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Abstract

We study a manufacturing firm that builds a product to stock to meet a random demand.
If there is a positive surplus of finished goods, the customers make their purchases without
delay and leave. If there is a backlog, the customers are sensitive to the quoted lead time and
some choose not to order if they feel that the lead time is excessive. A set of subcontractors,
who have different costs and capacities, are available to supplement the firm's own production
capacity. We derive a feedback policy that determines the production rate and the rate at
which the subcontractors are requested to deliver products. The performance of the system
when it is managed according to this policy is evaluated. The subcontractors represent a set
of capacity options, and we calculate the values of these options.
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1 Introduction

1.1 Goal of the paper

HE purpose of this study is to extend the one-part-type, one-machine control problem of Bi-
elecki and Kumar (1988). Bielecki and Kumar (1988) obtained an analytic solution to a special

case of the hedging point problem of Kimemia and Gershwin (1983), in which a factory manager
had to decide how to operate an unreliable machine to best satisfy a constant demand. We extend
the model in three important directions.

1. Backlog and customer behavior First, we treat backlog in a more fundamental way than
Kimemia and Gershwin (1983), Bielecki and Kumar (1988), or any of the subsequent papers that
refined or extended their models of real-time scheduling of manufacturing systems. In these papers,
the difference between cumulative production and cumulative demand is called surplus, and is
usually represented by x. When x is negative, it is backlog. The performance objective to be
minimized is a function of x, which increases as x deviates from 0, for both x positive and x
negative. In this way, the optimization tends to keep x near 0.

This makes economic sense for x > 0. In that case, x is finished goods inventory, and there
are clear, tangible costs associated with inventory (including the interest cost on the raw material,
the floor space devoted to storage, etc.). However, there is no such tangible cost associated with
backlog. The undesirable consequence of backlog is the loss of sales, and lost sales are not related
to backlog by a simple quantitative relationship.

Here, instead of including an explicit cost term for x < 0, we model the response of potential
customers to backlogs. In this model, if there is a positive surplus of finished goods, the customers
make their purchases without delay and leave. If there is a backlog, some fraction of the customers
are willing to wait to make their purchases, but others depart in disgust. The greater the backlog,
the more customers leave without making a purchase.

The reason for avoiding backlog comes from the fact that some potential customers choose not
to place orders, and such lost sales reduce revenues. In this way, we replace an artificial, contrived
cost term with a more natural model of the phenomenon that causes the cost.

2. Subcontractors Second, we provide the factory manager with external sources for the prod-
uct. In this way, if demand temporarily exceeds capacity, the manager may purchase some of the
product from others to reduce backlog, improve service to customers, and reduce the number of
lost sales. However, this comes at a price: the profit made from purchased finished products is less
than that from items produced in-house.

The same model may be used for a different purpose. This is where there are two or more
production resources available within a single factory. They have different operating costs and
different maximum production rates. The manager must decide which resource to use at any time.

3. Reliable supply and variable demand We assume a perfectly reliable factory and per-
fectly reliable subcontractors. Randomness in the model comes from the variability of the demand.

4
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Customers arrive at the factory at rate d, which is either high (d = /UH) or low (d = AL). The
transitions from high to low and low to high occur at exponentially distributed time instants.

The problem The problem we solve is: How do we operate our manufacturing plant, and how do
we use subcontractors to maximize profit? Profit is revenue minus cost; the revenues are diminished
by customers who defect rather than wait when they see a backlog. The cost is nonzero only when
the surplus is positive.

Special cases A special case of the customer behavior is the lost sales case, in which customers
choose not to place orders whenever there is any backlog. Another special case of the model is
where the firm does no manufacturing of its own, and only uses subcontractors.

Features not included We only consider the effect of backlog on present sales. We do not
consider the fact that a customer who finds the backlog too great is less likely to attempt to make
a purchase in the future; and we do not consider the damage to a firm's reputation when it has
frequent large backlogs.

1.2 Motivation

The retail-apparel-textile channel is characterized by rapidly changing styles, uncertain customer
demand, product proliferation, and long lead times. Retailers adopt lean retailing practices to place
a larger fraction of their orders during the season (Abernathy, Dunlop, Hammond, and Weil 1999).
This change shifts the risks associated with carrying too much or too little inventory from retailers
to manufacturers. In order to respond quickly to the retailer demand, a manufacturer can produce
well in advance to stock or increase its capacity to reduce the lead time.

