
On the Complexity of
Postoptimality Analysis of

0/1 Programs

Stan Van Hoesel and Albert Wagelmans

OR 259-91 September 1991

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4382558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON THE COMPLEXITY OF POSTOPTIMALITY ANALYSIS OF 0/1 PROGRAMS

Stan Van Hoesel 1

Albert Wagelmans 2

September 1991

Abstract

In this paper we address the complexity of postoptimality analysis of 0/1

programs with a linear objective function. After an optimal solution has been

determined for a given cost vector, one may want to know how much each cost

coefficient can vary individually without affecting the optimality of the

solution. W11e show that, under mild conditions, the existence of a polynomial

method to calculate these maximal ranges implies a polynomial method to solve

the 0/1 program itself. As a consequence, postoptimality analysis of many

well - known NP - hard problems can not be performed by polynomial methods, unless

P = NP. A natural question that arises with respect to these problems is whether

it is possible to calculate in polynomial time reasonable approximations of

the maximal ranges. We show that it is equally unlikely that there exists a

polynomial method that calculates conservative ranges for which the relative

deviation from the trite ranges is guaranteed to be at most some constant.

Finally, we address the issue of postoptimality analysis of E - optimal

solutions of NP-hard 0/1 problems. It is shown that for an - optimal solution

that has been determined in polynomial time, it is not possible to calculate

in polynomial time the maximal amount by which a cost coefficient can be

increased sutch that the solution remains - optimal, unless P =,NP.

OR/MS subject classification: Analysis of algorithms, computational

complexity: postoptimality analysis of 0/1 programs; Analysis of algorithms,

suboptimal algorithm: sensitivity analysis of approximate solutions of 0/1

programs

1) Department of Mathematics and Computing Science, Eindhoven University of

Technology, P.O. Box 513, 5600 MIB Eindhoven, The Netherlands.

2) Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR

Rotterdam, The Netherla.nds; currently on leave at the Operations Research

Center, Room E 40-164, Massachusetts Institute of Technology, Cambridge, MA

02139; financial support of the Netherlands Organization for Scientific

Research (NWO) is gratefully acknowledged.

0 Introduction

Whereas sensitivity analysis is a well-established topic in linear programming

(see Gal, 1979, for a comprehensive review), its counterpart in integer

programming is a much less developed research area (reviews are given by

Geoffrion and Nauss, 1977, and Jenkins, 1990). Maybe more surprisingly, hardly

any attention has been paid to sensitivity analysis of specific NP-hard

problems, neither from an algorithmic nor from a theoretical point of view.

The results in this paper are of a theoretical nature and relate to many

well-known NP-hard problems.

We address the complexity of postoptimality analysis of 0/1 programs with a

linear objective function. After an optimal solution has been determined for a

given cost vector, one may want to know how much each cost coefficient can

vary individually without affecting the optimality of the solution. In Section

1 we show that, under mild conditions, the existence of a polynomial method to

calculate these maximal ranges implies a polynomial method to solve the 0/1

program itself. As a consequence, postoptimality analysis of many well-known

NP-hard problems can not be performed by polynomial methods, unless P =NP. A

natural question that arises with respect to these problems is whether it is

possible to calculate in polynomial time reasonable approximations of the

maximal ranges. We show that it is equally unlikely that there exists a.

polynomial method that calculates conservative ranges for which the relative

deviation from the true ranges is guaranteed to be at most some constant.

Of course, one is not always willing or able to compute an optimal solution

of an NP-hard probleml and much research has been devoted to the design of fast

heuristics. The performance of these heuristics can either be evaluated

experimentally or theoretically. In the latter case one often tries to prove

that the heuristic always produces -optimal solutions, i.e., the relative

deviation of the solution value from the optimal value is less than some

constant . This means that we have a guarantee on the quality of the solution

that the heullristic produces and we may be interested to know under which

changes of the cost coefficients this guarantee still holds. Therefore,

Section 2 deals with the complexity of postoptimality analysis of -optimal

solutions of NP-hard 0/1 problems. It is shown that for an c-optimal solution

that has been determined in polynomial time, it is impossible to calculate in

polynomial time the maximal amount by which a cost coefficient can be

increased such that the solution remains c-optimal, unless P=ANP.

Several concluding remarks are given in Section 3.

1

1 Postoptimality analysis of optimal solutions

Consider an optimization problem of the following form

n

min E cix i
i=l

s.t.

xe Xc R (P)

xie{O,1} for all i=l,...,n

with cLQ.

