
Scheduling Networks of Queues:
Heavy Traffic Analysis

of a Multistation Closed Network

Philippe B. Chevalier and Lawrence M. Wein

OR 219-90 July, 1990





SCHEDULING NETWORKS OF QUEUES: HEAVY TRAFFIC

ANALYSIS OF A MULTISTATION CLOSED NETWORK

Philippe B. Chevalier

Operations Research Center, M.L.T.

and

Lawrence M. Wein

Sloan School of Management, M.I.T.

Abstract

We consider the problem of finding an optimal dynamic priority sequencing policy to

maximize the mean throughput rate in a multistation, multiclass closed queueing network

with general service time distributions and a general routing structure. Under balanced

heavy loading conditions, this scheduling problem can be approximated by a control prob-

lem involving Brownian motion. Although a unique, closed form solution to the Brownian

control problem is not derived, an analysis of the problem leads to an effective static se-

quencing policy, and to an approximate means of comparing the relative performance of

arbitrary static policies. Three examples are given that illustrate the effectiveness of our

procedure.
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Multiclass closed queueing networks are important models for computer, communi-

cation, and manufacturing systems, and the descriptive theory of these networks is well

developed (see Baskett et al. 1975 and Kelly 1979). However, no exact results exist for

optimal priority sequencing in such systems, and the only approximate analysis is Harrison

and Wein (1990), who obtain an effective priority sequencing policy for maximizing the

throughput of a two-station, well balanced, heavily loaded network. This policy, called a

workload balancing sequencing policy, is a static (that is, not state-dependent) policy that

outperformed conventional sequencing policies in a simulation study in Harrison and Wein

(1990). This result was obtained by analyzing a Brownian system model (developed by

Harrison 1988) that approximates a multiclass queueing network with dynamic scheduling

capability. Under balanced heavy loading conditions, this model allows a queueing network

scheduling problem to be approximated by a control problem involving Brownian motion.

The workload balancing sequencing policy was derived by reformulating the Brownian con-

trol problem in terms of workload imbalances, solving the workload imbalance formulation,

and interpreting the solution in terms of the original queueing system.

In this paper, we attempt to generalize the results of Harrison and Wein (1990) from

the setting of a two-station network to a network with any finite number of stations.

In order to describe our results, it is easiest to first review the results of Harrison and
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Wein (1990). They define a one-dimensional workload imbalance process, which measures

how imbalanced the total network workload is between the two stations at each point in

time, and discover an intricate relationship between workload imbalance, server idleness,

and the lowest priority customer classes. In particular, in the idealized Brownian limit,

server idleness is only incurred at times when the workload imbalance process is on the

boundary of a workload imbalance polytope, which is a closed interval on the real line,

and the two extreme points of the polytope correspond to the two customer classes, one

from each station, that are awarded lowest priority at their respective stations. These

two bottom priority classes, which are referred to as extremal classes, lead directly to the

workload balancing sequencing policy. Furthermore, this relationship allows for an analytic

comparison between the workload balancing policy and any other static policy, such as the

shortest expected processing time rule (SEPT), where priority is given to the class with the

shortest expected processing time for its upcoming operation, and the shortest expected

remaining processing time rule (SERPT), where priority is given to the class with the least

expected amount of work remaining before exiting the network.

For the general multistation problem considered here, the Brownian control problem

can again be reformulated in terms of workload imbalances, but a unique, closed form so-

lution to the workload imbalance formulation is not obtained. However, the corresponding

relationship between workload imbalance, server idleness, and the lowest priority classes

is generalized to the multistation setting. In particular, when there are I stations in the

network, an (I - 1)-dimensional workload imbalance process is defined that stays in a

workload imbalance polytope in R I-1 . Also, server idleness is incurred only when the

workload imbalance process is at the boundary of the workload imbalance polytope. Each

extreme point of the polytope corresponds to a particular customer class, and these ex-

tremal classes are the only classes in the network that are ever given bottom priority

at their respective stations. Unlike the two-station case, there will in general be more

extremal classes than stations.
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The insight gained from the previous paragraph allows us to identify an effective static

sequencing policy for maximizing the throughput of a multistation, multiclass closed queue-

ing network under balanced heavy loading conditions, and to approximately compare the

performance of this policy to conventional static policies, such as the SEPT and SERPT

rules. A simulation study analyzing three examples (two three-station networks and a

four-station network) are carried out that demonstrate the power of the simple procedure

of identifying the workload imbalance polytope and the corresponding extremal classes.

In particular, for each example, the proposed policy easily (and at times, dramatically)

outperforms four conventional policies, and the analysis roughly predicts the relative per-

formance of the proposed policy, the SEPT rule, and the SERPT rule. Also, system

performance is greatly influenced by operating under different static policies.

Perhaps the most interesting conclusion of our study is the effectiveness of static poli-

cies for maximizing the throughput in multistation closed queueing networks. In contrast,

when analyzing perhaps the simplest interesting open queueing network scheduling prob-

lem, Harrison and Wein (1989) found that no static policy was effective, and a dynamic

(that is, state-dependent) policy was required to offer significant improvement over the

first-come first-served (FCFS) policy. We believe this is due to the fundamental tradeoff

that exists in all open queueing networks. This tradeoff is between the short run aim of

reducing the number of customers in the system, and the longer run aim of avoiding server

idleness. On the other hand, in a single-station queue, no such tradeoff exists, and the

only concern is with reducing the number of customers in the system. Therefore, it is not

surprising that a simple static policy (the so-called cp-rule; see Klimov 1974, for example)

is able to achieve this goal. Similarly, no tradeoff exists in a closed network setting, where

server utilization is the sole concern, and so a static policy again appears to be effective,

although obviously not optimal. In summary, it appears that the basic tradeoff that exists

in sequencing open networks makes these systems more difficult to analyze and to sequence

than closed networks or single-station systems.
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The balanced heavy loading conditions imply that any stations in the original network

that are not among the most heavily loaded will vanish in our idealized Brownian model.