Often, neither of these choices is desirable. Utilizing subcontractors can be an attractive option
for manufacturers with limited capacity and volatile demand. Higher prices associated with sub-
contractors that are located near the market can be justified by reduced inventory carrying, lost
sales, and markdown costs (Abernathy, Dunlop, Hammond, and Weil 2000) .

As an example, a major jean manufacturer, the VF corporation, operates two plants in the US
in order to respond the replenishment orders places by Wal-Mart in four days or less. Most of the
other VF plants are located outside the US. They are evidently willing to accept higher costs so
they can provide short lead times. (Here the offshore plants are like our firm's own facility, and the
US plants are like the high priced subcontractors.)

In the auto industry, some European companies are employing a flexible work force by paying
a base salary to a group of workers who get additional hourly wage when and if they are needed.
(The base hours are like the firm's facility, and the overtime is like the subcontractor.) Deciding
when to use this temporary workforce or, in general, deciding when to use overtime can also be
addressed by the model considered here.

5
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1.3 Approach

We form a dynamic programming problem which is similar to that of Bielecki and Kumar (1988),
except that there is no cost for backlog in the objective function. Instead, the objective function
rewards revenues and penalizes cost, which is due only to inventory. The revenues are greatest for
products manufactured in-house, and less for those provided by subcontractors. Revenues are also
diminished by the defection of potential customers who are not willing to wait for their products.
We introduce a defection function B(x) which represents the probability that a potential customer
will not complete his order when the backlog is x. Then the instantaneous demand is reduced by a
factor of 1 - B(x).

We use the Bellman equation to determine the structure of the solution. We find that it is a
generalization of the hedging point policy of Kimemia and Gershwin (1983) and Bielecki and Kumar
(1988). The hedging point is a threshold indicating when there is sufficient surplus, and there are
additional thresholds to indicate when to use each of the subcontractors.

To determine the optimal values of these thresholds, we derive the differential equations for the
density function of the surplus. These equations can be solved analytically when B(x) is piecewise
constant. Since we can approximate any B(x) with a piecewise constant function, we can therefore
solve systems with essentially any B(x). We express the solution as a function of the thresholds.
Finally, we optimize over the thresholds.

1.4 Past Work

1.4.1 Dynamic programming formulations of factory scheduling and inventory control

Since the 1980s, there has been an increasing interest in devising optimal production control policies
that manage production in uncertain environment. An optimal flow-rate control problem for a
failure prone machine subject to a constant demand source was introduced by Olsder and Suri (1980)
and Kimemia and Gershwin (1983). The single-part-type, single-machine problem was analyzed in
detail by Bielecki and Kumar (1988). The optimal control is a hedging point policy where the
machine operates at its maximum rate until the inventory reaches a certain level; and then it
operates at a rate that keeps the inventory at this level.

Hedging point control policies are optimal or near optimal for a range of manufacturing system
models. Hedging policies have been shown to be effective in a manufacturing environment by
Yan, Lou, Sethi, Gardel, and Deosthali (1996). For an overview of the dynamic programming
formulations of factory scheduling and inventory control and a comprehensive list of references, see
Gershwin (1994).

Most of these studies assume a constant demand source. Only a few consider optimal produc-
tion control problems with random demand, including Fleming, Sethi, and Soner (1987), Ghosh,
Araposthathis, and Markus (1993), Tan (2000), and Perkins and Srikant (2001).

6
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1.4.2 Subcontracting

The extension of the problem for an unreliable machine with constant demand and a single con-
tractor whose capacity is high enough to meet the demand was introduced by Gershwin (1993). He
conjectured the optimality of the hedging policy. The optimality of this policy is proven by Huang,
Hu, and Vakili (1999). A simpler version of this problem where backlog is not permitted and the
subcontractor with sufficient capacity is used when the inventory level is zero was analyzed by Hu
(1995).

The problem of controlling a machine that can produce at a fixed rate to meet random demand is
presented by Krichagina, Lou, and Taksar (1994). In this study, whenever the machine stops, a setup
is performed to start production again. Moreover, backlogging is not allowed and a subcontractor
can be used by paying a fixed cost and a variable cost. By using a Brownian approximation of the
model, it is shown that the optimal policy is characterized by three parameters and referred as a
double-band policy.

A two-period competitive stochastic investment game is presented by Van Mieghem (1999). In
this model, the manufacturer and subcontractor decide on their capacity investment levels separately
in the first period. After the demand uncertainty is resolved in the second period, both parties
decide on their production and sales with the option to subcontract. The value of the option of
subcontracting is determined is then determined by using this model.

