
A Splitting Equilibration Algorithm for the
Computation of Large-Scale Constrained

Matrix Problems: Theoretical Analysis and
Applications

Anna Nagurney and Alexander Eydeland

OR 223-90 July 1990

A Splitting Equilibration Algorithm

for the Computation of

Large-Scale Constrained Matrix Problems:

Theoretical Analysis and Applications

Anna Nagurney

Department of General Business and Finance

School of Management

Alexander Eydeland

Department of Mathematics and Statistics

University of Massachusetts

Amherst, Massachusetts, 01003

June, 1990

Abstract

In this paper we introduce a general parallelizable computational method for solving
a wide spectrum of constrained matrix problems. The constrained matrix problem is a
core problem in numerous applications in economics. These include the estimation of
input/output tables, trade tables, and social/national accounts, and the projection of
migration flows over space and time. The constrained matrix problem, so named by
Bacharach, is to compute the best possible estimate X of an unknown matrix, given some
information to constrain the solution set, and requiring either that the matrix X be a
minimum distance from a given matrix, or that X be a functional form of another matrix.
In real-world applications, the matrix X is often very large (several hundred to several
thousand rows and columns), with the resulting constrained matrix problem larger still
(with the number of variables on the order of the square of the number of rows/columns;
typically, in the hundreds of thousands to millions). In the classical setting, the row and
column totals are known and fixed, and the individual entries nonnegative. However, in

certain applications, the row and column totals need not be known a priori, but must

be estimated, as well. Furthermore, additional objective and subjective inputs are often

incorporated within the model to better represent the application at hand. It is the solution

of this broad class of large-scale constrained matrix problems in a timely fashion that we

address in this paper.

The constrained matrix problem has become a standard modelling tool among re-

searchers and practitioners in economics. Therefore, the need for a unifying, robust, and
efficient computational procedure for solving constrained matrix problems is of importance.

Here we introduce a.n algorithm, the splitting equilibration algorithm, for computing the

entire class of constrained matrix problems. This algorithm is not only theoretically justi-
flid, hilt l'n fi,1 vl Pnitsf htnh thP lilnlprxing s-trlrtilre of thpCp !arop-Cspe mrnhlem nn

the advantages offered by state-of-the-art computer architectures, while simultaneously

enhancing the modelling flexibility.

In particular, we utilize some recent results from variational inequality theory, to

construct a splitting equilibration algorithm which splits the spectrum of constrained ma-

trix problems into series of row/column equilibrium subproblems. Each such constructed

subproblem, due to its special structure, can, in turn, be solved simultaneously via ex-

act equilibration in closed form. Thus each subproblem can be allocated to a distinct
processor.

\We also present numerical results when the splitting equilibration algorithm is imple-
mented in a serial, and then in a parallel environment. The algorithm is tested against an-
other much-cited algorithm and applied to input/output tables, social accounting matrices,
and migration tables. The computational results illustrate the efficacy of this approach.

1. Introduction

In this paper we introduce a general parallelizable computational method for solving

a wide spectrum of Constrained Matrix problems. The Constrained Matrix problem is

a core problem in numerous applications. These include the estimation of input-output

tables, trade tables, and social/national accounts, the projection of migration flows over

space and time, the treatment of census data, the analysis of political voting patterns, and

the estimation of contingency tables in statistics. The constrained matrix problem (see

Figure 1), so named by Bacharach (1970), is to compute the best possible estimate of an

unknown matrix, given some information to constrain the solution set, and requiring either

that the matrix be a minimum distance from the given matrix, or that it be a functional

form of another known matrix. In real-world applications, the matrix is often very large

(several hundred to several thousand rows and columns), with the resulting constrained

matrix problem larger still (with the number of variables on the order of the square of

the number of rows/columns; typically, in the hundreds of thousands to millions). In

the classical setting. the row totals and the column totals are known and fixed, and the

individual matrix elements nonnegative. However, in certain applications, the row and

column totals need not be known a priori, but must be estimated, as well. Furthermore,

additional objective and subjective inputs are often incorporated within the model to better

represent the application being studied. It is the solution of this broad class of large-scale

constrained matrix problems in a timely fashion that we address in this paper.

The constrained matrix ,appronreh hsbe hnm a tf.nrrd mor1elling tool among re-

searchers and practitioners. Therefore, the need for a unifying, robust, and efficient com-

putational procedure for solving constrained matrix problems is of importance. In this

paper we introduce an algorithm, which we call the Splitting Equilibration Algorithm, for

computing solutions to the entire class of constrained matrix problems. The algorithm

splits a large-scale constrained matrix problem into series of row (supply)/column (de-

mand) subproblems. Each such constructed subproblem, due to its special structure, can,

in turn, be solved simultaneously via exact equilibration in closed form on a distinct proces-

sor. This algorithm is not only theoretically justified, but also fully exploits the advantages

offered by the state-of-the-art computer architectures, while simultaneously enhancing the

modelling flexibility.

1

Our computational procedure is motivated, in part, by the problem at hand - the

"equilibration" of matrices (cf. Van der Sluis (1969)), and by the problem's connection

with spatial price equilibrium problems (Enke (1951), Samuelson (1952), and Takayama

and Judge (1971)). Indeed, although as early as 1951, Stone recognized that the same

methodology should be applied to the computation of both spatial price equilibrium prob-

lems and constrained matrix problems, the computational state of the art at the time

precluded such an investigation. Furthermore, although the RAS method, which dates to

Deming and Stephan (1940), is currently the most widely applied computational method

in practice for the solution of the constrained matrix problem, its limitations include the

use of a highly specific set of constraints and objective function and its nonconvergence in

certain applications (see, e.g., Mohr, Crown, and Polenske (1987)).

The paper is organized as follows: in Section 2 we present the formulation of the

general quadratic constrained matrix problem, specializing it, firstly, to the particular

constrained matrix problem arising in the estimation of social accounting matrices in which

the row and column totals must "balance", and, secondly, to the case of known row and

column totals. We also relate the general formulation to many currently used models.

In Section 3 we develop the splitting equilibration algorithm and provide a theoretical

analysis of the algorithm, including convergence results.

In Sections 4 and 5 we empirically investigate the computational performance of the

splitting equilibration algorithm on the largest quadratic constrained matrix problems

reported to date using the IBM 3090-600E at the Cornell National Supercomputer Facility.

Our goals include: 1). to c-mpare the relative efficiency of the splitting eqr;uiliration

algorithm to both our earlier equilibration algorithm (RC) (Nagurney, Kim, and Robinson

(1990)), and the much-cited Bachem and IKorte (1978) algorithm, 2). to investigate the

efficiency of the new equilibration approach on the spectrum of very large constrained

matrix problems, both diagonal and general, and 3). to investigate the speedups obtained

with parallelization of the splitting equilibration algorithm for both diagonal and general

large-scale problems.

I

2. Formulation of the General Constrained Matrix Problem

In this Section we present a general quadratic constrained matrix problem, describe

several applications, and hhlilight the special cases. \Ve also identify its relationship

to classical spatial price equilibrium problems and asymmetric spatial price equilibrium

problems, for which no equivalent optimization formulations exist.

The problem will be formulated as a minimization of the weighted squared sums of

the deviations. WVe denote the given m x n matrix by X ° = (x°,), and the matrix estimate

by X = (xij,). Let s denote the row i total, and s the estimate of the row i total.

Let dj, denote the column j' total, and dj, the estimate of the column j' total. Let the

mn x mn matrix G = (ij'kI') denote the imposed weight matrix for the mixed variable

terms ((ij,- x j) · (k- xl,) and assume the matrix G to be stictly positive definite.

Let the m x m matrix A = (aik) denote the imposed weight matrix for the mixed variable

terms (si - s) (sk - s.) and let the n x n matrix B = (flij'') denote the imposed weight

matrix for the mixed variable terms (dj - d,) (d, - d,). Assume that the matrices A

and B are also strictly positive definite.

Then the general constrained matrix problem may be written as follows:

Minimize Ctit(i - si) (sk -

i- k=1

+ I E E z Tjkl'(Xij - Xj) (X' - Xoil)

+ 0, 1 (dj, - d,) (d, - d(1

subject to:
n

j'=1 (2)
71Z

x Xi' = d, 3' = 1,...,,a (3)
i=l

and the inequality constraints:

xij, > 0, for all i,j' (4)

3

where the objective function represents the weighted squared sums of the deviations.

The objective function (1) permits the utilization of mixed-variable weight terms. An

example of possibly fully dense A, B, and G matrices are the inverses of the respective

variance-covariance matrices (see, e.g., Mosteller and Tukey (1977), Judge and Yancey

(1986)). Other examples may arise when the matrices A, B, and G include subjective

weights based on the expert knowledge of planners. We note that under the assumption

of positive definiteness, the solution to (1), subject to (2) through (4) is unique.

We now describe, as an illustration, the above constrained matrix problem in the

context of input/output (I/O) matrices.