Thus, the proposed sequencing policy can be applied to any closed queueing network by

restricting attention to the subnetwork of bottleneck stations. Although our procedure

works very well on the bottleneck subnetwork, further study is required to assess the

effectiveness of this procedure for scheduling an entire network consisting of bottleneck

and nonbottleneck stations. However, the bottleneck stations are precisely where most of

the congestion occurs, and where scheduling will have its biggest impact. Thus, we believe

these results have the potential to enhance system performance in actual closed network

settings.

This paper is organized as follows. In Section 1, the queueing network scheduling prob-

lem is described, and the workload imbalance formulation of the approximating Brownian

control problem is given in Section 2. The workload imbalance polytope is defined in

Section 3, where the relationship between server idleness, workload imbalance, and ex-

tremal classes is described. A static sequencing policy is proposed in Section 4, which also

contains an approximate analytic comparison between the proposed policy and any other

static policy. Three examples are contained in Section 5, along with simulation results.

1. The Queueing Network Scheduling Problem

Consider a queueing network consisting of I single server stations, and populated by

a variety of different customer types, where each type has its own arbitrary, determin-

istic route through the network. As in Kelly (1979) and Harrison (1988), we define a

different customer class for each stage along each customer type's route. Each customer

class k = 1, ..., K requires service at a particular station, and has its own general service

time distribution with finite mean and variance. Thus, individual customers change class

deterministically as they proceed through the network.

Whenever a customer completes the last stage of its route, it exits the network, and a
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new customer immediately enters, so as to keep the population size fixed at N customers.

The new entering customer will be of class k with probability qk, independent of all previous

history. Of course, qk > 0 only for classes that correspond to the first stage along some

customer type's route.

Notice that this is a single chain network, where the entering mix of the various cus-

tomer types is fixed, as opposed to a multichain network where the population level of the

various customer types is fixed. The single chain network is appropriate for a manufac-

turing setting, which is our primary interest. In a job shop, the product mix is typically

specified by customer demand, and the most direct way to satisfy this mix in a closed

network setting is to release new customers according to the appropriate entering class

mix q = (qk). Our results remain unchanged if the class of entering customer is chosen in

a deterministic (rather than Markovian) fashion according to the vector q. Also, customer

routes are assumed to be deterministic for ease of presentation; probabilistic events that

occur in a manufacturing setting, such as rework, scrapping, and server breakdown and

repair, can be easily incorporated into the model (see Harrison 1988 for details).

The scheduling problem is to dynamically decide which class of customers to serve

next at every station in the network. These decisions will be referred to as sequencing

decisions. The objective of the scheduling problem is to maximize the long run expected

average throughput rate of the network, which is the number of customer departures per

unit of time. Since the customer population level is fixed, Little's formula (Little 1961)

implies that this objective will also minimize the long run expected average sojourn time

of customers, which is the amount of time a customer spends in the network. Since the

entering class mix, customer routes, and mean service times are all fixed, maximizing

the long run expected average throughput rate is equivalent to minimizing the long run

expected average idleness rate for any arbitrary server, which is the fraction of time the

server is idle.
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2. The Workload Imbalance Formulation

Harrison (1988) has shown how to approximate the closed queueing network schedul-

ing problem described in Section 1 by a Brownian control problem. In Section 2 of Harrison

and Wein (1990), an equivalent formulation of this problem is derived for the case I = 2.

The new formulation is called a workload formulation because the state of the queue-

ing system is described in terms of an I-dimensional workload process, rather than the

K-dimensional queue length process. In Section 3 of Harrison and Wein (1990), the work-

load formulation was easily re-expressed in terms of a workload imbalance formulation (see

equations (38)-(44) of that paper), where the state of the network is an (I-1)-dimensional

vector of workload imbalances, which measures how imbalanced the workload of the first

I- 1 stations are relative to station I. Readers are also referred to Wein (1990c) for a simi-

lar multidimensional workload imbalance formulation. We will go directly to the workload

imbalance formulation of the problem in order to avoid much unnecessary notation. As in

Harrison and Wein (1990), the proposed sequencing policy only depends on the solution

to the workload imbalance formulation.

Let Qk(t) be the number of class k customers in the network at time t, and let I i (t)

be the cumulative idleness incurred by server i in the time interval [O,t]. The Brownian

approximation is obtained by rescaling these two basic processes in terms of the total

population size N. In particular, define the scaled queue length process Zk = {Zk(t), t > 0}

by

Zk(t) = Qk(N 2t) t > 0 and k =1... K, (1)

and the scaled cumulative idleness process Ui = {Ui(t), t > 0} by

U(t) = i(N 2t) t > 0 and i = 1,...,I. (2)

Notice that Zk(t) is interpreted as the fraction of customers in the network at time t who

are of class k. The vector processes Z = (Zk) and U = (Ui) are the control processes in the
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workload imbalance formulation of the Brownian control problem. For brevity's sake, the

scaled processes Z and U will be referred to simply as the queue length and cumulative

idleness processes, respectively. Since we will be dealing exclusively with the Brownian

model in the next two sections, this should cause no confusion.

Let us define Mik to be the expected remaining processing time at station i for a class

k customer until that customer exits the network. The I x K workload profile matrix

M = (Mik) depends on the mean processing time of each customer class and the detailed

route of each customer type. Readers may refer to Table I and equation (16) in Section 5,

where the entries of this matrix are displayed for a concrete example.