We will first prove three propositions with respect to (P) and then discuss

their implications. In the first proposition we consider decreasing cost

coefficients.

Proposition 1 (P) is polynomially solvable if

(a) for every instance of (P) it takes polynomial time to determine a feasible

solution x R" such that every x'eRn with x' + x and x'<x, is infeasible, and

(b) for every cost vector c' Q+ and for every optimal solution x of the

problem instance defined by c', the maximal value i by which the cost

coefficient of xi, i = 1,.... n, may be decreased such that x remains optimal,

can be determined in polynomial time. Here li=c' if x remains optimal for

arlitrarily small positive cost coefficients of x i.

Proof Let c EQ+ be a, given cost vector. We will show that the corresponding

problem instance can be solved in polynomial time by solving a sequence of

reoptimization problems. We start with an arbitrary feasible solution and

define a cost vector c' E CQ, c' >c, such that the solution is optimal with

respect to c'. Then we modify c' systematically until further changes will

render the current solution non-optimal. We will show how to determine another

feasible solution that is optimal if the intended modification of c' is

actually carried out and continue in this way. The vector c' will be

inonotonically nonl-increasing, and we terminate as soon as c'= c.

We define iV=-1+=1ci and for every n-dimensional 0/1-vector x we let

Ij(x)={ill< i<n and xi = 1}
and

Io(x)={i I <i<n and x i = O}

2

Furthermore, assume that a polynomial procedure LOWi(c, x) calculates li,

ie {1,...,n}, as defined under (b) of the proposition with respect to the cost

vector c and a given corresponding optimal solution x.

The initial vector c' is constructed as follows.

Initialization Let x be an arbitrary feasible solution with the property

mentioned under (a) of the proposition. Set the entries of vector c' as

follows:

c}:=ci for all i I1 (x)

and

c':=,i for all iIo(x)

Because there is no feasible x' • x with x' <x, x is clearly optimal with respect

to C'.

The initialization step is followed by a number of steps which we call the

major iterations. In each major iterations one entry of the vector c' is

decreased a.nd, if necessary, a new optimal solution is determined. Define

IA=Z1{il< i<n and c=1}. In the major iterations it will always hold that c=ci

for all il l. Note that when entries of c' are decreased, the value of every

feasible solution does not increase. In particular this means that the optimal

value is is non-increasing. Because we start with a vector c' that has an

optimal solution with value less than 31 (see the initialization step), it

follows that in every major itera.tion i I implies xi=O, where x is the

optimal solution at the end of that iteration. When the major iterations stop,

it holds that c' = . I-ence, the current optimal solution solves problem (P) for

cost vector c.

Major iterations We are given c' and a corresponding optimal solution x.

Furthermore, it holds that IcIo(x). Pick any j IM l and execute LOWj(c',x).

If c>-lj <cj, then x remains optimal if cj is set to j. If c -lj>j, then

determine (by the procedure described below) a new feasible solution x'

that is optima.l when c' is set to j; set x:=x'. In any case set c:=c-j and

delete j from All. Stop if II,= 0; otherwise, repeat.

3

Suppose c.' -l> for some jc{1,...,n}. \Ve will show how to determine in this

ca.se a feasible solution x' that it is optimal after c has been decreased by

more than lj. To facilitate the exposition we consider the optimal value as a.

function of cj, while all other cost coefficients are fixed. Assume for the

moment that ci = c.' for all i j. The following observations are crucial for the

correctness of the procedure that we are going to describe. If cj is

decreased, then the value of every solution with xj=O does not change, while

the value of every solution with xj= decreases by the same amount as cj

does (see Figure 1). Therefore, any solution x' that is optimal if cj<c; -j

must have x = 1. Because x' is optimal on the interval (O,c.-lj), it is

certainly optimal if for cj= cj.

Also note that changing ci, i j, will have no effect on the value of a,

solution as function of cj if x i=O; however, if xi= 1 then the value function

will shift horizontally by the same amount as the change of ci (see Figure 2).

INSERT FIGURES 1 AND 2 HERE

Determination of a new optimal solution

\e are given a. solution x that is optimal with respect to c' and an index j

such that cj -lj>Cj and j 1McIl(x). Note that x is still optimal for cj=cj-lj.

The procedure that we are going to describe finds a feasible solution x' with

x= 1 that is optimal for j=c -lj. It determines the elements of the set

11 (x') for some solution x' with the desired properties. Clearly, jI 1 (x') and

i[ll(x') for all icJ.