An I/O table is constructed from data obtained for a specific economic entity, be it a

country, region, state, etc. The economic activity is divided into a number of producing

sectors (or industries), with the exchanges of goods between sectors consisting of sales

and purchases of goods. Sectors may be general industrial categories (e.g., the aluminun

industry), or smaller subdivisions (such as aluminum siding), even larger industrial groups

(such as mining ore). The rows of the I/O matrix denote the origin sectors, i.e., the sellers,

whereas the columns denote the destination sectors, i.e., the purchasers. The data required

to form the I/O table are the flows of the products from each of the producing sectors to

the consuming sectors. The data are obtained for a particular time period. The column

data represent each sector's inputs while the row data represents each sector's output; thus,

the reason for the nomenclature "input/output table". For an overview of input/output

tables, oincluding ppl;ca;;ons to ;region-al econoi;c sA Pole. CL (198)n n,,d M;lr n

Blair (1985).

The constrained matrix problem arises in the context of I/O tables, when one has a

base I/O table for a given time period, typically, a ear, and one wishes to update the

table to another time period. Often one is not certain of the row and column totals at

the new time period. For example, usually, one is able to estimate row and column totals

only under certain simplifying assumptions. Furthermore, in countries or regions with

a poor information base, the stated row and column totals may simply reflect informed

conjectures (see Harrigan and Buchanan (1984) and the references therein). The above

formulation takes into account such knowledge gaps directly, thus permitting modelling

flexibility.

4

In the diagonal case, where cak = 0, for k 4 i, ij'kl' = 0, for kl' ij', and jl' = 0,

for 1' P j', the objective function (1) simplifies to:

Minimize i(Si - s° + E E 'ij(xij - + E -j,(dj, - d,)(5)
i=l i=1 jt=l j'1=

subject to the constraints (2) through (4).

The choice of weights is also flexible in this formulation. When the weights in (5)

are all equal to one, the problem becomes a constrained least squares problem, and when

ai= so t, -, dl, and fij3 = 1 for all rows i and columns j', the objective function
andij' =

is the well-known chi-square. Other possible weights, include ai = I, 3 =

and 'ij' = 1/2; or a mixed weighting scheme. Of course, when the inverse of the

variance-covariance matrix is diagonal, the objective function (5) can also be used.

This diagonal model has been studied by Nagurney (1989) who identified its iso-

morphism with classical, separable spatial price equilibrium problems and proposed an

equilibration algorithm (albeit serial) for its solution. This model is a special case of a

constrained matrix problem applied to I/O estimation by Harrigan and Buchanan (1984),

who considered interval constraints, rather than equality constraints (2) and (3).

We now consider a special case of the above general quadratic model which arises in

the estimation of social/national accounts.

A social accounting matrix (SAM) is a general equilibrium data system, consisting

.f a cr;ne of r lrc ;1, the erArmy of nation. A SAM is comnris of n rw and

n columns, with any particular account, i, represented by row i and column i. The rows

represent the receipts of the accounts, the columns the expenditures of the accounts, and

the individual matrix entries the transactions in the economy. SAIM's have been widely

used for policy analyses in developing countries (see, e.g., Pyatt and Round (1985)).

The fact that data used in the construction of SAIM's often comes from disparate

sources and the need to resolve various inconsistencies motivate the use of the constrained

matrix problem in this application. In particular, any specific account represented by

the corresponding row and column total must be balanced, that is, the receipts from the

accounts must equal the expenditures. This "definitional" constraint that each row and

column must balance makes the SAM estimation problem unique within the domain of

5

constrained matrix problems. In the case when the totals are not known a priori, this

gives rise to the following special case of the above general constrained matrix problem:

Minimize [>i (i -) (.--)

i=1 k=1

+ E EE ,)' kl(Xij Xk1' - (6)
i-- j'=1 k1/'=1

subject to inequality constraints (4) and:

m

E2i' =-i, i --- 1, .. ,n (7)
j'=l

m >xj, =jl, j' = 1,...,n. (8)
i=1

Stone (1962), Byron (1978), and Van der Ploeg (1982), (1988) considered (6), subject

to (7) and (8), but without the inequality constraints (4).

In the special diagonal case, where acik = 0. for all k # i, and ijl' = 0, for all

ki' ij', the "diagonal" objective function for the SAMN estimation problem becomes:

71 n n

Minimize - + > 3 E yij(X-) (9)
i- 1 =1 j'=l

subject to the aove consta.is.

Lastly, in the case where the row and column totals are known with certainty, i.e.,

si = , for all i, and d= d,, for all j', the above general quadratic model (1), (2), (3),

and (4), collapses to the quadratic constrained matrix problem with fixed row and column

totals formulated in Nagurney and Robinson (19S9) and solved in Nagurney, Kim, and

Robinson (1990) via RC equilibration, whose performance will be compared to the new

splitting equilibration algorithm in the subsequent computational sections.

In particular, the objective function in this case simplifies to:

'n n m n

vIMinimize ijo'ku(xT - Xj) (Xk' - Xk 1) (10)

i=1 j'=1 k=1 '=1

G

with the inequality constraints (4) and:

k jj'=li....

iji = d,, = 1,...,n. (12)
i=1

This model may also be applied to the estimation of input/output tables, and so-

cial/national accounting matrices, provided that the row and column totals are known

with certainty, as well as to the estimation of migration flows. Migration tables are used to

study growth patterns in distinct locations and to predict the needs for public services and

housing. In migration tables rows represent the origin locations and columns the destina-

tion locations. The matrix entries represent the population flows between the origins and

destinations. Row and column totals may be available for such applications, for example,

when the totals have been obtained for a time period in the past, and the matrix entries

which yield those totals are needed, given matrix entries for an earlier time period.

In the much-studied diagonal constrained matrix problem with fixed row and column

totals, where the 0ij/'l' = 0, for kl' £ ij', the objective function (10) further simplifies to

m n

Minimize E E yij,(xi- ,) 2 (13)
i=1 j'=1

with constraints (11), (12), and (4).

Deming and Stephan (i940) considered (i3) with '7i subject to constraints
Xijt

(11) and (12), whereas Friedlander (1961) considered the case where G = I. Bachem and

Korte (1978) treated (13) with all of the constraints. Cottle, et al. (1986), on the other

hand, studied Friedlander's problem with the additional constraints (4). Ohuchi and Kaji

(1984) studied the Bachem and Korte problem with upper and lower bounds. Klincewicz

(1989) also studied the above diagonal model.

7

3. The Splitting Equilibration Algorithm

In this Section we introduce the splitting equilibration algorithm (SEA) for the com-

putation of the general quadratic constrained matrix problem and its variants.

As mentioned in the Introduction, the algorithm is motivated both by the tremendous

need for a unified and robust procedure which can solve the wide class of constrained matrix

problems outlined in the preceding section and by the desire to exploit the underlying

structure of these problems and the advantages of state-of-the-art computer architectures

to allow the solution of problems of a scale larger than heretofore has been practical.

The algorithm constructs a series of diagonal problems of the form (5), subject to the

constraints (2), (3), and (4). Each of the constructed diagonal problems, in turn, is then

"split" to handle the row constraints (2) and then the column constraints (3). Each such

row (supply) or column (demand) subproblem, because of the separability of the diagonal

problem and the splitting of the constraints, can be solved simultaneously, i.e., in parallel,

on a distinct processor. In a similar manner, the algorithm diagonalizes the SAM objective

function (6), and the objective function (10) in the problem with fixed row and column

totals, and then splits the row and column constraints (7), (8), and (11), (12), respectively,

inducing, again, row and column equilibrium subproblems which can be solved exactly in

closed form, and in parallel. Of course, in the diagonal constrained matrix problems with

objective functions given, respectively by (5), (9), and (13), no such diagonalization is

required, before the splitting occurs.

vve nrst present the splitting equliDration algorithm for the diagonal problems and

then for the general ones. The general problems are solved iteratively using the appropriate

diagonal procedure outlined immediately below. A graphical depiction of SEA for the

diagonal problems is given in Figure 2. The special structure of the row and column

equilibrium subproblems is then highlighted in Figure 3. A graphical depiction of SEA for

general problems is given in Figure 4.

3.1 The Splitting Equilibration Algorithm for Diagonal Problems

In this Section we present the splitting equilibration algorithm for the diagonal prob-

lems formulated in Section 2. We first focus on the diagonal problem with unknown row

and column totals and objective function (1). We then describe SEA for the SAM es-

8

timation problem with objective function (9) and conclude with the constrained matrix

problem with fixed row and column totals and objective function (13). W\e conclude with

a unified interpretation of the algorithm as a dual method and provide theoretical results.

3.1.1 SEA for the Constrained Matrix Problem with Unknown Row and Col-

umn Totals

This algorithm computes a solution to problem (5), i. e.,

m

Minimize ®l(x,s,d) = c i(si - s
i=1

Yiji,(Xij, -x,)2 +

m n

+EE

subject to constraints (2), (3), and (4).

Step 0: Initialization Step

Let l C Rn = 0. Set t = 1.

