
Prior Reduced Fill-In in Solving
Equations in Interior Point Algorithms

John R. Birge and Robert M. Freund

OR 220-90 July, 1990

__IIIII __^ILI___Y·___III___1·1·�1·1





Prior Reduced Fill-In in Solving Equations

in Interior Point Algorithms

Abstract

The efficiency of interior-point algorithms for linear programming is related to the

effort required to factorize the matrix used to solve for the search direction at each

iteration. When the linear program is in symmetric form (i.e., the constraints are

Ax b, x > 0 ), then there are two mathematically equivalent forms of the search

direction, involving different matrices. One form necessitates factoring a matrix

whose sparsity pattern has the same form as that of (A AT). The other form

necessitates factoring a matrix whose sparsity pattern has the same form as that of

(ATA). Depending on the structure of the matrix A, one of these two forms may

produce significantly less fill-in than the other. Furthermore, by analyzing the fill-in

of both forms prior to starting the iterative phase of the algorithm, the form with the

least fill-in can be computed and used throughout the algorithm. Finally, this

methodology can be applied to linear programs that are not in symmetric form, that

contain both equality and inequality constraints.

Key words: interior-point algorithm, linear program, factorization, fill-in.

I I





1. Introduction and Notation

The efficiency of interior-point algorithms for linear programming is related

to the effort required to factorize the matrix used to solve for the search direction at

each iteration. When the linear program is in symmetric form (i.e., the constraints

are Ax b, x 0 ), then there are two mathematically equivalent forms of the

search direction, involving different matrices. One form necessitates factoring a

matrix whose sparsity pattern has the same form as that of (A AT). The other form

necessitates factoring a matrix whose sparsity pattern has the same form as that of

(AT A). Depending on the structure of the matrix A, one of these two forms may

produce significantly less fill-in than the other. Furthermore, by analyzing the fill-in

of both forms prior to starting the iterative phase of the algorithm, the form with the

least fill-in can be computed and used throughout the algorithm. Finally, this

methodology can be applied to linear programs that are not in symmetric form, that

contain both equality and inequality constraints.

The notation used is as follows. The vector of ones is represented by e,

e = (1,1, ...,1)T. If x and are vectors, then X and S are the diagonal matrices whose

diagonal entries correspond to and .

2. Observation Using the Sherman-Morrison-Woodbury Formula for Linear

Programs in Symmetric Form

Consider a linear program in symmetric form:

SFP: maximize cTx
x

s.t. Ax < b

x> 0,

which can alternatively be written as



SFP': maximize cTx + OTs
X, s

s.t. Ax + Is = b

(x, s) 0.

Suppose (x, §) is a current interior feasible solution, i.e., A x + = b , > 0 ,

s > 0 . Virtually all known interior-point algorithms compute the next direction

d = (dx, ds) as a linear combination of the affine-scaling direction (see Vanderbei et.

al. [7], Barnes [2], Dikin [4]) and the Newton centering direction, see Gonzaga [5], also

Den Hertog and Roos [3], also Karamrkar [6]. For problem SFP, the affine-scaling

direction is the solution (up to scalar multiple) to the problem:

maximize cTdx
dx ds

s.t. Adx + ds = 0

dXX 2 d + dTS-2ds < 1

Eliminating ds in the above and applying the Karush-Kuhn-Tucker conditions

yields the affine-scaling direction (up to a scalar multiple):

dx = (AT-2A + X -2) -1_ (Xz-). (affine scaling) (la)

The Newton centering direction is derived by computing the Newton step from

(x, ) in the centering problem

2



maximize

s.t.

n m
X in xj + I In si
j=1 i=l

Ax + s = b

(x, s) > 0 -

Again eliminating the s variables and computing the Newton direction in the x

variables yields

dx = (ATg -2A +X-2)- 1 (Newton centering) (lb)

However, an alternate form of (la) and (lb) can be derived using the following

result.

Proposition:

(2)Proof: Diecmlipictin-(ATo A+X ) X -1 = x[I- XAT(AX 2ATS A] a

Proof: Direct multiplication reveals that

X(AT 2A + X )X[I _ AT(AX 2AT +s2)1 A] = I,

and therefore

[X(AT -2A + X 2) = I AA2AT 2

which is equivalent to (2). U

AX ]

3

X (e- RA -l-e) 



Equation (2) can also be viewed as a modified instance of the Sherman-Morrison-

Woodbury formula.