A Brownian motion approximation for the optimal subcontracting policy for an M/M/1 system
is given by Bradley (1999). This problem is extended by Bradley and Glynn (2000a) by optimizing
the capacity, inventory, and subcontracting jointly. Competition and coordination issues in this
model are addressed by Bradley and Glynn (2000b) by focusing on a multi-stage game where the
equilibrium is computed by using the Brownian approximation.

For a number of discrete-time inventory models with two sources, a dual base-stock policy, with
parameters sl and s2, is shown to be optimal. In this policy, the first source, the manufacturer,
is used when the inventory falls below s and the second source, the subcontractor, is used when
the inventory falls below s2. See Fukuda (1964), Whittemore and Saunders (1977), Zhang (1995).
The same policy is shown to be optimal for a continuous time M/M/1 system with average cost
criterion by Bradley (1999).

In a different context, the problem of managing a number of power generators with different
costs and capacities is studied by Schweppe, Caramanis, Tabors, and Bohn (1988). They show that
the power generators are used in order of increasing per unit production cost when the marginal
cost of losing the demand is higher than the marginal cost of receiving the energy from that source.
Since the electrical energy cannot be stored or backlogged, this problem is a special case of the
problem studied here where g+ is very high and B(x) = 1 for x < 0.

1.4.3 Queues with impatient customers

The queuing literature provides models that examine the behavior of a customer who has to wait
for service. In the basic models, it is assumed that the customer stays in the system until she is
served. The basic queueing models are extended to include reneging (abandoning the queue after
waiting some time) and balking (not joining the queue if the server is not immediately available)

7
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(Hall 1991).
In a study motivated by telephone call centers, a method to predict waiting time in a multi-

server exponential queue is proposed by Whitt (1999b). This method utilizes information about
the number of customers in the system ahead of the current customer. It is stated that the waiting
time prediction may be used to decide when to add additional service agents. Competition between
two firms with service time sensitive customers who choose firms based on the firms' prices, their
expected waiting and service times and their brands is analyzed by Cachon (1999).

In a retail queueing model (Ittig 1994), the effect of waiting time on customer demand is taken
into consideration when the optimal number of clerks for the queueing system is determined.

The behavior of internet users who react to the waiting times on the web is analogous to the
behavior of customers who react to the waiting times in a manufacturing environment. Dellaert
and Kahn (1999) reports that the waiting times to load a web page can affect evaluation of web
sites. When users experience long waits for a web site's home page to load, they either quit using
the web or redirect to an alternative web page (Weinberg 2000).

Communicating waiting time information to customers is one way to improve the customer
experience, according to Taylor (1994) and Hui and Tse (1996). In an M/M/s/r queueing model
with balking and reneging, Whitt (1999a) shows that informing customers about anticipated delays
improves system performance.

In inventory management, most of the models assume that shortages are either completely lost
or completely backlogged. In a recent study,partial backlogging and service-dependent sales are
incorporated in a supply chain configuration study at Caterpillar Inc. (Rao, Scheller-Wolf, and
Tayur 2000). Chang and Dye (1999) extended the basic economic order quantity model to include
partial backlogging, where the backlog rate is inversely proportional to the waiting time for the
next replenishment.

In our model, we assume that conservative estimates of the waiting time are given to the arriving
customers. Having this information, the customer then decides to wait or leave the system. However,
once the customer is in the queue, she does not renege, because this move is not consistent with
her earlier decision to accept waiting. Our model can be described, in queueing terminology, as one
with queue-length-dependent balking and no reneging.

1.4.4 Empirical work on customer behavior

A number of studies investigated the effect of waiting time on customer demand in health care. In
these studies, the effect is summarized by elasticity of demand with respect to waiting time. The
effect of waiting time and private insurance premiums on the demand for public and private heath
care providers are estimated in the UK (McAvinchey and Yannopoulos 1993). In another study
that investigates the rationing effect of waiting, elasticity of demand with respect to waiting time
is estimated empirically using the waiting list for elective surgery in the British National Health
Service (Martin and Smith 1999).

A model that investigates service time competition between companies is tested for two identical
gasoline service stations (Mount 1994). It is found that retail demand is sensitive to service time
and customers are willing to pay about 1% more for a 6% reduction in congestion.