Step 1: Row Equilibration

Find X(/t), S(y t), D(t) such that

(X(t), S(p1), D(t)) min (x, S, d)
zs,d

n mI

-E j'=1 i=1 j' - d
j=l i=I

subject to:
n

i Xij' = si
j'=

(15)

Compute the corresponding Lagrange multipliers A + l for this problem, according to

XA+ = 2aiso -2 ai Si(pt), i = 1,... , m, and use them in Step 2.

Step 2: Column Equilibration

Find X(At+I), S(A+), D(At+I) such that

(X(Atl),S(Al+), D(At+l)) --+ min 0 1(x,
z,s,d

n

iX+I(Z Xij' - i)
j'=l

(16)

subject to:
m

Xij, = dj,,
i=1

j =1,...,n (17)

9

n

E J,(dj,
j'i=1

dO-)2

(14)

Z =:::: 1 1 ... Im

s, d) - i

xi, >0.

Compute the corresponding Lagrange multipliers , t+ forthisproblem, accordingto1 + 1

23j, d,-2flj, Dj, (t+l), = 1,...,n, and use them in Step 1.

Step 3: Convergence Verification

If I xj, - xij,l < e; for all i, j', terminate; else, set t = t + 1, and go to Step 1.

Observe that both the row and column equilibration problems correspond to m and

n disjoint network subproblems, respectively, each of which can be allocated to a dis-

tinct processor and solved, respectively, using the supply market/demand market exact

equilibration algorithms discussed in Eydeland and Nagurney (1989).

We now provide a dual interpretation of the above algorithm which is used in estab-

lishing convergence and the theoretical analysis.

We introduce the Lagrangian

Tn n n m

Ll (x, , d, A,) (, s, d)- Azi(xij -. si Etj,(-xij, - dj,) (18)
i=1 j'=l j'=l i=1

and

1 (A,))= min Li(x, A,). (19)
x>O,s,d

We also let A*, y* -+ max l(A,1). In (19), the optimal values X = X(A,), S-

S(A, p), D = D(A,) satisfy the following relations:

___ c1 C n 2~, .O - - > 0o, if X =O 0
31) 23

(X, S D, A, - 2ais + i = (21)
asi

(XZi, S D A, Ap) = 20:jiDj' - 2 , + ,[l = O. (22)
OdL1

Therefore,

Xij' (2"y¥ i j x Aj,+ i)+ (23a)

Si - 2 - Ai) (23b)
2a
1

Dj, (2,ii, d, - it (23c)
2 0j,

10

Hence,

¢ (A,) - LL (X, S, D, ,)

- ZE i J' (2 (2y-ij2 Yij

2
0 00
23 I 3+ 3

1 0
aic((2aisi

2z

2

- xA)- s)
1

+ Z JL(j' (2jdo,
,;t 23 .

2

- j,) - d,)

-E i(E (27ij ,j
z i

+ AXi + j,)+ - -(2iso - xA))

Atji(1 (2-yijx9,o + A + p

1

= E 4-yij, X,
ZiPj 7 j

-zY
i

1 (2ai-s - i)2
4ai T 1

1-

+ AX + jl)+

_- 1 (2 j,dj,;/ 40j,

I3 J 'is°2 + E j,dO2.
i'

The last three terms in (24) are constant and, therefore, can be ignored.

Moreover,

1 0

= -Z E 2, (207ij'xj + A + j,)+ +
3' -

1 (2ais o- Ai)
2a z I

_- Xj ,(A, p) + Si(A,).

- 1_ ± (ijx +Ai+)++ (2-fido, -u _')2- /~ " , i) t -I

Therefore,

]lV((A,/)l -< E - Constraints < .

We define At+ l, Pt+ l according to

At+' I max (, u)

A

11

j,

oC 1(X, t)

(24)

1j,

aOij

(25)

(26)

(27)

(28a)

+E:

- _)2

Di (A, p - E X - , (A, p).

Pt+1 _ nlax ¢ (Atl',). (28b)
a,

By the duality principle, step (28a) is equivalent to solving precisely the problem:

n m

Minimize 1 (x,s,d)- (Zxij -d]j) (29a)
j'=l i=1

subject to
n

Ex =ij Si, i =- 1,.,m
j'=1

xij, 0

with At+l being the Lagrange multipliers for the above row constraints. Note that if

(X(pt), S(ut), D(pt)) solves (29a), then we can find At+' using the same argument for

(23b):

A+' = 2ai s - 9a iSi($). (29b)

Observe that (29a-29b) is precisely the Row Equilibration Step 1.

Analogously, the step (28b) is equivalent to:

m n

Minimize 01 (x, s, d) - Ai+' (- s (30a)
i=l ji=l

subject to

Ex ij, = d

xii > 0

with pt+l being the corresponding Lagrange multipliers. Again, if (X(At+l), S(At+l),

D(At+l)) is the solution of (30a), then

}+ 1 _= 23,d, - (j,Dj,(t+l). (30b)

Thus, (30a-30b) is equivalent to the Column Equilibration Step 2.

In the case of the diagonal SAM constrained matrix problem, we note that m = n, and

Si = di, for all i. The statement of the splitting equilibration algorithm for this constrained

matrix problem is presented in the following section.

12

3.1.2 SEA for the SAM Constrained Matrix Problem

This algorithm computes a solution to problem (9), i.e.,

7l

Minimize 2 (Xs) = o j (sj
3.1=1

(31)-)2 + E _'i(Xij
i=1 j'=1

subject to constraints (7), (8), and (4).

Step 0: Initialization Step

Let IuL Rn = 0. Set t = 1.

Step 1: Row Equilibration

Find X(,ut), S(pt) such that

n n

(X(ut), S(,u)) - min 2 (x, s) -Z - sj,)
X,'

j'=1 i=1

subject to:

Xij'= S-, i 1,...,n

(32)

(33)=1
j'=l

Xij, > 0.

Compute the corresponding Lagrange multipliers At+', by At+l =-2a-iSi(t t)+2is -

i,,i 1,. ..,n, and use them in Step 2.

Find X(At+l), S(At+l) such that

(34)

subject to:

j ij, = S.' j = 1,...,n

ij > 0.

Compute the corresponding Lagrange multipliers 11
+ l, by .I+ = -2a'jSj,(' t) + 2j si,

- Ajt+ l, and use them in Step 1.

13

n n

(X(At+), S(A t 1)) - mllill 2 (X, S) - E A+l (Eij, -i)
'si=l '=li=1 j'=1

(35)

Step 3: Convergence Verification

If Ej, xij, - sil/s i < ', for all i, terminate; else, set t = t + 1, and go to Step 1.

The above row and column equilibration problems have the same special structure as

that encountered in the analogous subproblems in Section 3.1.1, and again are amenable

to solution via exact equilibration on distinct processors.

We now provide a dual interpretation of the above algorithm.

We introduce the Lagrangian

(36)L 2 (X,s, A)= j2(X)-E Ai(Xij: -) - E i-j (Z Xij' - Sj)
z I 3

and

(2(A,y) = min L,2 (x,s,A,1t)
x>O,s

(37)

and we let A*, * max 2 2 (A,)-

Since

=-- 27i-j ' - 2ij ij, - A i -

dL2
2: j Sj- ,jsj , + O,

implies that:
1

i-- = + (27jmj' + A i + j')+2-¥zj i' i

1
,= (2aj,sq -A- -

with 2aj, taing the form:

with (2(A,/) taking the form:

2(A,) = -, 4 I 9i
ij' ' /i

+ Ai + j)+ - I a (2ajs , - A
· 4a j -,

ij,

with the last two terms in (41) being fixed.

aL 2

axij,

and

if Xij,
if Xij,

=0

>0
(38)

(39)

(40a)

(40b)

- ,j')2

+q-ijj'Xji + E aji 0~~~ ~~~~i~jiq ~,j

(41)

j,

14

Moreover, in regards to the gradient VC(2(, t) we observe that

E I (j x + Ai + j ,)+ + (2iso, - A - i,)

which implies that:

IIConstraints 11 < E 1V 2 (A,p)1I < . (43)

SEA for the SAM estimation problem, hence, has the following dual interpretation:

Xt+l - max 2 (A, f')
A

z t+ l --4 max 2(At+i,p)
Lt

(44a)

(44b)

where (44a) correspond to the row equilibration step and (44b) correspond to the column

equilibration step.

Finally, we present the statement of the splitting equilibration algorithm for the case of

fixed row and column totals, which is equivalent to the diagonal RC algorithm described in

see Nagurney, Kim, and Robinson (1990), but which will be theoretically analyzed below.

3.1.3 SEA for the Constrained Matrix Problem with Fixed Row and Column

Totals

This algorithm computes the solution to problem (13), i.e.,

m rn

iinimize (3(X) >)E E
i? =j'=1

ij (ij,- 0 ,)2

subject to (2), (3), and (4).

Step 0: Initialization Step

Let E Rn = 0. Set t = 1.

Step 1: Row Equilibration

Find X(lt) such that

X(t') --+ min 3 (X)
X

n Tml

- ij' I

j'=1 i=l

15

(42)

and

- d,) (45)

19(2

a,\

subject to
n

xij , i = 1, .. , m (46)
j'=1

xiji > O.

Compute the corresponding Lagrange multipliers At + l .