Initialize [1 :={j}; this set will eventually become equal to I1(x').

Furthermore, set c:=c', for all i j, and c:=c -lj. Note that LOWj(c",x) will

output 0.

To determine a solution x' with the desired property we modify c". It will

always hold trivially that x is optimal with respect to this cost vector. For

x' we will accomplish the same, because if at any point a modification of c"

is such that. all solutions x' with the desired property turn out to become

non-optima.l, then the change will be made undone.

First we determine which elements of Io(x)\IM will appear in I1(x'). To

this end we carry out the so-called minor iterations of type 1.

4

Minorl iteratiolns type 1 I'ickl ally kE lo()\II that has not yet been

considered ad set c:=2t.

If the output of LOlWj(c",x) is now positive, then every optimal solution

with x=l for all iIl must also have x= 1=l (see Figure 3a: the value

functions of' all solutions with the desired property have shifted). In this

case we reset c:=ck and add k to I1, because we know now that, given

earlier choices of' variable values, we are searching for solutions x' that,

must have x = 1.

If on the other hand the output of LOlVj(c",x) is still 0, then there is

still an optimal solution x' with x =l1 for all iI 1 and x=O (see

Figure 3b: there is at least one solution with the desired property for

which the value function has not shifted). In this case we maintain the

change in c", which means that from now on we restrict our search to

solutions x' with x = 0.

Repeat unless all elements of 1o(x)\1, 1M have been considered.

INSERT FIGURES 3A AND 3B HERE

After the minor iterations of type 1 it holds that I1O(x)nr11(x'). To

determine the indices iI 1(x)nI1(x') we carry out the so-called minor

iterations of type 2.

Minor iterations type 2 Pick any k1eI1(x) that has not yet been considered

and set c ':=c. This decreases the value of the optimal solution x by ck.

If the output of LOIIj'(c",x) is now a positive number, then every solution

x' with x =l1 for all iIl has x.=O (see Figure 4a: the value functions of'

all solutions with the desired property remain the same). In this case we

reset C:=C,.

If on the other hand the output of LOIVj(c",x) is still 0, then there

exists a. solution x' with x =l1 for all iIl and x=l (see Figure 4b: there

is at least one solution with the desired property for which the optimal

value function has also shifted). In this case we add k to I, and maintain

the change in c", which means that from now on we will restrict our search

to solutions x' with x,.= 1.

Repeat unless all elements of I(x) have been considered.

5

INSERT FIGURES 4A AND 4B HERE

The solution x' is now defined by l(x'):=I1. Note that I, and therefore x',

may depend on the order in which indices are considered in the above

procedures. However, x' found in this way clearly has the desired properties.

As far as the total complexity of calculating an optimal solution for the

problem instance with cost vector is concerned, we first note that under

assumption (a) of the proposition the initialization step takes polynomial

time. Furthermore, it can easily be verified that each of the procedures LOWi,

i=1,...,n, is executed at most n times. Hence, under assumption (b) of the

proposition the major iterations can be carried out in polynomial time. This

completes the proof. O

The following proposition states a similar result with respect to increasing

cost coefficients.

Proposition 2 (P) is polynomially solvable if

(a) for every instance of (P) it takes polynomial time to determine a feasible

solution x Rn such that every x'e R with x'gx and x'<x, is infeasible, and

(b) for every cost vector c' Q+ and for every optimal solution x of the

problem instance defined by c', the maximal value ui by which the cost

coefficient of xi, i= 1,... , may be increased such that x remains optimal,

can be determined in polynomial time. Here ui-oo if x remains optimal for

arbitrarily large cost coefficients of xi.

Proof Analogous to the proof of of Proposition 1. For the initial feasible

solution x, we define the cost vector c' for which x is optimal as follows:

set c:=ci for all iEIo(x); define cin=min{ciliIo(x)}, eCmin/lI 1(x)l and set

c':=min{c,ci} for all iI 1 (x). In the major iterations we pick any jeIl(x) for

which c <c and check whether c can be increased to cj without rendering the

solution x non-optimal. If this is not the case then we determine a new

optimal solution x' with x.'=O, using a polynomial procedure that calculates uj

6

as a subroutine.

The following proposition relates the preceding results to the complexity of

the question whether a given solution is still optimal after an arbitrary

change of the cost vector.

Proposition 3 Suppose that an optimal solution is known for the instance of

(P) corresponding to an arbitrary cost vector c E+. If it can be checked in

polynomial time whether this solution is also optimal with respect to another

arbitrary cost vector c' eQ+, then the values li and ui, i=1,...,n, as defined

in Propositions 1 and 2 can be determined in polynomial time.