8
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1.5 Overview

The model description and its assumptions are given in Section 2 for the case where there are
no subcontractors. In this section, backlog-dependent demand is introduced and the production
control problem is stated. The optimal policy that maximizes the profit is characterized in Section
3. Subcontractors are introduced in Section 4, and the more general solution structure is derived in
Section 5. In Section 6, the problem with the subcontractors is transformed so that the results are
equally applicable to a system with an unreliable manufacturing facility, reliable subcontractors,
and constant demand. The model is analyzed and the steady state probability distributions are
formulated in Section 7. Section 8 describes the evaluations of the objective function and of other
performance measures of interest. The behavior of the model is investigated in Section 9. Section
10 contains a summary of the paper and several proposed research directions, and Appendix A
constructs the defection function as seen by one of the servers in a shortest-queue system.

2 Model Description Single Producer

In this section, we describe a limited version of the problem in which there is only one production
resource, and no subcontractors. We describe the structure of the solution in Section 3. We
introduce subcontractors in Section 4.

2.1 Basic Model

We consider a make-to-stock system with a single manufacturing facility that produces to meet
the demand for a single item. Production, demand, inventory, and backlog are all represented by
continuous (real) variables. The demand rate at time t is denoted by d(t). The state of the demand
at time t is D(t) which is either high (H) or low (L). When the demand is high, the demand rate
is d(t) = H and when the demand is low, the demand rate is d(t) = /UL. At time t, the amount of
finished goods inventory or backlog is x(t).

The times to switch from a high demand state to a low demand state and from a low demand
state to a high demand state are assumed to be exponentially distributed random variables with
rates AHL and ALH. This model is suitable for describing demand which is stationary in the long
run, but whose mean shifts temporarily as a result of promotions, competitor actions, etc. The
time since the last state change does not change the expected time until the next state change. The
average demand rate is

Ed = /He + /L(1 - e)

where

ALH

AHL + ALH

is the percentage of the time the demand is high.

9
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The total amount demanded during a period of length t, from this model, is asymptotically
normal as t - oc (Tan 1997). The limiting variance rate of the amount demanded during a period
of length t satisfies

Var[N(t)] 2(uH -L /L)2(1 - e)e 2
Vd = lir

t-oo t ALH

The asymptotic coefficient of variation of the demand, defined as cv = Vd/Ed, is used as a
summary measure of the demand variability in this study. Here, it is given by

= LHI/H + AHLIL (AHL ALH

The maximum production rate of the manufacturing facility is u0. The actual production rate of
the manufacturing facility at time t is a control variable which is denoted by uo(t), 0 < uo(t) < u0 .
We assume that the production capacity u0 is sufficient to meet the demand when it is low but
insufficient when it is high, i.e., L < < H. (Note that if u > H, the problem is trivial: it
is always possible to keep x at 0 and therefore a backlog situation never happens. Similarly, if
u < bL, the problem is also trivial: the manufacturing facility is run with the maximum rate all
the time.)

rThe profit coefficient (dollars per unit) for the goods produced in the factory is A0 and the
inventory carrying cost is g+ (dollars per unit per time). As indicated earlier, we do not include the
corresponding backlog cost g-, which does appear in Bielecki and Kumar (1988) and many other
papers.

2.2 Backlog-Dependent Demand

When there is backlog (i.e., when x < 0), a potential customer chooses not to order with probability
B(x) when the backlog is x. (Alternatively, B(x) is the fraction of potential customers who choose
not to order when the backlog is x.) B(x), which is called the defection function, satisfies

0 < B(x) < 1,

x > 0 , B(x) = 0,

x < 0 B(x) > 0,J

The first condition is required by the definition of B as a probability or a fraction. The second
says that no potential customers are motivated to defect when there is surplus. The third says that
there are always some potential customers that refuse to wait if there is a backlog.

If B(x) satisfies

B(x) is a non-increasing function of x, (2)

10
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Figure 1: A sample B(x) function

we say that B is a monotonic defection function. If B is monotonic, more customers are impatient
if there is a longer wait. In the following, we restrict our attention to monotonic defection functions.
Figure 1 shows an example of a B(x) function that satisfies these conditions.

An additional possible condition is

lim B(x) = 1
X -00

which says that nobody is infinitely patient. Because this is debatable, and not essential for the
subsequent analysis, we do not require it.

In Appendix A, we derive the customer defection function that is generated by customers who
choose the shortest of two queues. This preliminary analysis supports the form of B(x) postulated
here.Analysis of alternative functional forms of B(x) resulting from different customer behavior is
left for future research.

Note that B(x) = 1 for all x < 0 corresponds to the lost sales case. In this situation, no
customers are willing to wait to receive their goods. All revenues are lost whenever there is any
backlog.