Step 2: Column Equilibration

Find X(At+l) such that

nl n

(X(At'+')) --* mn 3()-Z Al (xij -dj,) (47)
i=1 j'=l

subject to
m

xij =,, j' = 1,...,n (48)
i=l

xiji > 0.

Obtain the corresponding Lagrange multipliers t+ l.

Step 3: Convergence Verification

Same as Step 3 above with si = s, for all i.

The row and column equilibration problems above again have a characteristic network

structure where, however, the respective equilibration problems differ from those encoun-

tered in 3.1.1 and 3.1.2 in that they are of the "fixed" type, rather than elastic, in that s,

i = 1,....m and d,, = 1 n....n are known and fixed.

The dual interpretation now follows.

We introduce the Lagrangian

n n n nM

L 3(x, A, 1) = 3 (x) -a Ai(x-ij,-s°) - >, j,(E xij, -d,) (49)
i=1 j'=1 j'=1 i=1

and

(3(A, y/) = in L 3 (x, , L). (50)
X>0

By direct computations we obtain that

ii' 0 j,

16

Again,

K113(A, A)Il < E IIConstraintsll < E.

The algorithm now is the same, as the two previous ones, i.e.,

At+- -+ max 3 (A, t)

t +l --4 max (3 (At+l t).
It

Step (53a) is equivalent to solving the problem

n m

Minimize0Oa(x)- -
j'=1

subject to

- do,)
z

n

Eijii = Si
j'=l

Xiji > 0,

with At being the Lagrange multipliers for this problem.

then

(X(p t)) - j, = At+laxrili I for every i = 1,.

If X(t') is a solution of (54a)

., ?7l, = 1,.. .,n. (54b)

This expression indicates how to update the 's.

Step (53b), analogously, is equivalent to

m n

;,inimize 3 X) - t , \t +l 10 -E d)
i=1 j=1

subject to
777

=ij, d ,
i=1

xij, > 0,

with pt+l being the corresponding Lagrange multipliers. Also, we have that

D03 (X(At+l)) - A+ =t+

dxij
for every i = 1,... m, j' = 1,..., n,

where X(AX+') is a solution of (55a).

17

(52)

(53a)

(53b)

(54a)

(55)

(55b)

We now provide a summarization and unification of the above algorithms and refer,

henceforth, to the method as SEA.

The Algorithm:

A,+' - max (,i (,t)

t + l --4 max (i(At+l,)

i = 1,2, 3

where

l(X,) =
1
4 (27ij, txi'

47Wj
+ Ai + lit)+ -Z

i

(2a0 04
ai

- Ai)2

1 (23,d, - 2 + ±'Z':I
4fj'ij

E 02 d

i 5'

(2-yi, x , + i + - .: j1 47i,+4. t I

+z x i 2 +' i

iji j

_ , Z (9X + AZ + [± Z + SZ + E ijdj,
j, 23ij

We now state the proof of conrvergence using the stopping criterion: II(i(A,,u)ll < e.

Observe that

.(. t+l ,t) a r XIt + l t + dt)
Ti

with

dt_ 72li(/ +l, t) _
11\7,¢((t+1, t,)ll -

Let us now estimate rTiax where r is the value for which the max in (56) is attained.

Since on the interval [t, tt + Tmaxd t] the function 9(T)=V(i(t, lt + dt) x dt changes

from lIV(i(A t+ l, t) to 0 and Ml > mIl > , 1= 1,2,3, where

1
1721 = mn{lnin 2

Ii' 27ij,

M2 = min{ni;' 2-

1 1
min , mm }

1 . 1
i j2 Z ' 2--Y~ii' ' 2r

18

-i
3l

I- 3 (2aj, s j
- Aj - jt)

(58a)

(58b)

V7i(AtS1, fit)
11 V(I-(A'+, fit) 1 '

-EEi i

(57)

77.3 = min (58c)
i' 2 "{ij'

and
1 1 1

r1l = max{max max ax ma max (59a)
ij 2-Yi j , 2a- i' 2/j

1 1
12 = maxmaxx 2 max } (59b)

i' 2 i j . 2ai

1
gA3 = max - (59c)

i' 27yij

we can conclude that:

Tmax > i i(S c 8)11 (60)

Expanding now ((t+lt1, + rdt) around r = Tmax, we get

Tmax2

l(i ,t) < (/(t+1,t + Tmaxdt) m max . (61)
2

Hence,

(t+l./ - t) ()(t+, [t + l) _721 IlV(l'+l, Pt)112 (62)

or

et = (I(At+1 t+l -1)- _,(At+l ,t) > 1 2 IjV(,(At+', ,t)112 > 772 (63)
2__A '2M (63)

where c is the stopping criterion.

Thus, our algorithm must stop in no more than

(max -/I(AO,) 1
_ A-- bttp-.- (64)

2A1 2

We note that while dual algorithms have been proposed by Cottle, Duvall, and Zikan

(1986) and Ohuchi and Kaji (1984) for the fixed model with objective function (13) and

constraints (11),and (12), this is the first such unified treatment of both fixed and the more

general elastic versions. For other dual methods and associated applications, see Bertsekas

and Tsitsiklis (1989). Moreover, our proof of convergence is new and specifically uses the

parameters of the problem without any other assumptions or imposed conditions. We also

provide further theoretical results, including a rate of convergence, which is also a new

contribution.

WTe now establish additional theoretical results.

19

Recall that at step t + 1

A+l -+ max (X, t)
AX

It+l lmax (XA+l, it), = 1,2,3.

Let AXT+l, 7 E Arg max ((A, I) and are chosen to be the closest points to the iterates

At+l,[it in Arg max ((A,), I = 1,2,3. In order to prevent the notation from becoming

cumbersome, we do omit the subscript I of the A's and it's. We assume for the time

being that there exists the bounded set Ql which contains both sequences: {At+l, pt}

and {AXt+l,t* }. It clearly exists for I = 1, since (1(A, I) is a strictly concave function as

can be seen from its explicit form (24). For I = 2,3 we later provide a modification of

the algorithm that assures that the iterates At + l, /ut always lie in the bounded set and,

therefore, their projections on Arg max (also belong to a bounded set.

W'e have the following inequality for f [0, 1].

(Xt'+l,pt+1) > CI(t+~, ' + (y* - t))

= (+ (t p t) + TrV,il(t+l t1 ,p t) X ((t+l- +)) (65)

_ - -_A t+' 112 + * - t)

_ ((At+lt) r (iAl(X1(t+l, U*) - (i(At+, t))_- i [11A* +'

where flt is a bound of the norm of the Hessian of .

Let us prove noNwr that for every (A*. u*) f Si and for every direction v) = (k.x, 4,s)
from the normal cone NAi,,, to Arg max (1(A,) at (A*, It*),

C(A*, ~*) - ¢1(A* + ¢', /1* + ¢,,) > VI A 11l2 (66)

where A is a positive constant and a normal cone Nx*,tL is defined as a set of directions

4 which satisfy

x- (A* - A*) + ,, (I* - *) < 0

for every (A*, .I*) Arg max (1(X, It).

From our definition of At*+l, rt it is clear that

I (t+'-±L _ A+ 1 I)

20

Since, for every I - 1, 2, 3 the function

Z,(T) = (A* + Tr,,/* + T7/), T > 0 (67)

is a piecewise quadratic concave function of r (as can be seen from the explicit expressions

for 1I). Hence, for every r > 0,

az 1 a2 z 1 2
Zl() < Z(o) + a + (0)7+

and for r E [0, e], e > 0,

aZ 1 _2ZZl(T) = Z(0) + (0) ± 2 2 (68)

where a denotes a directional derivative.a-+
Since (A*,b *) E Arg max ((A , 1), (O) = 0.

Moreover, there exists a positive number ax*,,*, > 0, such that

0 Z, () < -a*4L*,\ P l < (69)

since if a-4 () = 0, then for [O.], Z 1(r) = Z(O) = (I(A*,i*), which means that

(A* E r)A, p* + T,L) Arg max (. This contradicts the fact that the direction (Ax,~ b,)

belongs to the normal cone.

We now introduce ax*, = minVENxf *. ax-,,4. By (67) and compactness of the

normal cone, we have that a. ,Il > 0.

Finally, we define

A = min{a }
t t+ 1 tt

We now prove that A > O. Indeed, assume that there exists a sequence {ai*+i,,* } such

that a,+l,, -0. Then by the definition of ax,, and by the boundedness of Q1 there

exists a limit point (A*, I[*) of this subsequence and a vector T : 0 with the following

properties:

(A*, M*) CE Q, , C normal cone to Arg max (1 and by our assumption a,M.,, = 0.

But, as we have shown above, the last equality is in contradiction with being a vector in

a normal cone. Thus, A > 0. lie then obtain (66) by choosing in (67) hx = (At+l - At)

and +; = (plt+l - ,u+) and then using the inequality (69) for T = 1.