As mentioned in Section 1, newly injected customers are of class k with probability

qk. For i = 1, ... , I, define vi = EK=1 Mikqk, so that vi is the expected total time over

the long run that server i devotes to each newly arriving customer. Recall that in closed

queueing networks, the vector of traffic intensities can only be determined up to a scale

constant. As in Harrison and Wein (1990), the relative traffic intensitites p = (pi) will be

scaled so that max{l_<i<} pi = 1. By Proposition 2 of Harrison and Wein (1990), it follows

that pi = vi/ max{l<j<I} vj, for i = 1, ... , I. The balanced heavy loading conditions for the

closed network assume the existence of a sufficiently large integer N such that the total

population size is N and NIl - pil is of moderate size for all i = 1, ... , I.

Define the (I - 1) x K workload imbalance profile matrix M = (M ik) by

Mik = prMik - PiMIk for i = 1,...,I- 1, and k = 1, ... ,Kh'. (3)

As in Harrison and Wein (1990), and Wein (1990b,c), this matrix contains all the necessary

information about each customer class to schedule the network under balanced heavy

loading conditions.

Let X be a K-dimensional Brownian motion process with drift vector 6 and covari-

ance matrix , which are defined in equations (13)-(14) of Harrison and Wein (1990) in

terms of the first and second moments of the service time distributions of the different
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customer classes, the routes of the various customer types, and the entering class mix.

Also, let B = (Bi) be defined by B = TMX, where the (I - 1) x I matrix T is given by

PI 0 0 . . 0 -P1
o P 0 · · -P2

T= . (4)

0 0 0 . PI 0 -PI-2

0 0 0 . 0 pI -pI-1

so that B is an (I - 1)-dimensional Brownian motion process with drift ,p = TMS and

covariance r = TMEMTTT. Although our proposed policies do not depend on the param-

eter values of these two Brownian motion processes, it is worth noting that the components

of the drift vector p are pi = N(pi - pi) for i = 1,..,I- 1, by Proposition 3 of Harrison

and Wein (1990).

The approximating Brownian control problem is obtained by letting the customer pop-

ulation size N -- oo. By Propositions 2 and 7 of Harrison and Wein (1990), the workload

imbalance formulation of the Brownian control problem is to choose RCLL (right continu-

ous with left limits) processes Z and U (K-dimensional and I-dimensional, respectively)

to

minimize lim sup -tE[U1 (t)] (5)
t-o00 t

subject to Z and U are nonanticipating with respect to X, (6)

K

E MikZk(t) = Bi(t) + pIUi(t) - piUj(t), for i = 1, ..., - 1; t > 0, (7)
k=l

U is nondecreasing with U(0) = 0, (8)
K

E Zk(t) = 1, for all t > 0, and (9)
k=l

Z(t) > 0, for all t > 0. (10)

We conclude this section with several comments on the workload imbalance formula-

tion, which gets its name because the basic system state equation (7) is in terms of the
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(I- 1)-dimensional workload imbalance process, which measures the total amount of work

anywhere in the network for stations 1, ..., I - 1 at time t relative to the amount of work

in the network at station I at time t. Notice that we have arbitrarily chosen to minimize

the long run expected average idleness rate of server 1. Although Z and U are required to

be nonanticipating with respect to the K-dimensional Brownian motion X, it turns out

that they are actually nonanticipating with respect to the (I - 1)-dimensional Brownian

motion B. Constraints (8)-(10) are straightforward , since the cumulative idleness process

must be nondecreasing, the customer population size is fixed, and the queue length process

must be nonnegative.

3. The Workload Imbalance Polytope and Extremal Classes

For the two-station case, Harrison and Wein (1990) found an optimal solution (Z*, U*)

to the workload imbalance formulation (5)-(10), and interpreted this solution in terms of

the original queueing system in order to find an effective sequencing policy. Unfortunately,

we have been unable to find a closed form solution to (5)-(10) when I > 2. Instead, we will

be satisfied with gaining a deep enough understanding of the problem so that an effective

sequencing policy can be found.

We begin this section by verbally describing problem (5)-(10). Define the (I -

1)-dimensional workload imbalance process T = (Wi) by

K

Wi(t)= j likZk(t), for i = 1,..., I-1, and t > 0. (11)
k=1

It is clear from equations (9)-(11) that the workload imbalance process must reside within

the workload imbalance polytope defined by

K K

1(0 -...' t-1): i; = WikZk, z i= 1; Zk > 0,k = ,,K}. (12)
k=l k=1

This polytope is the convex hull of the K columns of the workload imbalance profile matrix

M, where the kth column of M quantifies the workload imbalance of a class k customer.
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By equations (7) and (11), it follows that

Wi(t) = Bi(t) + piUi(t) - p iUi(t), for i = 1,...,I- 1, and t > 0. (13)

Thus, the workload imbalance formulation can be analyzed in a two-step procedure. The

first problem is to find an optimal control U* (that is nonanticipating with respect to B)

to minimize (5) subject to constraints (8) and (13), and subject to the workload imbalance

process residing in the workload imbalance polytope defined in (12). The solution U*

to the first problem will lead to an optimal workload imbalance process W* via equation

(13) with U* replacing U, and the second problem is to choose an optimal process Z* that

is nonanticipating with respect to B and satisfies equations (9)-(11), with fV* replacing

W in (11). We will now discuss the two problems in turn.

The first problem is a multidimensional ergodic singular Brownian control problem.

The controller observes the (I-1)-dimensional Brownian motion B, exerts the nondecreas-

ing controls U 1,..., UI, and the resulting process is the (I - 1)-dimensional workload im-

balance process given in (13). Notice that the control Ui affects only WiV, for i = 1, ... , I-1,

whereas UI affects the entire process WV. The objective is to exert as little of the controls as

possible (recall that we arbitrarily chose to minimize U1) subject to keeping the controlled

process inside the workload imbalance polytope (12). The control problem is described as

singular because the state of the controlled process can be instantaneously changed by the

controller and, as a result, the optimal control process U is continuous but singular (that

is, the set of time points at which U increases has measure zero).