When the surplus level is x < 0, the time until the next arriving customer order will be com-
pleted, i.e., the production lead time, is -x/u o. This is the time to clear the current backlog,
assuming u = /u0 until the backlog is cleared. The lead-time dependent demand case can therefore
be treated by using B(x) = B(07T) as the probability that a potential customer chooses not to
order when the quoted lead time is = -x/u o.

11
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The dynamics of x are given by

dx
d = 0 - d(l - B(x)). (3)

This equation has an important property. For any given non-zero u, there is some sufficiently
negative value of x such that dx/dt > 0. The profit function (4) increases with uo and is independent
of x when x is negative, so there is no reason for uo to be zero when x is negative. In fact, there is
no reason for uo to be anything but maximal when x is sufficiently negative. As a consequence, x
is bounded from below. There is a value of x, called x*, such that

dx
d= = 0 - IH( - B(x*))

and x(t) > x* for all t. (If we had used d = L in this equation, we would have found x* = 0
because u > UL.)

2.3 Production Control Problem

The decision variable is the rate at which the goods are produced at the plant at time t, uo(t). The
profit function to be maximized is the difference between the profit generated through production
and the inventory carrying costs. A linear inventory carrying cost function is assumed, i.e.,

( g+x if x > O

0 if x <0

The production control problem is

V = maxII = E Aouo - g(x)dt (4)

subject to

dx
= uo - d(1 - B(x)) (5)

dt

0 < uo < UO (6)

d { /H if D =H (7)
/i if D L

Markov dynamics for D with rates AHL from H to L and ALH from L to H (8)

We do not include an explicit cost for backlog in the definition of g. Instead, the firm is
penalized for backlog by the defection of impatient customers and the reduced profits due to the
use of subcontractors. Since the difference between the cumulative production and cumulative

12
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demand is finite in the long run, the profit term in the objective function is written using the
production rate rather than the demand rate.

We assume that T is very large, so the optimal policy discussion in Section 3 is based on the
assumption that the probability distribution of (x, D) reaches a steady state. We do not need to
assume that the demand is feasible. If Ed is greater than u0, then enough impatient customers will
defect to guarantee that x is bounded from below, i.e., x > x*.

3 Characterization of the Policy

Problem (4)-(8) is a dynamic programming problem. The solution (the optimal production rate u0
as a function of x, D, and t) satisfies the Bellman equation. In this section, we use the Bellman
equation to determine the structure of the solution.

3.1. Bellman equation

Define the value function:

V(x(t), D(t), t) = minE (-Aouo + g(x))d (9)

V satisfies the maximum principle, which asserts that

O--V (x, L, t) = min -Aouo g(x) +V (x, L, t) (uo - IL(1 - B(x)))
t U0O xuo-

+V(x, H, t)AHL- V(x, L,t)AHL (10)

for D =L, and

-V (x, H, t) = min -Aouo + g(x) + (x, Ht) (u - H(1-B(x)))
at o O

+V(x, L, t)AL - V(x, H, t)ALH} (11)

for D =H. The minimizations are taken over constraints (6).
It is reasonable to assume, since V is the solution of a dynamic programming problem, that V

is strictly convex in x. Therefore it has a unique minimum. If that minimum were not finite, x
would be increasing or decreasing without bound. If x were increasing without bound, (9) implies
that V is infinite, and this cannot be optimal. It is not possible for x to decrease without bound
because B(x) increases with decreasing x, and there is a value of x (called x*) below which dx/dt
(3) must be zero or positive. Therefore V has a finite minimum. Figure 2 shows V as a function of
x when d = /zL and we assume that V is continuously differentiable. The graph of V when d = H
is similar.
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"(Jo - U

A.4

x

Zo (L)

Figure 2: V vs. x, d = L

LFrom (10) and (11), for both values of D,

if -Ao + (x,D) > 0
dX

undetermined if -AO + -v (x, D) = 0
xx

_Uo if -Ao + v (x, D) < 0
DoX

3.2 D L

(12) says that if d = IL, Uo = O if -Ao + DV/Dx < O0. Since V is convex with a finite minimum,
that; will occur for all x less than some value which we call Zo(L). Conversely, uo = 0 for x > Zo(L).