21

- -------

We obtain then that

((t+'l t +') (At+1.l tt) T(l(/~*t+l.Jt)- S(t+'lft))

-T - (2 (A +'l,) - ((A t+l, t)). (70)

It follows then that

(I(At+ 2 ,zt+l) > (t(At+l, 1't+) ... (71)

Let now

6t = (+ ,,h T+1) - 1(At'+,). (72)

Using then (70), (71), and (72) we obtain

I(A+. 2) -1-)(I('t+2', /t+) < I(A*, *)- (I(At+', t)

-T(I(A*, J*) - l(At+l', t)) + T2 '.--((* J*)- I(Xt+l, t)) (73)

or

6t + < t((1- + 2) (74)
A

for r E [0, 1].

Minimizing (74) with respect to , we obtain:

Till = 4-. (75)

Hence.

6t' + l St(1 -) (76)

where 1- A < 1.

Therefore, if for some fixed e > 0, we use the stopping criterion T < , then the

number of steps T for convergence, is given by:

=T In [l (77)
in [(1 -4 A111)]

Observe that the # of iterations T is additive with respect to . Hence if we decrease

e by a factor of 10, we should expect to see only an additive increase in the number of

iterations.

99

For each iteration, cf. Eydeland and Nagurney (1989), (assuming that n = n each

demand/supply exact equilibration algorithm takes

7n + nlnn + 2n operations.

Hence, it takes

n(9n + n1lnn) operations

for all n rows/columns to be equilibrated. The overall number of operations N (and

correspondingly the overall CPU time) is then proportional to

N = T(n 2)(9 + ilnn).

Note, that if there are p processors available, where we assume that p < n then

T(n 2)(9 + nlnn)
P -

In particular, for p = n, we have that

N, = Tn(9 + nlnn).

We shall now prove how to ensure that (t+', t) belongs to a bounded set in the case

of I = 2,3.

It is clear that there exists a d,,,,, such that if Ai + Uj is larger than d,,,, then (is

< (j, which cannot be true since a.t any step (l > q! because we are maximizing l. Also,

it is clear that if Ai + Lj < -dax, then xij, = 0.

If at step t, then, we have that xTj, > 0, then Ai + j, > -dmax. Hence, we can

conclude that

-dnax < Ai + tj < dma,. (78)

Note that dazx depends only on the given data of the problem and not on t.

Each iterate (x t ,Xt+', t) of our procedure defines a graph Gt whose nodes (ij') are

connected only if xij, 5h O. In this graph we can introduce the definition of adjacency of

two edges: the edge (ij') is adjacent to (l') if either i = k or ' = j'. Thus, we have a

definition of a new graph G t* whose nodes, corresponding to edges in G', are connected if

23

and only if the edges in Gt have a common endpoint. Having a definition of connectedness

of two nodes in G c (edges in G') we may now define the connected component in G't

in a standard way. It is clear from the definition of 0(= 2, 3) that within a connected

component one can add a certain constant to Ai's and subtract the same constant from

,Uj, without changing the values of (I. Moreover, by (78), if edges (ij') and (i') belong to

a connected component then

[A - Ak < 2indnazx

Ifi'j - I| < 2r1dmax.

Combining these properties together we define the following modification of our algorithm

which would keep the iterates (t+l, it) in the bounded set.

Modified Algorithm:

Choose a large R > 0.

Let FAt, t be known.

If all Ai's are < R, continue to the next t-th step.

If there exists a Ai such that AI > R, then subtract Ai from all Ai's in the connected

component and add it to all /tj s in this connected component. This should bring all of

the A's and 's in the cube [-2ndiad,,,x, 2d d,,,a]. Then check other connected components.

By the properties discussed above this modification does not change the values of (.

Moreover, since Aodifed = 0 all other Ai's in the connected component will be less than
'*'fldmaxc 1 I modified a r l -.....dm :a.

ta'Zm(Z ill absolUbitt \.l.esb. l.ietar, IY ,- ,i d* u. ,*, ,, .

We now present the splitting equilibration algorithm for the general problem.

3.2 The Splitting Equilibration Algorithm for General Problems

SEA for general problems solves a series of diagonal problems as outlined in Section

3.1. The diagonal problems, in turn, are constructed via the projection method of Dafermos

(1982, 1983) which is based on variational inequality theory. For a brief introduction

to variational inequality theory and associated applications, see Nagurney (1987). In

particular, the projection method constructs a series of quadratic programming problems

which are simpler than the original problem. It uses fixed matrices and modifies only the

fixed linear terms in the corresponding objective functions. In particular, we select as the

24

fixed matrices the diagonals of general matrices A, B, and G. Hence, only the linear terms
are updated from iteration to iteration.

We now present the splitting equilibration algorithm for the general constrained matrix

problem, (1) through (4). For a graphical depiction of SEA for general problems, we refer

the reader to Figure 4.

3.2.1 SEA for General Constrained Matrix Problems with Unknown Row and
Column Totals

Step 0: Initialization Step

Start with any feasible (s, x, d), i.e., one which satisfies constraints (2), (3), and (4).

Set t = 1.

Step 1: Projection Step

Given (s t -, t- , dt-l), find (st,x t, dt) by solving the following problem:

Minimize lsTs + (-Ast- As 0 + Ast-l)Ts + zxT +(_Gzt1 - G + Gxt-)TX2 _

1TT
+ d TBd + (-Bd't - Bd + Bdt-1) d (79)

subject to constraints (2), (3), and (4), via SEA for Diagonal Problems (see Section 3.1),

where A, G, and denote the diagonal matrices diag(A), diag(G), and diag(B), respec-

tively.

Step 2-: Cnvovergence Verification

If xj - Xtj < e, for all i,j, then stop; otherwise, set t = t + 1, and go to Step 1.

The general splitting equilibration algorithm applied to both the SAM problem and

the problem with fixed row and column totals can be constructed in an analogous manner.

25

4. Computation of Large-Scale Diagonal Constrained Matrix Problems

In this and the subsequent Sections we describe the computational experiments con-

ducted and the results obtained for the splitting equilibration algorithm (SEA) on large-

scale quadratic constrained matrix problems. Wel begin with computational experience on

diagonal problems and then turn to the solution of general problems. For each class of

problems we first present the results of serial computations and then those of parallel com-

putations. All of the computational experiments were conducted on the IBM 3090-600E

at the Cornell National Supercomputer Facility (CNSF).

4.1 Serial Experiments

In this Section we investigated the computational efficiency of the SEA algorithm on

the class of diagonal constrained matrix problems outlined in Section 2. All of the programs

used throughout the study were coded in FORTRAN and run on the IBM 3090-600E at

the CNSF. The serial programs were compiled under VS FORTRAN at optimization level

(3) running under VM/XA 5.5. The CPU times are exclusive of input and output, but

include initialization times.

4.1.1 Computational Experience with SEA

In this Section we studied the performance of SEA on very large problems with fixed

row and column totals. The examples were generated as follows. We generated matrix

examples ranging in size from 750 rows x 750 columns through 3000 rows x3000 columns

WVI11 aic jJw e fiV-L J51'LI JC, la d IuU/U. a l-s generateu uiLormly

in the range [.1, 10000]. to simulate the wide spread of the initial data which are character-

istic of both input/output and social accounting matrices. The weighting terms, the 7ijl's

were set to . In the examples, we set each row total s = 2 j, Xvi, and each column

total d, = 2 Ei X
SEA was implemented in accordance with the suggestions and theoretical guidance

for equilibration algorithms contained in Eydeland and Nagurney (1989). In particular,

each row equilibrium subproblem and each column equilibrium subproblem was solved

via exact equilibration. Since exact equilibration requires sorting and since the arrays to

be sorted are, typically, in the applications considered here substantially larger than one

hundred elements, the sorting procedure used in the implementation of SEA for fixed row

26

and column totals was HEAPSORT. The in the convergence test was set at .01. The

results of the numerical experiments are reported in Table 1.

The examples solved ranged from 562,500 to 9 million non-zero initial matrix elements.

As can be seen from Table 1, the smallest example with 562,500 variables required only

minutes of CPU time on a serial machine, whereas the largest, with 9,000,000 variables

required approximately 3 hours of CPU time. On the basis of these runs we now consider

applications with fewer than 1 million variables to be solvable feasibly in a reasonable

time-frame in a serial manner on a machine such as the IBM 3090-600E when an efficient

algorithm such as SEA is used for the computation.

4.1.2 Experiments on Input/Output Matrices, Social Accounting Matrices, Mi-

gration Tables, and Spatial Price Equilibrium Problems

In this Section we provide further numerical results with SEA on real-world economic

and demographic datasets. The data.sets include input/output matrices, social accounting

matrices, migration tables, and spatial price equilibrium problems.

We now briefly describe the data.sets. The computational results are reported in Tables

2, 3, 4, and 5. In Table 2 we report the results of the performance of SEA on input/output

matrices with known row and column totals. In Table 3 we report the results of SEA on

social accounting matrices, in which the row and column totals must balance and must be

estimated, as well. In Table 4 we report the results of SEA on migration tables, in which

the row and column totals are also to e estima.ted. In Table 5 we report the result.s of

SEA's performance on spatial price equilibrium problems, which, a.s discussed in Section 2,

are equivalent to constrained matrix problems in which both row and column totals need

to be estimated.