When I = 2 (see Harrison and Wein 1990), the workload imbalance polytope is a closed

interval on the real line, which will be denoted by [a, b], the optimal control processes U1

and U2* are proportional to the local times at the respective boundaries, and thus the

workload imbalance process is a one-dimensional regulated or reflected Brownian motion

(abbreviated hereafter by RBM; see Harrison 1985 for a complete treatment) on the interval

[a, b]. Since our objective function is to exert the control U as little as possible subject to
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keeping in [a, b], it is not surprising that the control U is exerted only when the process

WI; reaches the two endpoints of the closed interval.

Unfortunately, closed form solutions to ergodic singular control problems have been

restricted to one-dimensional problems (see, for example, Karatzas 1983, Taksar 1985, and

Wein 1990a). When I > 2, the optimal control U will again only be exerted when the

(I - 1)-dimensional workload imbalance process WiV reaches the boundary of the polytope

defined in (12). However, the problem is greatly complicated by the fact that the optimal

angle of reflection (exerting different combinations of the components of U yields 21 possi-

ble angles of reflection; see Wein 1990c for details) off the boundary interior must be found.

Kushner (1977,1990) has developed a numerical procedure (called the finite difference ap-

proximation method in Kushner 1977, and called the Markov chain approximation method

in Kushner and Martins 1990) for solving a wide variety of control problems, including

multidimensional ergodic singular control problems. By discretizing the state space and

time, this technique allows one to approximate our ergodic singular control problem by a

finite state Markov chain control problem with a long run average cost criterion, which in

turn can be solved numerically using standard techniques. Kushner and Martins (1990)

(and references therein) have developed weak convergence methods to prove that, as the

discretization of time and space gets finer, the optimally controlled Markov chain (suitably

interpolated) converges to the optimally controlled diffusion, and the optimal cost of the

controlled Markov chain converges to the optimal cost of the singular control problem.

This procedure was used in Wein (1990c) to numerically solve a more difficult constrained

ergodic singular control problem arising from a queueing network scheduling problem with

controllable inputs. Although we have successfully employed this technique to find numer-

ical solutions to the examples in Section 5, the optimal angles of reflection are not reported

here for reasons that will become clear below. However, it is interesting to note that the

solution does not appear to be of a simple form, in that the angles of reflection are not

constant on each face of the polytope.
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We now turn to the second problem in the two step procedure to solve (5)-(10). Given

an optimal workload imbalance process W* (via equation (13)) from step one, choose an

optimal queue length process Z* that satisfies constraints (9)-(11), with W* replacing W on

the left side of equation (11). Let us again begin with the two-station problem considered in

Harrison and Wein (1990). In this case, the one-dimensional workload imbalance process W

is a RBM on the interval [a, b], and M is a K-dimensional vector, where 4k is the workload

imbalance for class k. Furthermore, min{l<k<K} Mk = a and max{l<kK} Mk = b, and

suppose without loss of generality that Ml = b and M 2 = a, where class 1 is served

at station 1 and class 2 is served at station 2. In order to allow the workload imbalance

process to evolve in the entire workload imbalance polytope, only the customer classes that

correspond to the extreme points of the polytope must have a positive queue length (i.e.,

Z*(t) > 0); the other classes may have a zero queue length for all times t. The customer

classes that correspond to the extreme points of the polytope will be called extremal classes.

In the two-station case, the extreme points of the polytope are a and b, and AM2 = a and

M1 = b, and thus there are exactly two extremal classes, class 1 and class 2. If we force

the other K - 2 customer classes to have zero queue length (i.e., ZZ(t) = 0 for t > 0 and

k = 3, ... , K), then Z(t) = y(t) and Z*(t) = 1 -(t), where y(t) = (V*(t) - a)/(b - a) is

the unique solution to equations (9)-(11).

Before we turn to the case where I > 2, let us interpret the optimal solution (Z*, U*)

to the two-station case. The workload imbalance process is a RBM on [a, b], and the server

idleness is only incurred when the workload imbalance process equals a or b. Furthermore,

only two customer classes, denoted by classes 1 and 2, ever have a positive queue length.

Under heavy traffic conditions, it is well-known (see Whitt 1971, Harrison 1973, Reiman

1983, Johnson 1983, Peterson 1985, and Chen and Mandelbaum 1987 for various queueing

systems) that if a static priority discipline is used among the customer classes visiting a

particular queue, only the lowest priority customer class will have a positive scaled queue

length under heavy traffic conditions. The other customer classes will not see the system
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in heavy traffic, and thus their queue lengths will be negligible compared to the bottom

priority class. Therefore, the solution is interpreted to mean that customers of class 1

(respectively, class 2) are served at station 1 (respectively, station 2) only when there are

no other customers present there. Although some ambiguity remains in specifying the

entire sequencing policy, the value of Mk offers a natural index with which to prioritize the

remaining classes. In particular, the proposed workload balancing policy is to award higher

priority at station 1 (respectively, station 2) to the classes with the smaller (respectively,

larger) values of the index Mk-

Returning to the case where I > 2, in general there are more extremal classes than

stations. Thus, unlike the two-station case, there is not a unique combination of the

extremal queue lengths Z*(t) that is consistent (in the sense of equation (11)) with the

workload imbalance process when it is in the interior of the workload imbalance polytope.

Therefore, although the extremal classes can be easily identified, there appears to be

many possible solutions Z* that will allow the workload imbalance process to evolve in

the entire workload imbalance polytope. Moreover, since there are more extremal classes

than stations, it appears that a dynamic sequencing policy is required, rather than a static

policy, as in the two-station case.

To summarize this section, problem (5)-(10) has been decomposed into two problems.