Using (2), an alternate form of (la) and (lb) is

-d = X[I - X AT(A 2 AT + S 2) AX] (Xc) (affine scaling) (3a)

and

XX[I-AT(AX2AT+ S2 ) AX](e-XATS le) . (Newtoncentering) (3b)

3. Comparisons

Note in (1) that the major computational burden in computing dx is the

solution of equations involving the matrix (ATS-2A + X -2) , whose sparsity

depends on the sparsity of the matrix AT A . Also, if A is mxn (and for problem

SFP we could have m > n or m < n), then the equation system to be solved is

n x n . In contrast, the major computational burden in computing dx using (3) lies

in solving equations involving the matrix (A X 2AT + §2), whose sparsity depends

on the sparsity of the matrix A AT , and the system of equations to be solved is

mxm.

In deciding whether to compute d by (1) or by (3), one consideration is the

size of the respective systems, either mxm or nxn. Another consideration is the

fill-in in the factors of the respective systems, if they are to be solved by working with

the Cholesky factorization. Prior to starting the iterative phase of the algorithm for

SFP, one can analyze the fill-in in both (AT A) and (A AT) to reveal the extent of

the fill-in in the factors of each system. If the fill-in in one of the systems is

4



significantly less than in the other system, then the system with less fill-in should be

chosen.

In particular, if A has any number of dense rows, AT A will be dense and so

the computation of dx from (3) would be preferred. Similarly, if A has a number of

dense columns, A AT will be dense and so the computation of d from (1) would be

preferred. This observation has been used successfully to reduce computation time

by at least 75% in Arantes and Birge [1].

4. Extensions to Problems not in Symmetric Form

Many linear programming problems are cast in the more general form:

RP: maximize cTx
x

s.t. Ax + s = b

Px = q

(x, s) 0,

where s are slack variables on the Ax < b constraints, and there are a relatively

small number of other constraints Px = q . The variables s then can be viewed as

a partial basis for the system

We now illustrate how the methodology presented in the last two sections can be

extended to the case of problem RP. For simplicity, we will work with the affine

5



scaling direction. The extension to the Newton-center direction follows similarly.

The affine-scaling direction for RP is the solution = (dx, ds) to the program

maximize cTdx
dx, ds

s.t. Adx+d =0

Pdx =0

dTX-
2 d + d TS -2 d s < 1

Eliminating d in the above and letting

Q = ATS-2A+ -2, (4)

the affine scaling direction in the x-coordinates (up to a scalar multiple) is

dx = Q -1 c -Q -1 pT(pQ -1 pT) pQ-c . (5)

Note that the major computational burden in computing dx in (5) lies in solving

systems involving the matrices Q and (PQ -1 pT) . If the number of rows of P is

relatively small, then solving equations involving the matrix (Q -1 pT) should not

be significant, in comparison to the effort involved in solving equations involving

the matrix Q

One method for treating Q -1 is to form Q directly as in (4) and then to

factorize Q accordingly. Here we see from (4) that the sparsity pattern of Q is

identical to the sparsity pattern of the matrix AT A. An alternative strategy for

solving systems involving Q is to observe through (2) that

6

�__�_�111111_·_1__1_I I1_- �----·I�-_



Q- = X[I- XAT(AX2AT +S A X] . (6)

Solving systems involving Q using (6) requires factorizing (A 2 AT + 2) , whose

sparsity pattern depends on the sparsity pattern of A AT . Prior to starting the

iterative phase of the algorithm for RP, one can analyze the fill-in the matrices

ATA and A AT to reveal the extent of the fill-in in the factors before choosing to

use (4) or (6) in solving for dx in (5). The other comments in Section 3 regarding

this strategy remain valid for this case as well.

7

_��_1�1�1_ �1�___ II _I _ I_



Bibliography

1. Arantes J. and J. Birge (1990), "Computational Results using Interior Point

Methods for Two-Stage Stochastic Programs," presented at TIMS/ORSA Joint

National Meeting, Las Vegas, Nevada.

2. Barnes, E. R. (1986), "A Variation on Karmarkar's Algorithm for Solving Linear

Programming Problems," Mathematical Programming 36, 174-182.

3. Den Hertog, D. and C. Roos (1989), "A Survey of Search Directions in Interior

Point Methods for Linear Programming," Report 89-65, Delft University of

Technology, Delft, The Netherlands.

4. Dikin, I. I. (1967), "Iterative Solution of Problems of Linear and Quadratic

Programming," Doklady Akademiia Nauk SSSR 174, 747-748.

5. Gonzaga, C. C. (1987), "Search Directions for Interior Linear Programming

Methods," Memorandum No. UCB/ERL M87/44, Electronic Research

Laboratory, College of Engineering, University of California, Berkeley,

California.

6. Karmarkar, N., 1984, "A New Polynomial Time Algorithm for Linear

Programming", Combinatorica 4, 373-395.

7. Vanderbei, R. J., M. S. Meketon, and B. A. Freedman. (1986), "A Modification of

Karmarkar's Linear Programming Algorithm," Algorithmica 1, 395-407.

i

�--�-�111_--·111_-