The first set of three examples was constructed from an aggregated 1972 input/output

matrix of construction activity in the United States consisting of 205 rows x205 columns.

This I/O matrix retained the construction sectors in the United States in detail, and

aggregated those sectors in the United States in which the construction inputs were zero

or negligible. The first example, IOC72a, was formed byr generating a 10% growth factor,

while the second, IOC72b, by generating a 100%o growth factor. The percentage of non-

zero xj,'s was 52%. The third datapoint, termed, IOC72c, consisted of the average of

27

10 examples, where each example consisted of the 1972 matrix perturbed by a randomly

generated additive term in the range [1, 10].

The second series of three examples was constructed from an aggregated 1977 in-

put/output matrix of construction activity in the United States consisting of 205 rows

x205 columns in the same manner as those in the first series, and are called, respectively,

IOC77a, IOC77b, and IOC77c. Examples IOC77a and IOC77b consisted of 58% non-zero

elements in the X ° matrix.

The third and final series of I/O examples was constructed from a 1972 input/output

matrix for the United States consisting of 485 rows x485 columns in a manner similar to

the examples in the first two series. These examples are referred to, respectively, as IO072a,

IO072b, and IO72c. These matrices were the sparsest, with only 16% non-zero elements in

the X' matrix.

As can be seen from Table 2, all of the examples, with the exception of the largest

set based on the disaggregated 1972 I/O matrix, required only seconds of CPU time for

computation of the solution via SEA. The largest examples required less than 8 minutes.

We now describe the SAM estimation problems. The SAM estimation problems se-

lected were of various sizes. The first four examples were selected because they represented

real economic datasets. The la.st three examples were generated to introduce large-scale

SAM problems of a size larger than heretofore considered computationally tractable.

The smallest example, STONE, had also been solved in Byron (1978). The USDA82E

examlple, was a (lu i UU O'- UC.I tthUiteIUd Stes. D eprten ofi,,...u.. ltu r

for 1982 (For a description of its development, we refer the reader to Hanson and Robinson

(1989)). It was perturbed in order to make it fully dense, and a "difficult" problem. The

example SRI is a perturbed example of the SAM for Sri Lanka for 1970 contained in King

(1985). TURK is a perturbed SAM for the 1973 Turkish economy discussed in Dervis, De

Melo, and Robinson (1982). Examples S500, S750, and S1000 are large-scale randomly

generated SAM's. The convergence tolerance was set at = .001.

As can be seen from Table 3, SEA was very efficient, computing the solution for

the first five examples in only fractions of a CPU second. The largest economic dataset,

USDA82E, required only several CPU seconds for convergence of SEA. The largest three

problems demonstrate the scale of SAM estimation problems that are now solvable in a

28

reasonable time-frame, even in a serial environment, provided that a robust and efficient

algorithm such as SEA is utilized.

In Table 4 we report the performance of SEA on United States migration tables for

different time periods. The objective function used was again diagonal, of the form (5). The

rows of each migration table represent the origin states, and the columns, the destination

states. Alaska, Hawaii, and Washington, DC were removed, creating tables with 48 rows

and 48 columns.

The first set of three migration table examples in Table 4 was constructed from a

1955 - 1960 U.S. state to state migration table. The first example, MIG5560a, was formed

by generating a distinct random growth factor for each row and column total in the range

O-10 %, and by then using the resultant as the s, or d , (cf. (5)), respectively. All of the

weights were set equal to one. The second example, MIG5560b, was formed by generating

a distinct growth factor again for each original row and column total, but now within the

larger range of 0 - 100%. The third example, MIG5560c was formed by keeping the s i 's

and d,'s equal to the sums of the corresponding matrix entries in the original table; the

X ° matrix was then constructed by perturbing each element randomly by 0 - 10 %.

The second set of three examples was constructed from the 1965 - 1970 U.S. state to

state migration table in a manner similar to the first set, and these examples were named:

MIG6570a, MIG6570b, and MIG6570c, respectively.

The third and final set of migration tables was constructed from a 1975 - 1980 U.S.

state to state migration table in a manner similar to te examples in the first two sets,

and were named TIIG7580a, MIG75S0b, and MIG75SOc, respectively.

As can be seen from Table 4, the migration table examples were computed in only

seconds of CPU time. The examples with the greater growth factor were more difficult

to solve (as expected) than the corresponding ones with the smaller growth factor range.

The examples with the perturbed matrix entries were solved most quickly.

Finally, we turned to the computation of classical spatial price equilibrium problems.

Spatial price equilibrium models have been widely applied to the study of agricultural and

energy markets. Specifically, iwe consider spatial price equilibrium problems, characterized

by linear supply price, demand price, and transportation cost functions which are also sep-

arable. te generated large-scale spatial price equilibrium problems ranging in size from

29

50 supply markets and 50 demand markets, with a total of 250 variables, to 750 supply

markets and 750 demand markets, with a total of 562,500 variables. The convergence

tolerance was c = .01. As can be seen from Table 5, SEA converged for all of the exam-

ples. Although serial equilibration algorithms have been proposed for such problems by

Dafermos and Nagurney (1989) and Eydeland and Nagurney (1989), the problem with 750

supply markets and 750 demand markets represents the largest of this class solved to date.

4.2 Parallel Experiments

In this Section we describe our experiences concerning a parallel implementation of

SEA for the computation of large-scale diagonal quadratic constrained matrix problems.

The experiments were carried out on the IBM 3090-600E, a shared memory machine, using

its full multiprocessor capabilities.

The SEA algorithm (diagonal version) was embedded with the parallel constructs

provided by Parallel FORTRAN (PF) for purposes of task allocation (cf. Figure 2). Task

allocation was required for the row equilibration phase and the column equilibration phase,

with cycling between the two phases until the convergence criterion was satisfied.

For the computational testing, SEA was compiled using the Parallel FORTRAN (PF)

compiler, optimization level (3). Wre selected four previously solved examples for the

parallel tests, specifically, IO72b from Table 2, the 1000 x 1000 example from Table 1,

and SP500 x 500 and SP750 x 750 from Table 5. Recall that both I072b and 1000 x 1000

assume fixed row and column totals, wherea.s SP500 x 500 and SP750 x 750 are spatial

l,,~, Cpr1 Uic iLIb probLlems, isoorpnlic Lto liILJtl \\.lll U ro--

and column totals.

The speedup measure for NA processors was defined as follows:

Speedup SN =
TN'

where T1 is the elapsed time to solve the problem using the serial implementation of SEA

on a single processor, and TN is the elapsed time to solve the problem using the parallel

implementation of SEA on N processors.

The efficiency measure for N processors was defined as:

Efficiency EN = - T
TN x N'

30

In Table 6 we report the speedup measurements and the corresponding efficiencies

obtained. These measurements were obtained in a standalone environment. The speedup

measurements are then displayed graphically in Figure 5.

SEA required 2 iterations for convergence for example I072b and only 1 iteration for

the 1000 x 1000 example. As can be seen from Table 6, SEA exhibited identical speedups

of 1.93, or, equivalently, efficiencies of 96.5 %o on both diagonal examples when 2 CPU's

were used. In the case of 4 CPU's SEA applied to I072b exhibited 93.5 % efficiency,

whereas the 1000 x 1000 example induced an efficiency of 89.4 %. For 6 CPU's, SEA again

exhibited the higher speedup for I072b of 5.15, at an efficiency of 85.5 %. This difference

in relative speedups can be explained by the portion of time spent in the serial phase which

consists solely of the convergence criterion verification stage for diagonal SEA. The larger

example, 1000 x 1000 required more serial time spent in this serial phase. Although SEA

required only 1 iteration for this example, the serial convergence step is on the order of m 2

operations, where m in this example is equal to 1000. On the other hand, even though SEA

required 2 iterations in the case of I072b, since 772 in this example is equal to 485, the total

time spent in the serial phase would be approximately 50 % less in the smaller example.

Enhanced speedups may be obtained by verifying convergence not after every iteration,

as was done in these tests, but after every other iteration when the number of iterations

is small or by implementing the convergence phase in parallel. Nevertheless, practitioners

are interested in the solutions themselves, and, therefore, convergence verification is a vital

step.

SEA required 84 iterations for convergence of SP500 x 500 and i04 iterations for con-

vergence of SP750 x 750, where the convergence check was done after every other iteration.

In these "elastic" examples, convergence verification again comprised the only serial phase,

and was of the order m 2 . Again, the larger example required greater time in the serial

phase of convergence verification. Here, enhanced speedups maiy be obtained by verifying

convergence, say, after every five iterations and/or by implementing the convergence step

in parallel. The explanation of the greater number of iterations required for convergence

of SEA in the case of the elastic examples versus the fixed examples may lie in the initial-

ization phase; /i = 0 may be closer to the optimal for the latter examples, than for the

former ones.

31

5. Computation of Large-Scale General Constrained Matrix Problems

In this Section we describe the computation of large-scale general quadratic con-

strained matrix problems, formulated in Section 2. Recall that the general quadratic

constrained matrix problem is computed via the iterative solution of diagonal constrained

matrix problems. SEA for the general case needs substantial storage since the G matrix

may, in fact, be fully dense. Hence, for an initial matrix X ° , consisting of 100 rows x100

columns, the corresponding G matrix would be of dimension 10, 000 x 10, 000.

