipped

on their promised dates, a reduction of 21.4%.

At the next iteration, solution 5, the subgradient optimization

algorithm selects lower values of nt0 and 7l . This solution violates the first

goal by a little, namely 18 orders are shipped at their promised times rather

than 20, but satisfies the second goal, namely 24 orders are shipped no later

than one period late as opposed to the target of 23. Moreover, the cost of

strategy 5 is $15,860., or 10.2% lower than strategy 4.

The analysis is continued for one additional iteration to strategy 6,

which is the same as strategy 4. One could argue that strategies 4 and 5

represent two attractive alternatives for the manager. He/She can save 20.4%

of his/her avoidable costs by the relative mild slippage in the promised

shipping schedule given by strategy 4, or he/she can save an additional 10.2%

by selecting strategy 5 which allows the number of orders shipped one period
late to increase from 3 to 6.

Finally, we note that maximization of the Lagrangean E appears to

occur around 16600. For the purposes of comparison, we formulated and

optimized the MIP model (26) to (31), of which maximization M (R) is a

relaxation, and found its value to be 17760. Thus, the duality gap appears to

be on the order of 6%, a level to be expected for this type of MIP model.

Future Directions

We envision several directions of future research and development for

the Lagrangean approach to multi-objective optimization developed in this

paper. The approach needs testing on live industrial applications. In this

regard, the railroad car distribution example presented above is an actual

application where we hope the technique will one day be used. The cost vs.

order completion optimization example was stimulated by planning
problems faced by production managers in the food and forest products
industries.
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The technique was successfully applied in the construction of a pilot

optimization model for allocating budgets to acquire, install, and maintain
new systems for the U.S. Navy submarine fleet (Manickas [1988]). For this

class of problems, the multiple objectives were various measures of

submarine performance with and without specific system upgrades.
Unfortunately, the project did not continue beyond the pilot stage to

implementation of an interactive system for supporting decision making in

this area at the pentagon. The method was also applied to multi-objective

optimization of personnel scheduling problems (Shepardson [1990]).

For effective practical use, the models and methods discussed here

should be imbedded in decision support systems with graphical user

interfaces for displaying efficient solutions and soliciting human interaction.

Korhonen and Wallenius [1988] report on the successful implementation of a

pc-based interactive system for a multi-objective linear programming model

used to manage sewage sludge, and for other applications. Interaction in this

system is based on a "Pareto Race" method that allows the decision maker to
freely search the efficient frontier by controlling the speed and direction of

motion. A reconciliation of the Pareto race method with our Lagrangean and

subgradient method is being studied.

Interactive analysis of multi-objective models would allow the

underlying preference structure, or utility function, of the decision-maker to
be assessed by asking him/her to compare the most recently generated

efficient solution with each of the previously generated ones. The

information about preferences gleaned from these comparisons could be
represented as constraints on the decision vector x (see Zionts and

Wallenius [1983] or Ramesh et al [1989]). Alternatively, we could apply the

method of cojoint analysis developed by Srinivasan and Shocker [1973] to
identify the decision-maker's ideal target vector g from the pairwise
preferences.
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