When x = Zo(L) and D = L, from (3),

dx
d U - /IL(1 - B(Zo(L))). (13)

Recall that we have assumed that u > ZL. Therefore the right side of (13) could be positive
(as well as negative). If uo > /L(1 - B(Zo(L))), then (13) implies that x will increase and therefore
we will soon have x > Zo(L). At that point, Uo will immediately become 0 and x will decrease.
After a very short time, x < Zo(L) so uo = uo and x will increase again. Consequently, uo will
jump infinitely rapidly (in an idealized mathematical model) between 0 and u o and x will remain

14
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very close to Zo(L). (Similar behavior results if we start with uo < tL(1 - B(Zo(L))).) To avoid
this undesirable and unnecessary chattering, we choose uo = L(1 - B(Zo(L)) when x = Zo(L).
Note that since dx/dt = 0, x remains at Zo(L) until d changes to /H. This is the hedging point
phenomenon described by Kimemia and Gershwin (1983), Bielecki and Kumar (1988), and many
other papers.

Since x can remain at Zo(L) indefinitely with no subcontracting, it is not likely that Zo(L) < 0.
When x < 0, sales are lost, and there is no offsetting benefit. We can therefore assume that
Zo(L) > 0 and that uo(Zo(L), L) L)= L.

To summarize, the trajectory behaves as follows when D=L:

* If x > Zo(L), then uo = 0 and x decreases at rate -L until it reaches Zo(L). x remains at
that value until D changes to H.

* If x = Zo(L), then uo - d and x remains at that value until D changes to H.

* If x < Zo(L), then o = uo x increases at rate uo until x = Zo(L). x remains at that value
until D changes to H.

3.3 D= H

The behavior when d = H is determined by the same considerations as when d = L, but it is not
the same. Equation (3) becomes, at x = Zo(H)

dx
= U - (1 - B(Zo(H))).dt

Since uo < LLH, the right side is guaranteed to be negative unless Zo(H) < 0. But Zo(H) < 0
cannot be optimal because if x > Z(H), uo = 0. x will decrease at the maximum possible rate
(-/H(1 - B(Zo(H)))), and there will be no revenues. While this may be beneficial if x > 0
because it reduces inventory cost, it cannot be beneficial if 0 > x > Zo(H) because some customers
(representing future revenues) are choosing not to order. As Zo(H) increases toward 0, fewer and
fewer such future sales are lost.

Consequently, Z(H) is not a hedging point (or other kind of temporary equilibrium), so if x is
ever near this value, it must decrease. As x decreases, the right side of (3) increases (i.e., the rate
of decrease of x diminishes), because B(x) increases, until one of two events occurs. Either

1.

Z0o > H(1 - B(Zo(H)))

Then we choose uo = u, where

U = LH(1 - B(Zo(H)));

or

15
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2.

o < PH (1- B(Zo(H)))

Then we choose uo = _. The defection rate B(x) increases enough so that the right side of
(3) becomes equal to zero for some x* which is greater than Zo(H). x* is determined by

Uo = :/H(1 - B(x*)) (16)

In both cases, x has reached a lower limit, since dx/dt has reached 0. (In the latter case, x
may approach the lower limit asymptotically, for suitable B(x).) x remains at this level until the
demand changes and D = L. At that point, the behavior described in Section 3.2 resumes. It is
convenient to define X as that lower bound. In Case 1, X = Zo(H); in Case 2, X = x*.

To summarize, the trajectory behaves as follows when D=H:

* If x > Zo(H), then uo = 0 and x decreases.

· if x = Zo(H), then uo = u and x remains constant.

* If Zo(H) > x, then uo = o, and

* if x > x*, x decreases;

* if x = x*, x remains constant;

* if x < x*, x increases.

3.4 Characteristics of Zo(D)

When D = L, x increases until it reaches Zo(L), and it remains there until D = H. After the change
in demand, x decreases until it reaches X. We can therefore conclude that, for a steady-state
probability distribution to exist,

Zo(L) > X.

Since X < x < Zo(L), the objective function cannot be minimal if X > 0. In addition, since
sales are lost when x < 0, the objective function cannot be minimal if Zo(L) < 0. Therefore

Zo(L) > > X.

16
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4 Model with Subcontracting

Someday, and that day may never come, I will call upon you to do a
service for me. But until that day, accept this ... gift .... (Puzo 1969)

In this section, we extend the model of Section 2 by adding K additional sources of the product.
Each source has a capacity - a maximum rate at which it can deliver. It also has a price that it
will sell the goods at. We are not concerned here with that price; instead, we need to know the
profit that the firm can earn by reselling such good. We assume that the profit from reselling is
less than that from its own production facilities. In Section 5, we extend the analysis of Section 3
to cover this case.