5.1 Serial Experiments

In this Section we provide the results of serial experimentation. The SEA, RC (Nagur-

ney, Kim, and Robinson (1990), and B-I (Bachem and Korte (1978)) programs for the

general quadratic problems were coded in FORTRAN, compiled under VS FORTRAN at

optimization level (3) running under VM/XA 5.5. Details of the implementation of the

B-I(algorithm are given in Nagurne, I(im, and Robinson (1990).

5.1.1 Computational Comparisons of SEA, RC, and B-K

Similar to the general SEA, the RC algorithm is also an equilibration algorithm based

on the projection method, and involhes the iterative solution of diagonal constrained matrix

problems. It, however, first considers the general objective function (1) subject to only the

row constraints, and then subject to the column constraints. A graphical representation

of the RC algorithm for the general problem is presented in Figure 6.

Our computational comparisons uof El , v ersus -lCI ar o n.d, .u +

general constrained matrix problem with fixed row and column totals, since both RC and

B-K were designed for this class of constrained matrix problems.

The matrix G was generated to be symmetric and strictly diagonally dominant, which

ensured positive definiteness, with each diagonal term generated in the range [500,800],

but allowing for negative off-diagonal elements to simulate variance-covariance matrices.

Each element of the linear term coefficients in the expansion of (1) \vas generated uniformly

in the range [100, 1000]. The same convergence criterion was used for B-K, RC, and SEA,

with e' = .001.

The implementation of both SEA and general RC was done in accordance with the

guidelines for the implementation of equilibration algorithms contained in Eydeland and

32

Nagurney (1989) . The general problems computed with both SEA and RC ranged in size

of X ° matrices from 10 x 10 to 120 x 120, with the corresponding G matrices ranging in size

from 100 x 100 to 14400 x 14400, respectively. The STRAIGHT INSERTION SORT was

used for the implementation of exact equilibration, since the arrays to be sorted ranged in

length from 10 elements to 120 elements.

Table 7 presents computational comparisons of SEA versus RC and B-K on general

quadratic constrained matrix problems solved in Nagurney, Kim, and Robinson (1990)

with 100% dense G matrices. As can be seen from Table 7, SEA outperformed RC by a

factor of 3 to 4, and outperformed B-K by as much as two orders of magnitude. The larger

problems were not solved using B-K because it became prohibitively expensive to do so.

5.1.2 Computational Experience with SEA on Migration Tables

In this Section we considered United States migration tables for different time periods,

for which the constrained matrix formulation with objective function (1) was again used.

The weighting matrix G was generated in the same manner as in Section 4.1.1. These

United States migration tables, from which we constructed the examples, consisted of 48

rows and 48 columns. The rows of each migration table represented the origin states and

the columns the destination states. Alaska, Hawaii, and Washington, DC, were removed,

thus creating tables with 48 rows and columns. The G matrices were, hence, of dimension

2304 x 2304. The examples, reported in Table 8, were as follows.

The first set of two examples, GMIG5560a and G-MIG5560b, were based on the 1955-

1960 U.S. state to state migration table. G IG5560a conrsisted .of the i)a.seline table wit

row and column totals being fixed and consisting of a growth factor in the range 0 - 10

%. GMIG5560b, then, in addition, to the row and column total perturbations, had each

individual matrix entry perturbed by a distinct growth factor, also in the range 0 - 10 %.

The second and third sets of two examples each were based on the 1965 - 1970 and

the 1975 - 1980 U.S. state to state migration tables, respectively, and were constructed in

a manner similar to the examples in the first set. As can be seen from Table 8 below, all

of the examples were solved via SEA in approximately 25 seconds of CPU time with E' set

to .001.

5.2 Parallel Experiments with SEA

33

For purposes of parallel experimentation, we selected the 10000 x 10000 example con-

tained in Table 7, which had also been solved using a parallel implementation of RC in

Nagurney, Kim, and Robinson (1990). The parallel implementation of the SEA algorithm

(cf. Figure 4) used Parallel FORTRAN (PF) as did the RC algorithm. For the computa-

tional testing, both SEA and RC were compiled using the PF compiler, optimization level

3.

Recall that SEA resolves general quadratic constrained matrix problems into series

of diagonal row and column equilibrium subproblems. In RC, the parallel phases of exact

row equilibration and exact column equilibration are separated via the serial phase of

projection method convergence verification, which adds a serial phase not encountered

in the parallelization of the SEA algorithm (cf. Figures 4 and 6), in which convergence

verification of the projection method is only done once.

The example was solved in 2 iterations of general RC and in 1 iteration via SEA.

The 10000 x 10000 example required for RC in the first iteration, 4 iterations of the

projection method for row equilibration and 3 iterations of the projection method for

column equilibration, whereas in the second iteration, 4 iterations for both equilibrations

were required. SEA, on the other hand, besides requiring only a single outer iteration,

only required two inner iterations.

Table 9 contains the speedups and the efficiencies obtained, whereas Figure 7 graph-

ically depicts the speedups for both SEA and RC. These speedups and efficiencies were

obtained in a standalone environment.

As can be seen from Table 9, SE A exhibited higher speedups than RC for the example.

In the case of 2 CPU's, SEA exhibited a speedup of 1.82 versus 1.75 obtained with RC; in

the case of 4 CPU's, SEA exhibited a speedup of 2.62 versus 2.24 obtained with RC. Hence,

SEA registered an improvement in absolute efficiency of 3.03 % in the case of 2 CPU's

and 9.59 %, in the case of 4 CPU's. These parallel results, and the serial results contained

in Section 5.1.1, strongly suggest that the new Splitting Equilibration Algorithm is better

suited for parallelization than RC and more effective for the computation of large-scale

constrained matrix problems, in either a serial or a parallel environment.

34

Acknowledgements

The first author's work was supported by NSF Grant RII-880361 under the NSF VPW

program and by a 1990 Faculty Fellowship Award from the University of Massachusetts at

Amherst while she was a visiting faculty member at the Transportation Systems Division,

the Operations Research Center, and the Sloan School of Management at the Massachusetts

Institute of Technology. The cordiality and hospitality of the host institution are warmly

appreciated. The second author's work was supported by NSF Grant: DMS-8602316 and

completed while he was on sabbatical leave at the Courant Institute, New York University.

The research was conducted at the Cornell National Supercomputer Facility, a resource

of the Center for Theory and Simulation in Science and Engineering at Cornell University,

which is funded in part by the National Science Foundation, New York State, and the IBM

Corporation.

The authors would like to thank Karen Polenske and Nic Rockler of the Department

of Urban Planning at MIT for providing the input/output datasets, 7Waldo Tobler of the

Department of Geography at the University of California at Santa Barbara for providing

the migration tables, and Kenneth Hanson of the US Department of Agriculture, Economic

Research Service, for providing the USDA social accounting matrix.

The authors would like to thank Dae-Shik KIim for assistance with the numerical runs

and Alan G. Robinson of the Department of General Business and Finance in the School of

Management at the University of Massachusetts at Amherst for stimulating conversations

durin g early plhacs this ..

The authors are indebted to Francesca Verdier of the Cornell Theory Center for as-

sistance in the standalone runs.

35

References

Bacharach, M. (1970), Biproportional scaling and input-output change, Cambridge

University Press, Cambridge, UK.

Bachem, A. and Korte, B., (1978), "Algorithm for quadratic optimization over transporta-

tion polytopes," Zeitschrift fur Angewandte Mathematik und Mechanik, 58: T459-T461.

Bertsekas, D. P. and Tsitsiklis, J. N., (1989), Parallel and Distributed Computation:

Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey.

Byron, R. P., (1978), "The estimation of large social accounts matrices," Journal of the

Royal Statistical Society Series A, 141: 359-369.

Cottle, R. W., Duvall, S. G., and Zikan, K., (1986), "A lagrangean relaxation algorithm

for the constrained matrix problem," Naval Research Logistics Quarterly, 33: 55-76.

Dafermos, S., (1982), "The general multimodal network equilibrium problem with elastic

demand," Networks 12: 57-72.

Dafermos, S., (1983), "An iterative scheme for variational inequalities," Mathematical Pro-

gramming, 26: 40- 47.

Dafermos, S. and Nagurney, A., (1989), "Supply and demand equilibration algorithms for

a class of market equilibrium problems," Transportation Science, 23: 118-124.

Deming, W. E. and Stephan, F. F., (1940),"0n a least-squares adjustment of a sampled

frequency table when the expected marginal totals are known," Annals of Mathematical

Statistics, 11: 427-444.

Dervis, K., De Melo, J., and Robinson, S., (1982), General equilibrium models for

development policy, Cambridge University Press, Cambridge, United Kingdom.

Enke, S., (1951), "Equilibrium among spatially separated markets: solution by electric

analogue," Econometrica, 19, 40-48.