The first problem is a multidimensional ergodic singular control problem that does not

appear to have a closed form solution. However, it is clear that the the controller exerts the

cumulative idleness process U* only when the workload imbalance process WV* reaches the

boundary of the workload imbalance polytope. Also, an approximate numerical solution

that specifies the optimal angles of reflection off the polytope boundary can be obtained

using the Markov chain approximation technique described in Kushner and Martins (1990).

The second problem involves finding an optimal queue length process Z* that is consistent

with the optimal workload imbalance process Wf* derived from the first problem. Although

there is not a unique solution to this problem, the extremal classes, which are the only
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classes that receive lowest priority at their respective stations, are easily identified.

Because of the nonuniqueness of the solution to the second problem, much ambiguity

remains in interpreting the solution to (5)-(10) in terms of the queueing system in order

to obtain an effective dynamic sequencing policy. Moreover, it is not clear to us how to

use the optimal angles of reflection to identify an effective sequencing policy. Thus, in the

remainder of this paper, we will focus on static sequencing policies, and will only briefly

discuss possible dynamic policies.

4. Static Sequencing Policies

A static sequencing policy uses a fixed priority ranking of the different customer

classes at each server in the network. Perhaps the two most commonly studied static

policies are the SEPT and SERPT rules. Under a static policy, only one class will have

lowest priority at each server, and hence only I customer classes will have a nonzero queue

length in the approximating Brownian model. Thus, the workload imbalance process W

will reside inside the (I- 1)-dimensional simplex defined by the I columns of the workload

imbalance profile matrix M corresponding to the lowest priority classes. This simplex will

be contained within the workload imbalance polytope defined in (12).

For any arbitrary static policy, suppose class i is awarded lowest priority at station i,

for i = 1, ... , I, and thus classes I + 1, ... , IK are not bottom priority classes. Then for any

value W(t) of the workload imbalance process in the (I - 1)-dimensional simplex, there

exists a unique nonnegative solution Z*(t) to the system of equations

I

W(t) = L Mk Zk(t), (14)
k=l

E Zk(t) = 1. (15)
k=l

Moreover, since idleness would only be incurred at each station when there are no customers

present there, in the idealized Brownian model, the control U*(t) is only exerted at times
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t when Z.(t) = 0. Thus, by equations (13)-(15), the workload imbalance process would

behave as a RBM on the simplex generated by the I lowest priority classes. Also, the angles

of reflection off each face would be constant; see Chen (1987) for a definition of RBM on

a simplex. Readers are referred to Figure 2 of the next section, where two-dimensional

simplices are shown for the SEPT and SERPT policies for a specific three-station example.

Recall that the primary performance measure for closed queueing networks is the

mean throughput rate, which can be calculated from the mean idleness rates at the various

stations. There are several numerical techniques (Harrison, Landau, and Shepp 1981 and

Trefethen and Williams 1983 use conformal mapping for the two-dimensional case, and

the Markov chain approximation method of Kushner and Martins 1990 can be used for

the general case) available for determining the steady state distribution of a RBM on a

simplex and the mean rate of pushing off the boundaries, and the latter measure leads

directly to an estimate of the mean idleness rate. Thus, we can approximately analyze

the performance of any arbitrary static policy, such as SEPT and SERPT. However, these

techniques require a substantial effort, perhaps more than many analysts would be willing

to undertake in order to just compare different static policies.

As an alternative, we propose a very simple measure to crudely compare various static

policies. To motivate our measure, consider the Brownian model of the perfectly bal-

anced two-station closed network. In this case, the drift of the underlying one-dimensional

Brownian motion B is zero, and the steady state distribution of the RBM is uniformly

distributed over the simplex, which in this case is the closed interval [a, b]. Moreover, the

average idleness rate (or the average pushing off the two interval endpoints) is the same for

each station, and is inversely proportional to b - a, the length of the interval (see Harrison

and Wein 1990 for a closed form expression).

Now consider the general multistation case. If the RBM was uniformly distributed

over the simplex, then a relative measure of the average idleness rate (or pushing off the

boundaries) is the surface of the simplex divided by its volume. For example, in a three-
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station network, this measure is the perimeter of a triangle divided by its area. This ratio is

easy to compute in general, since the volume and the surface of each face can be computed

from a determinant. Although our relative measure is correct for the perfectly balanced

two-station network, it is a very crude estimate for a multidimensional RBM, since the

steady state distribution is not uniform, and the drift, covariance, and angles of reflection

of the RBM are being ignored. However, the goal is to develop a very simple measure that

hopefully captures the first-order effect that one would observe from a visual inspection of

the simplices. Moreover, this approach to performance analysis also extends to a possibly

optimal policy, since the numerical solution (via the Markov chain approximation method)

to the singular control problem yields the average idleness rate, and a crude estimate of

the average idleness rate is just the surface of the workload imbalance polytope divided by

its volume. Although we have been unable to identify an optimal policy, one could use this

technique to approximately compare the performance of an optimal policy to an arbitrary

static policy.

Now that the performance of arbitrary static policies has been discussed, we are now

ready to propose an effective static policy. The first step is to find the class from each

of the I stations so that the simplex generated by these classes (via the columns of the

workload imbalance profile matrix M) has the minimal ratio of surface-to-volume. For

ease of presentation, let us denote these classes by 1, ..., I, where class i is served at station

i. By the above discussion, it is clear that our crude measure of performance would predict

that a sequencing policy awarding lowest priority to class i at station i, for i = 1, ... , I,

would achieve minimal mean idleness, and hence maximal mean throughput, among the

class of static policies.

A simple extension to this idea will be used to prioritize classes I + 1, ... , K at their

various stations, and hence to complete the specification of the sequencing policy. In order

to prioritize the remaining customers at station i, let us suppose for the moment that class

i, the lowest priority class at station i, did not exist. Then for each of the remaining classes
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at station i, which are indexed by n = 1, ..., i, we would compute the surface-to-volume

ratio Rn for the simplex generated by class n and the remaining I- 1 bottom priority

classes. Since the class with the smallest value of Rn would receive lowest priority at

station i if class i did not exist, our proposed sequencing policy awards higher priority at

station i to the classes with the larger values of Rn.