4.1 Model

There are K subcontractors available. At time t, the plant produces finished goods at rate uo(t), and
requests subcontractor i to supply materials at a rate of ui(t), 0 < ui(t) < ui. ui(t), i = 0,1, ..., K
are the decision variables. The profit coefficient (dollars per unit) when subcontractor i is used is Ai.
The subcontractors are indexed in decreasing Ai, i.e., Ao > Al > A 2 > A 3 >... > AK > 0. That
is, subcontractor i + 1 is less desirable to use than subcontractor i because it is more expensive,
and therefore results in less profit. The subcontractors are perfectly reliable and they deliver
instantaneously. We do not make any assumptions regarding the capacities ui of the subcontractors.

Now, when the surplus level is x < 0, the time until the next arriving customer order will be
completed, i.e., the production lead time, is no greater than -x/uo. This is the time to clear the
current backlog if no subcontractors are used. The lead-time dependent demand case can therefore
be treated by using B(x) = B(u 0 T) as the probability that a potential customer chooses not to
order when the quoted guaranteed lead time is = -x/u o. A sharper bound can be developed if
we assume a specific production and backlog policy, for example that of Section 5.

Combining the backlog-dependent demand rate and subcontracting, the dynamics of x are given
by

dx K
= Eui - d(1 - B(x)). (17)

i=0

4.2 Production Control Problem

The decision variables are the rate at which the goods are produced at the plant at time t, uo(t),
and the rates at which the subcontractors are requested to supply goods at time t, ui(t) i =
1, 2,..., K. The profit function to be maximized is the difference between the profit generated
through production and subcontracting and the inventory carrying costs. A linear inventory carrying
cost function is assumed, i.e.,

( g+x if x > O

0 if x <0

17
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The production control problem is

V = max .I = Ef E
UO,U1,--UK Jo i=o Aui - g(x)) dt

dx K

dt - ui
i=0

- d(1 - B(x))

O_<u .i < u i i = 01,...,K.

(19)

(20)

(21)d _ JH if D = H
l L if D = L

Markov dynamics for D with rates AHL from H to L and ALH from L to H (22)

We do not include an explicit cost for backlog in the definition of g. Instead, we are penalized
for backlog by the defection of impatient customers and the reduced profits due to the use of
subcontractors.

We do not need to assume that the demand is feasible. If Ed is greater than u0 , some subcon-
K

tracting will certainly be used. If Ed is greater than the total capacity E ui then enough impatient
i=O

customers will defect to guarantee that x is bounded from below.
We assume that T is very large, so the optimal policy discussion in Section 3 is based on the

assumption that the probability distribution of (x, D) reaches a steady state.

5 Characterization of the Policy with Subcontractors

Problem (18)-(22) is a dynamic programming problem. The solution (the optimal rates of produc-
tion as a function of x, D, and t) satisfies the Bellman equation. In this section, we use the Bellman
equation to determine the structure of the solution.

5.1 Bellman equation

The value function is defined as:

Aiui + g(x)) dT (23)

V satisfies the maximum principle, which asserts that

Aiui + g(x) + (x, L,Ox
t) K,t) E i

i=o
- L (1 - B(x)))

18
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(

. .I I

Za(L) Z2(L) Z (L) Zo(L)

Figure 3: V vs. x, d = L

+V(xHt)HL- V(, L,t)AIL (24)

for D =L, and

±V (x, HV, t) V(1 Lt)HL} (24)for D =L, anda (x, H, t) = minUK A iui + g(x) + a(x, H, t) Ui -H(1 - B(x)))
uo ul ,., xi=O

+V(x, L, t)ALH- V(x, H, t)ALH} (25)

for D =H. The minimizations are taken over constraints (20).
It is reasonable to assume, since V is the solution of a dynamic programming problem, that V is

strictly convex in x. Therefore it has a unique minimum. If that minimum were not finite, x would
be increasing or decreasing without bound. If x were increasing without bound, (23) implies that
V is infinite, and this cannot be optimal. It is not possible for x to decrease without bound because
B(x) increases with decreasing x, and there is a value of x below which dx/dt (17) must be zero or
positive. Therefore V has a finite minimum. Figure 3 shows V as a function of x when d = L and
we assume that V is continuously differentiable. The graph of V when d = H is similar.

/,From (24) and (25), for both values of D,

19
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0

undetermined

ui

if -Ai + V (x,D) > 0
Ax

if -Ai + (x, D) = 
OX

if -Ai + (x,D) < 0
OX

for i = 0, 1, . . . , K

5.2 D= L

(26) says that if d = L, UO = U0 if -

that will occur for all x less than some
Similarly, for each i, (26) implies

av/ax < for x < Zi(L) and -Ai + aV/ox
x < Zi(L) and ui = 0 for x > Zi(L). Since Ao >
Zo(L) > Z,(L) > Z(L) >... > ZK(L).