Eydeland, A. and Nagurney, A., (1989),"Progressive equilibration algorithms: the case of

linear transaction costs," Computer Science in Economics and Management, 2, 197-219.

36

Friedlander, D., (1961), "A technique for estimating a contingency table given the marginal

total and some supplementary data," Journal of the Royal Statistical Society A, 124: 412-

420.

Hanson, K. A. and Robinson, S., (1989), "Data, linkages, and models: U.S. national income

and product accounts in the framework of a social accounting matrix," Agriculture and

Rural Economy Division, Economic Research Service, U. S. Department of Agriculture.

Staff Report No. AGES 89-5.

Harrigan, F. and Buchanan, I., (1984), "Quadratic programming approach to input-output

estimation and simulation," Journal of Regional Science, 24, no. 3: 339-358.

Judge, G. G. and Yancey, T. A., (1986),Improved methods of inference in econo-

metrics, North-Holland.

King, B. B., (1985), "What is a SAM?", in Social accounting matrices: a basis for

planning, G. Pyatt and J. I. Round (eds.), The W;iorld Bank, Washington, DC.

Klincewicz, J., (1989), "Implementing an exact Newton method for separable convex trans-

portation problems," Networks, 19: 95-105.

Miller, R. E. and Blair, P. D., (1985),Input/output analysis: foundations and ex-

tensions, Prentice-Hall, Englewood Cliffs, N. J.

Mohr, M., Crown, WT. H., and Polenske, '.. E., (1987) " linear programming approach

to solving infeasible RAS problems," Journal of Regional Science, 27, no. 4: 587-603.

Mosteller, F. and Tukey, J. W., (1977),Data analysis and regression, Addison-Wesley

Publishing Co., Inc.

Nagurney, A., (1987),"Competitive equilibrium problems, variational inequalities, and re-

gional science, " Journal of Regional Science, 27: 503-514.

Nagurney, A., (1989),"An algorithm for the solution of a quadratic programming problem

with application to constrained matrix and spatial price equilibrium problems," Environ-

ment and Planning A, 21: 99-114.

37

Nagurney, A., IKim, D. S., and Robinson, A. G., (1990), "Serial and parallel equilibration

of large-scale constrained matrix problems with application to the social and economic

sciences," The International Journal of Supercomputer Applications, 4.1, Spring, 49-71.

Nagurney, A. and Robinson, A. G., (1989), "Equilibration operators for the solution of

constrained matrix problems," Operations Research Center Working Paper, OR 196-89,

Operations Research Center, MIT, Cambridge, MA.

Ohuchi, A. and Kaji, I., (1984),"Lagrangean dual coordinatewise maximization for network

transportation problems with quadratic costs," Networks, 14: 525-530.

Polenske, K. E., (1980),U. S. multiregional input-output accounts and model,

Lexington Books, Lexington, MA.

Pyatt, G. and Round, J. I., (1985),(eds.), Social accounting matrices: a basis for

planning, The World Bank, Washington, DC.

Samuelson, P. A., (1952),"A spatial price equilibrium and linear programming," American

Economic Review, 42: 283-303.

Stone, R., (1951), "Simple transaction models, information, and computing," The Review

of Economic Studies, XIX (2), 49: 67-84.

Stone, R., (1962),"Multiple classifications if social accounting," Bulletin de l'Institut In-

ternational de Statistique, 39: 215-233.

Takayama, T. and Judge, G. G., (1971)i,Spatial and temporal price and allocation

models, North-Holland, Amsterdam.

Van der Ploeg, F., (1982), "Reliability and adjustment of sequences of large economic

accounting matrices," Journal of the Royal Statistical Society A, 145: 169-184.

Van der Ploeg, F., (1988), "Balancing large systems of national accounts," Computer

Science in Economics and Management, 1: 31-39.

Van der Sluis, A., (1969), "Condition numbers and equilibration of matrices," Numerische

Mathematik, 14: 14-23.

38

o0
11
21

x21

X0
12

x22

0 0
ml m2

0

... X 2 n2n

xOn.. n0Mn

S1 Xill

S2 X21

Sm \X2l
*m Lm

X2 2

Xnt2

... Xln

... X2n

... Xmn

dl d 2

Initial Matrix

Matrix X 0 Estimate X

The Constrained Matrix Problem

.. d

Figure :

'nticz atton

I

Figure 2: Flowchart of SEA - the Diagonal Case

Ic K x

il7 i7 ~~~~~~~~/
JO

I -

f - \

-C

I

in,

CL
Cu

.! -1
/ 77

I//

(- 7.J

,!

\~~~~~~~~~~~~~~~~~~~I
C-

C_; ,1

~~~~

Eu

-Q

0

1_

CJ

5

Cu C_

c- _
_,

Q Q

._I.) c"

c-

(C

_

L

Li

COU

-5 5
-

C

0

(4

0

VS

o oJ

U

Y
L
0

z

C

c)
L:5
-Cj

v

............



I

InitliizaLt ion I

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

etse

Figure 4: Flowchart of SEA - the General Case



Co co
E

o0

(1a)

a 0
a) 0

c
0)

L O

C)
Qi

0

O9 -

0
UC)

O Oo0

O oO 0

O LO

Ct U) O

O
E 

O0
0o
o

.0

0

(D U) CO Cj



n,tiat,zc ton

else

Figure. 6: Flowchart of the RC Algorithm - the General Case



n

UE

0
:C o

C1) 

a)

'- a)

COU
LL0.,

0
0
0
0

X

0
af) 0

0o oo
Co

0 o0n o oo
(1) 0

E n
z 00

0

LU

CO Cj



Table 1: Computational Experience with SEA on Large-Scale Diagonal

Quadratic Constrained Matrix Problems*

# of

m x n non-zero CPU time

Z variables (seconds)

750 x 750 562,500 204.7476

1000 x 1000 1 x 106 483.2065

2000 x 2000 4 x 106 3,823.2139

3000 x 3000 9 x 106 13,561.5703

*CPU time based on a single example



Table 2: Computational Experience with SEA on United States Input/Out-

put Matrix Datasets

Dataset

IOC72a

IOC72b

IOC72c

IOC77a

IOC77b

IOC77c

I072a

I072b

CPU time (seconds)

18.6697

18.9923

25.6035

13.6168

19.1338

30.2037

333.2691

438.3519

1072c 335.6124
IO072c 335.6124



Table 3: Computational Experience with SEA on Social Accounting Matrix

Datasets

Dataset # of # of CPU time

accounts transactions (seconds)

STONE 5 12 .0024

TURK 8 19 .0210

SRI 6 20 .009

USDA82E 133 17,689 5.7598

S500 500 250,000 28.99

S750 750 562,500 52.60

S1000 1000 1 ,00000 95.08



Table 4: Computational Experience with SEA on United States Migration

Tables

Dataset CPU time (seconds)

MIG5560a 1.5935

MIG5560b 4.1367

MIG5560c .8932

MIG6570a 1.2915

MIG6570b 3.9714

MIG6570c .8203

MIG7580a 3.5168

MIG7580b 9.1067

MIG7580c .8041



Table 5: Computational Experience with SEA on Spatial Price Equilibrium

Problems

m x n # of Variables CPU time (seconds)

SP50 x 50 250 1.3822

SP100 x 100 10,000 11.2621

SP250 x 250 62,500 129.4597

SP500 x 500 250,000 540.7056

SP750 x 750 562,500 1589.0613



Table 6: Parallel Speedup and Efficiency Measurements for SEA on Diag-

onal Problems

Example N SN EN

IO072b 2 1.93 96.5%

4 3.74 93.5%

6 5.15 85.8%

1000 x 1000 2 1.93 96.5%

4 3.57 89.4%

6 4.71 78.5%

SP500 x 500 2 1.86 92.85%

4 3.52 88.10%

6 4.66 77.75%

SP750 x 750 2 1.87 93.79%

4 3.19 79.80%

6 3.86 64.34%



Table 7: Computational Comparisons of SEA, RC, and B-K on General

Quadratic Constrained Matrix Problems with 100% Dense G Matrix

Dimension # of CPU time (seconds)

of G of runs SEA RC B-K

100 x 100 10 .0194 .1270 .7725

400 x 400 10 .5694 1.8373 78.9557

900 x 900 2 2.9767 9.5129 1458.3820

2500 x 2500 1 21.4607 71.4807

4900 x 4900 1 81.2640 428.8780

10000 x 10000 1 353.6885 1305.5940

14400 x 14400 1 1254.731 3000.5200



Table 8: Computational Experience with SEA on General Constrained Ma-

trix Problems Consisting of United States Migration Tables with 100%

Dense G Matrices - Dimension of G 2304 x 2304

Dataset CPU time (seconds)

GMIG5560a 23.16

GMIG5560b 22.99

GMIG6570a 23.57

GMIG6570b 23.28

GMIG7580a 28.73

GMIG7580b 23.49



Table 9: Parallel Speedup and Efficiency Measurements for SEA and RC

on General Problems

Example N SN EN

SEA 2 1.82 90.77%

10000 x 10000 4 2.62 65.49%

RC 2 1.75 87.7%

10000 x 10000 4 2.24 55.9%