Although one could obtain a more reliable proposed policy by calculating the mean

idleenss rate using the sophisticated numerical techniques described earlier in place of our

crude surface-to-volume measure, much more computation would be required. Further-

more, as will be seen in the next section, our crude relative idleness measure appears to

be accurate enough to distinguish between the various static policies.

We have been unable to identify a simple dynamic policy that significantly outperforms

the static policy described above. One policy that was tested in the simulation experiment

of the next section was to serve all extremal classes on a first-come first-served basis at their

respective stations, and then to prioritize the non-extremal classes in the same order as

they were served in the proposed static policy. The hope was that by allowing all extremal

classes to have a positive queue length, the workload imbalance process would be allowed

to move throughout the entire workload imbalance polytope, as opposed to only moving

throughout the simplex of minimal surface-to-volume ratio. However, this policy did not

perform significantly better than the proposed static policy, and thus the simulation results

for this policy are not reported here.

We have had several ideas for dynamic policies. One is to employ dynamic reduced

costs (as in Wein 1990c) derived from the mathematical program of maximizing the min-

imum amount of work queued at any given station, subject to constraints (14)-(15) and

(10), for any given value of W(t). A second policy would, given the value of WI(t) at time t,

derive the simplex of minimal surface-to-volume ratio (with one extreme point per station)

containing W(t), and would award the lowest priority at time t to the classes corresponding

to the extreme points of the simplex. The remaining classes would be prioritized at time
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t as in the proposed static policy. However, these two policies were not pursued because

they would be extremely tedious to implement in a real time setting. Our goal instead is

to find a simple and effective sequencing policy.

5. Examples

In this section, simulation results are reported for three example networks, including

two three-station networks and a four-station network. Although we believe this procedure

remains effective for any number of stations, few factories have more than three or four

bottleneck stations, and hence we did not examine larger networks.

There are two objectives in this simulation study: to assess the effectiveness of the

proposed static sequencing policy described in Section 4, and to assess the accuracy of the

surface-to-volume ratio in predicting the relative performance of various static policies. To

achieve the first goal, five sequencing policies are tested for each example: the proposed

static policy (denoted by BROWNIAN in the tables below), the first-come first-served

(FCFS) policy, the SEPT rule, the SERPT rule, and the least work next queue (LWNQ)

rule. This last rule, which gives dynamic priority at each station to the class whose next

station has the least amount of work in it, appears to be a reasonable candidate for a

closed network setting, where the sole issue is to avoid server idleness.

Recall that the objective of the scheduling problem is to maximize the mean through-

put rate for a fixed population level N. In the simulation results below, the population size

N for each policy is set so as to achieve a fixed mean throughput rate, and we will instead

record the mean sojourn times. As mentioned earlier, minimization of mean sojourn time

is equivalent to maximization of mean throughput rate in a closed network. We compare

mean sojourn time at a specified throughput rate because this is how factories are gen-

erally run: they choose their customer population level to meet the specified exogenous

demand rate, and smaller mean sojourn times imply better performance. For each policy,

ten independent runs are made, each consisting of 10,000 customer completions and no
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initialization periods.

In order to assess the effectiveness of the surface-to-volume ratios in predicting the

relative performance of static policies, the SEPT policy, the SERPT policy, and the pro-

posed static policy are tested at constant population levels, and the mean idleness rates

are observed. The relative mean idleness rates (all mean idleness rates are divided by

the mean idleness rate of the proposed static policy) are then compared to the relative

surface-to-volume ratios (the ratio of each policy is divided by the ratio of the proposed

policy).

The first network is populated by three types of customers, denoted by A, B, and C,

and the specified mix is to have equal numbers of all three types; thus whenever a customer

exits the network, the newly injected customer is of type A, B, or C with probability one-

third. Table I describes the deterministic route of each customer type, and gives the

mean service time for each stage of service. All service time distributions in this section

are assumed to be exponential, although our results hold for any general service time

distributions. Since each customer class corresponds to a combination of customer type

and stage of completion, the twelve customer classes are designated (and ordered from

k = 1,..., 12) by (A1,A2,A3,B1,...,B5,C1,...,C4).

MEAN

CUSTOMER SERVICE

TYPE ROUTE TIMES

A 3- 1 -2 6.0 4.0 1.0

B 1-2--3--+1-2 8.0 6.0 1.0 2.0 7.0

C 2-+3 -+1 -- 3 4.0 9.0 4.0 2.0

Table I. Description of example 1.

19



From Table I, we find that the 3 x 12 workload profile matrix M is given by

4 4 0 10 2 2 2 0 4 4 4 0
M=( 1 1 1 13 13 7 7 7 4 0 0 , (16)

6 0 0 1 1 1 0 0 11 11 2 2

where Mik is the expected remaining processing time at station i for a class k customer

until that customer exits the network. Since q = (00 0 00 )T, we have

Vl = 2 = 3 = 6, implying P1 = p2 = p3 = 1. Thus, the 2 x 12 workload imbalance profile

matrix M is given by

_ -2 4 0 9 1 1 2 0 -7 -7 2 -28 (17)
-5 1 1 12 12 6 7 7 -7 -11 -2 -2

The twelve points (T1 k, M2k) are plotted in Figure 1, where the workload imbalance

polytope, which is the convex hull of these points, is also displayed. Thus six of the twelve

classes are extremal classes, and the number beside each extremal point in Figure 1 is the

station that serves the corresponding extremal class. Recall that the static priority policy

finds the simplex (containing exactly one point from each station) of minimal surface-to-

volume ratio, and awards lowest priority to these three classes at their respective station.