Proof The idea is to find the values i and ui, i=1,...,n, by binary search.

For details we refer to the proof of Proposition 6 (with = 0). 0

Remark 1 Results similar to Propositions 1, 2 and 3 hold if the objective

function of (P) is to be maximized instead of minimized.

The three propositions above have implications for many well-known NP-hard

problems. For instance, we are able to conclude that, unless P = NP, it is

impossible to determine in polynomial time the maximal ranges in which the

distances of a traveling salesman problem can vary individually without

affecting the optimality of a given tour. A similar conclusion can be drawn

with respect to checking whether an optimal tour is still optimal after an

arbitrary change of the distances. Note that we may only draw such conclusions

if the NP-hard problem can be formulated in polynomial time as a suitable 0/1

program.

Remark 2 Condition (a) in the first two propositions is less strong than may

seem at first sight. Consider the following well-known formulation of the

generalized assignment problem:

7

O

I11 1

ain I C2jXij
i=1 j=1

s.t.

n
xij =1 for all i=1,... m

j=1

Inl

aijxij < bj for all j = 1,...,n
i=1

xije{O,1} for all i =l,..., m, j = l,...,n

It is NP-hard to determine a feasible solution for this formulation, and

therefore the propositions do not apply. However, by introducing an additional

agent which can handle all jobs at very large costs the following suitable

formulation (P) is obtained.

rain ~ - ijMij -3 n+111n
i=1 jE, + Aixs+j

s.t.

*1 + 1

xij =1 for all i=l,...,m
j=1

11

aijxij < bj for all j= l, ... , n (P)

Xin+1 < n-l

xij E{O,1} for all i= 1,...1,..., j=...n+1

This formulation has a trivial feasible solution that satisfies condition (a)

in the first two propositions. The constant M should be chosen such that in

case the first formulation has a feasible solution, then i,+ 1 = 0 for all

i=l,...2,m, in any optimal solution of formulation (P).

Remark 3 Wie have assumed that the only available information is the

optimality of a given solution for a particular problem instance. If

additional information is available, then it is possible that the values i

and v.i, i= 1,. ., , can be computed in polynomial time, even if (P) is NP-hard

and P NA/P. Typically, solution methods for NP-hard problems generate useful

information as an inexpensive byproduct. As an extreme example, we can simply

use complete enumeration to find an optimal solution and store at the same

time for every variable x i the optimal values under the restrictions xi=O

8

respectively xi= 1. Subsequently, it is easy to determine 1i and ui for all

i= ,..., n.

Knowing that it is unlikely that the maximal allowable increases and decreases

of the cost coefficients can be determined exactly in polynomial time, a

natural question that arises is whether it is possible to calculate reasonable

approximations of these values in polynomial time. In particular we are

interested in underestimates that are relatively close to the true values. We

would then obtain for every cost coefficient a range in which it can be varied

individually without affecting the optimality of the solution at hand. These

are not necessarily the maximal ranges, but hopefully they are not too

conservative. Therefore, one would like to have some guarantee that the

approximations are reasonable. For instance, this is the case if the estimate

is known to be at least (1-i) times the true value for some , O<E<1. However,

we have the following result.

Proposition 4 Let c-e + be an arbitrary cost vector. Consider an optimal

solution with respect to the cost vector and let ui be the maximal allowable

increase of ciS, i {1,...,n}. If it is possible to compute in polynomial time a

value Tii such that (-E)uii <lli, for some seq, O < 1, then ui can be

determined in polynomial time.

Proof Without loss of generality we may assume that CEN+. Then all solutions

have an integer value and this implies that uiE N. Let cl=- and W=ui. For k>1

we define kQ + and 1, k>1, recursively as follows:

i-k-c = 1 i, - a

cj=J ijf ji, and

a.t is the approximation of the maximal allowable increase of cost

coefficient ck' which is calculated analogously to ui with respect to

ck and the original optimal solution

]lence, we are considering a sequence of cost vectors for which only the i-th

entry is changing. Note that the original solution remains optimal, because

the approximations are underestimates of the maximal allowable increases. Let

us define c=-ci+?ti, then c and (1-)() for all k>1. Using induction

9

it is easy to verify that c - <F-l u i for all k 1. Therefore, c - <1 for all

k> /logu. Because c e N, it is easy to see that ct -k<1 implies c = Fcil. If

ui < o, then clearly vi < j=lcj. Hence, c* is found after calculating

O(log(1=j)) times an approximation of an allowable increase. If the latter

calculations can be done in polynomial time, a polynomial method to calculate

*i = C - Ci results.