Readers can easily see from Figure 1 that the three lowest priority classes are the two

highest points (i.e., with maximum W2(t) = W 2 (t)- W 3(t) value) and the lowest point,

which correspond to class B1 at station 1, class B2 at station 2, and class C2 at station

3. A complete specification of the three static policies is exhibited in Table II. Figure 2

shows the simplices for the SEPT and SERPT policies. A visual inspection reveals that we

would expect the SEPT policy to outperform the SERPT policy, since it has a significantly

larger simplex.

Simulation results for this example are reported in Tables III and IV. In Table I, the

population size, mean sojourn time, and mean throughput rate, along with appropriate

95% confidence intervals, are reported for each of the five sequencing policies, where the

throughput rate of .149 customers per unit time corresponds to a server utilization of 89.4%.

It can be seen that the proposed static policy easily outperforms the other four policies,
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o

o

)-W3(t)

Figure 1. The workload imbalance polytope for example 1.
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Figure 2. The workload imbalance simplices for SEPT and SERPT.
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offering a 43.8% reduction in mean sojourn time versus FCFS. Notice that the LWNQ

policy does not offer much improvement over FCFS and, as expected, SEPT outperforms

SERPT.

POLICY

BROWNIAN

SEPT

SERPT

STATION 1

B4 C3 A2 B1

B4 (A2,C3) B1

A2 C3 B4 B1

STATION 2

A3 C1 B5 B2

A3 C1 B2 B5

A3 B5 B2 C1

STATION 3

B3 C4 A1 C2

B3 C4 A1 C2

C4 B3 A1 C2

Table II. Static sequencing policies for example 1.

SEQUENCING

POLICY

BROWNIAN

SEPT

LWNQ

FCFS

SERPT

POPULATION

SIZE

14

20

24

25

30

MEAN

SOJOURN TIME

93.8 (+0.57)

134 (+0.66)

161 (1.05)

167 (i1.05)

201 (+1.20)

MEAN

THROUGHPUT

.149 (.0008)

.149 (.0007)

.149 (.0010)

.149 (.0010)

.149 (.0009)

Table III. Comparison of mean sojourn times for example 1.

In Table IV, the three static policies are compared at three different population levels,

and the observed actual idleness rates, normalized so that the idleness rate of the proposed

policy is one, are compared to the normalized versions of the estimated idleness rates (via

the surface-to-volume ratios). For example, we predict that the SERPT rule will have

2.7 times as much idleness as the BROWNIAN policy when the population size is very

large. When the population size is 45, the SERPT rule actually incurs 2.6 times as much

idleness as the BROWNIAN policy, and thus the surface-to-volume ratio is quite accurate
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in this case. Although the ratio is not an accurate predictor in the SEPT case, the measure

correctly predicts the relative performance of the three policies.

STATIC NORMALIZED NORMALIZED

SEQUENCING POPULATION IDLENESS SURFACE-TO-

POLICY SIZE RATE VOLUME RATIO

BROWNIAN 15 1.00 1.00

SEPT 15 1.39 1.38

SERPT 15 1.68 2.70

BROWNIAN 30 1.00 1.00

SEPT 30 1.60 1.38

SERPT 30 2.30 2.70

BROWNIAN 45 1.00 1.00

SEPT 45 1.77 1.38

SERPT 45 2.60 2.70

Table IV. Actual and predicted normalized idleness rates for example 1.

Before turning to example 2, we want to mention that the workload imbalance poly-

tope can be helpful in developing a fast heuristic solution to a related scheduling problem

considered in Wein (1990c). This study develops a customer release and priority sequenc-

ing policy to minimize mean sojourn time subject to a minimum mean throughput rate

constraint. The resulting constrained singular ergodic Brownian control problem is to

find a region in R - 1 in which to reflect the workload imbalance process. When there is

perfect balance between the stations in the two-station case, it turns out that the region

derived in the controllable inputs problem is homothetic (that is, of similar shape) to the

workload imbalance polytope of the corresponding closed network problem. Moreover,

this relationship appears to roughly hold in the multistation case; readers may compare
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the similarity in shapes of the workload imbalance polytope in Figure 1 with the opti-

mal reflecting boundary in Figure 5 of Wein (1990c), which also considered the network

described in Table I. This is significant because the numerical solution that derives the

optimal reflecting boundary is extremely difficult to obtain for networks with more than

three bottleneck stations, whereas the workload imbalance polytope is relatively easy to

obtain for any size network.

Example 2 is also a three-station network visited by three customer types. The cus-

tomer routes and mean service times are given in Table V, and the mix of customer types

is again (1/3,1/3,1/3). Readers may verify that p = 2 = P3 = 1, and the workload

imbalance profile matrix is given by

-M= 1 2 4 21 -4 -4 2 -3 -3 (18)
-1 -1 5 0 2 2 -4 -1 -1 -3

Although we do not exhibit the simplices for the static policies here, a visual inspection of

these simplices suggests that the BROWNIAN policy should outperform the SEPT policy,

which in turn should outperform the SERPT policy.

MEAN

CUSTOMER SERVICE

TYPE ROUTE TIMES

A 1 3 2 --+ 1 1.0 6.0 5.0 4.0

B 1 -2 -- 3 3.0 6.0 4.0

C 1- 2 -- 3 5.0 2.0 3.0

Table V. Description of example 2.

Simulation results for Example 2 are found in Tables VI and VII. The mean throughput

rate of .210 in Table VI corresponds to a mean server utilization of 91.1%. Once again, the

BROWNIAN policy outperforms the other four policies, and offers a 32.2% reduction in

mean sojourn time versus FCFS. The LWNQ policy did not perform as well as FCFS and,
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as predicted, SEPT outperformed SERPT. The normalized ratios clearly overestimate the

normalized idleness rates in Table VII. However, the relative values of the three normalized

idleness rates were predicted reasonably accurately when N = 45, since (2.46-1.00)/(6.10-

1.00)=.286, and (1.67-1.00)/(2.93-1.00)=.347.

SEQUENCING

POLICY

BROWNIAN

SEPT

FCFS

LWNQ

SERPT

POPULATION

SIZE

17

22

25

29

45

MEAN

SOJOURN TIME

80.7 (0.37)

105 (0.62)

119 (0.55)

138 (0.75)

213 (1.44)

MEAN

THROUGHPUT

.210 (.0009)

.210 (.0013)

.210 (.0010)

.210 (.0011)

.210 (.0014)

Table VI. Comparison of mean sojourn times for example 2.

STATIC

SEQUENCING

POLICY

BROWNIAN

SEPT

SERPT

POPULATION

SIZE

15

15

15

NORMALIZED

IDLENESS

RATE

1.00

1.21

1.74

NORMALIZED

SURFACE-TO-

VOLUME RATIO

1.00

2.46

6.10

BROWNIAN 30 1.00 1.00

SEPT 30 1.27 2.46

SERPT 30 2.40 6.10

BROWNIAN 45 1.00 1.00

SEPT 45 1.67 2.46

SERPT 45 2.93 6.10

Table VII. Actual and predicted normalized idleness rates for example 2.
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Our last example is the four-station network described in Table VIII. There are four

customer types and a total of twenty customer classes. A newly injected customer is of

each type with probability .25, and thus the network is again perfectly balanced (pi = 1

for i = 1, ... , 4).

MEAN

CUSTOMER SERVICE

TYPE ROUTE TIMES

A 1 - 2 - 3 -4 2.0 4.0 3.0 7.0

B 4 2 -+1 -3 2-- 1 3.0 5.0 2.0 4.0 1.0 6.0

C 2- 1 -+3 4-3--2 2.0 8.0 2.0 9.0 5.0 6.0

D 2 -4 -1 -- 3 2.0 1.0 2.0 6.0

Table VIII. Description of example 3.

The simulation results for example 3 are displayed in Tables IX and X. As can be

seen from Table X, the normalized surface-to-volume ratio for the SEPT policy is only

1.28 in this case, and so we would predict that the difference in performance between the

BROWNIAN and SEPT policies would be less in this example than in the previous two

examples. This prediction is verified in Table IX, where the desired throughput rate is

.165, which corresponds to a server utlization rate of only 82.4%. Since the SEPT policy

was unable to achieve this rate exactly, we have included two rows in Table IX for this

policy, where each row uses a different population size.

It is interesting to note that in Tables IV, VII, and X, the normalized idleness rates

of SEPT and SERPT increase as the population size increases, and thus the BROWNIAN

policy's relative performance is better at higher population levels. This may be due in

part because the policy is derived under balanced heavy loading conditions, and in part

because, as in open networks, the improvements from scheduling may increase as network

congestion increases. Thus, the relatively low server utilization in Table IX may also
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contribute to the similarity in performance between the BROWNIAN and SEPT policies.

Once again, the BROWNIAN policy offers a significant reduction (38.0%) in mean

sojourn time versus FCFS. There is a very wide range of performance among the policies,

with the SERPT policy possessing a mean sojourn time that is 7.6 times larger than

that of the BROWNIAN policy. In this example, the normalized surface-to-volume ratios

underestimated the normalized idleness rates at N = 45, although the relative values

of the three normalized idleness rates were accurately predicted, since (1.28-1.00)/(4.93-

1.00)=.071, and (1.44-1.00)/(7.00-1.00)=.073.

SEQUENCING

POLICY

POPULATION

SIZE

MEAN

SOJOURN TIME

MEAN

THROUGHPUT

BROWNIAN

SEPT

SEPT

FCFS

LWNQ

SERPT

13

13

14

21

55

100

78.8 (0.37)

79.4 (0.50)

84.4 (0.43)

127 (0.73)

332 (2.42)

601 (6.34)

Table IX. Comparison of mean sojourn times for example 3.
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.165

.164

.166

.165

.165

.165

(.0010)

(±.0010)

(.0008)

(.0014)

(±.0012)

(.0017)



STATIC NORMALIZED NORMALIZED

SEQUENCING POPULATION IDLENESS SURFACE-TO-

POLICY SIZE RATE VOLUME RATIO

BROWNIAN 20 1.00 1.00

SEPT 20 1.09 1.28

SERPT 20 2.37 4.93

BROWNIAN 40 1.00 1.00

SEPT 40 1.29 1.28

SERPT 40 4.58 4.93

BROWNIAN 60 1.00 1.00

SEPT 60 1.44 1.28

SERPT 60 7.00 4.93

Table X. Actual and predicted normalized idleness rates for example 3.

We should note that although the SEPT policy outperformed the SERPT policy in

all three examples, counterexamples to this phenomenon can be easily constructed. Read-

ers are referred to the two-station closed network example in Harrison and Wein (1990),

where the SEPT policy is easily outperformed by SERPT. However, the Brownian analysis

does explain why the SERPT policy will often perform poorly in a closed network under

balanced heavy loading conditions. The lowest priority class at each station under SERPT

is the class with the maximum value of i=-l Mik, and these classes usually correspond

to the early stages on the customers' routes. Since Mq is proportional to the vector p

of traffic intensities (whose components are close to each other in value by the balanced

heavy loading conditions), these classes will not often be extremal classes of the workload

imbalance polytope, unless there are significant differences in workload imbalance across
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entering customer types.

In summary, we have analyzed a Brownian approximation to the scheduling problem of

maximizing the mean throughput rate of a general multistation, multiclass closed queueing

network. The insights gained from this analysis have led to an identification of an effective

static policy, and to a crude but robust procedure for predicting the performance of an

arbitrary static sequencing policy. We believe the most interesting aspect of this study is

the dramatic impact that different static policies can have on system performance.
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