Remark 4 A similar result holds with respect to maximal allowable decreases.

2 Postoptimality analysis of -optimal solutions

Consider an optimization problem which can be formulated in polynomial time as

a binary program of the following form

n

min C CiXi
i=1

s.t.

xeX Rn (P)

xie{O,1} for all i=l,...,n

with c Q>O.

\Ve will prove two propositions with respect to (P), which can be used to

show that, unless P = VP, several sensitivity questions related to -optimal

heuristics for NP-hard problems cannot be answered by polynomial algorithms.

For instance, we will be able to conclude that existence of a polynomial

algorithm to determine, for all cost coefficients of a min-knapsack problem,

the maximal increase such that an -optimal solution maintains this property,

would imnply P = P.

As another example, suppose that an -optimal tour has been obtained for an

instance of the traveling salesman problem which obeys the triangle-

inequality. WVe will be able to conclude that it is unlikely that there exists

a polynomial algorithm to determine whether after a change of the distance

matrix (not necessarily maintaining the triangle-inequality) the tour is still

s-optirnal. Similar results can be derived for other NP-hard problems (see also

Remark 5 after Proposition 5).

10

Proposition 5 Suppose that II is a polynomial -approximation algorithm (Q)

for (P) that has been applied to the instance corresponding to an arbitrary

cost vector c eQ2n. Let ui, i=l1,...,n, be the maximal value by which i can be

increased such that the heuristic solution remains -optimal. If ui can be

determined in polynomial time for all i=l,...,n, then the optimal value of the

problem instance can be determined in polynomial time.

Proof Let z and zH denote respectively the value of the optimal and

heuristic solution. Because II is -optimal it holds that zH (+s)z*. We will

show that once the values ui, i=,..., n, have been calculated it is possible

to calculate z after a polynomial number of additional operations.

For every Sc{1,...,n} we define zo(S) as the optimal value under the condition

that xi=O for all iS, and analogously we let zl(S) denote the optimal value

under the condition that xi= 1 for all iS. Furthermore, define

Xl1-{i•lli<n and xi=l in the heuristic solution}

and
Xl=-{iEC XIIt i= oo}.

Suppose i , ,, then increasing ci will increase the value of the heuristic

solution, whereas the value of any feasible solution with xi=O will remain

constant. HIence, if there exists a feasible solution with xi=O, then the

heuristic solution can not remain E-optimal when ci is increased by

arl)itra.rily large values. It is now easy to see that X1 is the set of

variables tha.t are equal to 1 in every feasible solution. Thus, if X1 = X1 then

it follows from the non-negativity of the cost coefficients that z*=zH .

Now suppose that X1 X1 and iX\X 1. Let Z(6) denote the optimal value of

the problem instance that is obtained if ci is increased by 6>0. Hence,

Z(0)=z * alnd on [O,c) the function Z is either constant or linear with slope 1

up to a. certain value of 6 and constant afterwards. If ci is increased by ui,

then thie value of the heuristic solution becomes equal to zH+ui. From the

definition of ui it follows that zH+ui= (l+)Z(ui) (see Figure 5). Moreover, if

= u i then xi=O in an optimal solution. Hence, Z(ui) = z({i}) and therefore

zH +ui= (1+z)zo({i}). It follows that z({i}) can be easily calculated for all

i E X1 \' 1.

INSERT FIGURE 5 HERE

11

In an optimal solution of the original problem instance either xi=1 for all

i GEX,\,l or xi=O for at least one i e X1\Xl. This is equivalent to the following

statement:

z = min l(Xl\xl), mill {o({i})iEXl\Xl}

Finally, note that zl(X 1\X 1') = zl(Xl) and zl(Xl) = zH because of the

non-negativity of the cost coefficients. Therefore, z* can now easily be

calculated. O

Remark 5 If the objective function of (P) is to be maximized instead of

minimized, then a similar result holds with respect to maximal allowable

decreases of objective coefficients.

Proposition 6 Suppose that H is a polynomial -approximation algorithm (EEQ)

for (P) that has been applied to the instance corresponding to an arbitrary

cost vector cE N". If it can be checked in polynomial time whether the

heuristic solution is also -optimal with respect to another arbitrary cost

vector c'N"\l', then the optimal value of the problem instance can be determined

in polynomia.l time.

Proof W\e use Proposition 5 and its proof. It suffices to show that the values

ui, i=l,...,n, can be calculated in polynomial time for all iX 1 if there

exists a polynomial algorithm to check -optimality of the heuristic solution.

The idea. is to use this algorithm in a binary search for ui, iX 1 .

First note tlla.t we may assume EcieN\ for all iX 1. This implies that if ui<oo,

then ui eN\J.

Suppose ci, ie X, is increased to a value greater than (1+E)Ej=1Cj, then

the value of the heuristic solution also becomes greater than this value.

Therefore, the heuristic solution can only stay e-optimal if the optimal

solution value is greater than j=lCj. Clearly every feasible solution with

x i =O will have a. value at most j,=1j and if such a solution exists then ui<oo.

\Ve concludle that ui = if and only if the heuristic solution stays -optimal

and by assumpltion this can be checked in polynomial time.

The above implies that ui<oo is equivalent to O<ui< (+E+),=lCj . In this case

the exact value of' i.i can be found in polynomial time by a binary search among

12

�1�1��111_-----·

the integers in this range, where in each iteration e-optimality of the

heuristic solution is checked. [

Remark 6 Note that in Proposition 6 may depend on the size of the problem

instance, but not on the values of the cost coefficients.

3 Concluding remarks

\Ve think that the results in this paper are particularly interesting because

of their generality. Many well-known NP-hard optimization problems can be put

in the form to which the results apply. Note, however, that we have only

considered the cost coefficients of the 0/1 formulation. Although many min max

prollems can be formulated as 0/1 problems with a linear objective function,

viz. as the minimization of a single variable, the results are clearly not

relevant for those problems. It seems that establishing similar complexity

results calls for a much more problem specific approaches than those used in

this pa.l)er.

The kind of postoptimality analysis considered in this paper corresponds to

the classical way of performing sensitivity analysis in linear programming:

only one cost coefficient is assumed to change, the other coefficients remain

fixed. Of course, one may also be interested in simultaneous changes. For

instance, for linear programming Wendell (1985) propagates the so-called

tolerance approach which allows for such changes. However, given our results,

we do not expect that a similar approach to NP-hard 0/1 problems leads to

subproblems that are polynomially solvable, even if - optimal solutions are

considered instead of optimal ones.

Acknowledgement

Part of' this research was carried out while the second author was visiting the

Operations Research Center a.t the Massachusetts Institute of Technology with

financia.l support of the Netherlands Organization for Scientific Research

(N\\VO). Ile would like to thank the students, staff and faculty affiliated with

the ORC for their kind hospitality.

13

.·_ _L___II�I_�___I___(__�·�-·�-Y·LIY·· -Il-�-�LII---- -�-^_I�LIII_·l-l-^-l·---s-111 - �-- ·I-. �

References

Gal, T. (1979), Postoptimal Analysis, Parametric Programming and Related

Topics, McGraw-Hill, New York

Geoffrion, A.M. and R. Nauss (1977), "Parametric and Postoptimality Analysis

in Integer Linear Programming", Management Science 23, 453-466

Jenkins, L. (1990), "Parametric Methods in Integer Programming", Annals of

Opcrations Research 27

\Vendell, R.E. (1985), "The Tolerance Approach to Sensitivity Analysis in

Linear Programming", Management Science 31, 564-578

14

solutions x
with j = 1

solutions x
with j = O

x

Cj3

Figure 1

solutions x
with xj = 1
and xi = 1

= 1

=0

1

Cj

Figure 2

I
solution
values

c3 -1

solution
values

Az

Ac'

-

Xx

Figure 3a

x

c'

Figure 3b

t
solutioi
values

31

x

C.

>0

t
solution
values

x

1
x

cj

>0

Figure 4a

t

x

t
solution
values

I ,2Cf cj,

x

solution
values

Ik
-~ C k

Cj

Figure 4b

__ ___�___�____II·_II Illlll__llll__yl411^-.�

I

I

(l+e)z* =

(1+E)Zo({i})

Z H

z* = Z({i)

zH + 6

o ui

Case A: 0 lies in the interval on which Z(6) is strictly increasing

ZH + 6

(1 +)Z(6)

Z(6)

0 . Ui

Case B: 0 lies in the interval on which Z(6) is constant

Figure 5

(l+)Zo((i)

(l+e)z*

z H

Zo({i})

Z*

5)

Z(S)

V

V v