Consequently,

* When x > Zo(L),

* When Z 1(L) < x < Zo(L),

* When Z2(L) < x < Z 1(L),

* When Z3(L) < x < Z 2(L),

A o + aV/Ox < O0. Since V is convex with a finite minimum,
value which we call Zo(L). Conversely, uo = 0 for x > Zo(L).
that there is a value of x, called Zi(L), such that -Ai +

> 0 for x

A > A2...

> Zi(L). Consequently ui = ui for
> AK and since V is strictly convex,

ui = 0, i = 0, ... ,K.

Uo = Uo and ui = 0, i = 1,..., K.

uo = Uo, U1 = ul, and ui = 0, i = 2,..., K.

U = Ug, = U1, 2 = u2, and ui = 0, i = 3, ... , K.

(27)

* etc.

When x = Zo(L) and D = L, we already know that ul = u2 = ... = uK = 0. Therefore, from
(17),

dx
- 7 = U -L( - B(Zo(L))).
dt

(28)

Recall that we have assumed that u > L. Therefore the right side of (28) could be positive (as
well as negative). If U > L(1 - B(Zo(L))), then (28) implies that x will increase and therefore we
will soon have x > Zo(L). At that point, uo will immediately become 0 and x will decrease. After
a very short time, x < Zo(L) so uo = uo and x will increase again. Consequently, uo will jump
infinitely rapidly (in an idealized mathematical model) between 0 and u o and x will remain very
close to Zo(L). (Similar behavior results if we let uo < /UL(1- B(Zo(L))).) To avoid this undesirable

20
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and unnecessary chattering, we choose u0 = ,uL(1 - B(Zo(L)) when x = Zo(L). Note also that since
dx/dt = 0, x remains at Zo(L) until d changes to UH. Zo(L) is therefore a hedging point.

Since x can remain at Zo(L) indefinitely with no subcontracting, it is not likely that Zo(L) < 0.
When x < 0, sales are lost, and there is no offsetting benefit. We can therefore assume that
Zo(L) > 0 and that uo(Zo(L), L) = L

No such issue occurs for any other Zi(L). This is because the dynamics in the vicinity of
x -- Zi(L) are

for x > Zi(L)
dx _

dt
(29)

i-1

E uj - L(1 - B(x))
j=o

i
E j - /L (1 - B(x))
j=O

for x < Zi(L)

Since uo > UL and uj > 0, the right side of (29) is always positive, regardless whether
x > Zi(L). Consequently, there is no possibility of chattering at x = Zi(L), i > 0.

To summarize, the trajectory behaves as follows when D=L:

* If x > Zo(L), all rates are 0 and x decreases at rate -L until it reaches Zo(L).
that value until D changes to H.

x < Zi(L) or

x remains at

· If x = Zo(L), uo = L and x remains constant until D changes to H.

· If Zi(L) < x < Zi- (L), uj = j for j = 0, ... , i - 1. x increases at rate uo + u + u + ... + ui_1
until x = Zi_-(L). At that point, the last subcontractor is dropped; i.e., x increases at rate
Uo±I + +u + ... i- 2 . This continues until x = Zo(L), and x remains at that value until D
changes to H.

5.3 D= H

The behavior when d = H is determined by the same considerations as when d = L, but it is not
the same. Equation (17) becomes, at x = Zo(H),

dx
T = U - (1 - B(Zo(H))).dt

(30)

Since uo < /H, the right side is guaranteed to be negative unless Zo(H) < 0. But Zo(H) < 0
cannot be optimal because if x > Zo(H), uo = u= = ... = UK = 0. will decrease at the
maximum possible rate (-/tH( - B(Zo(H)))), and there will be no revenues. While this may be
beneficial if x > 0 because it reduces inventory cost, it cannot be beneficial if 0 > x > Z(H)
because some customers (who would bring future revenues) choose not to order. As Zo (H) increases
toward 0, fewer and fewer such future sales are lost. Therefore Zo(H) > 0.

Consequently, since the right side of (30) is always negative, Zo(H) is not a hedging point (or
any other kind of temporary equilibrium), so if x is ever near this value, it must decrease. As x
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decreases past Z 1(H), Z 2(H), etc., the right side of (17) increases (i.e., the rate of decrease of x
diminishes), because B(x) increases, and because more and more subcontractors are used, until one
of two events occurs. Either

1. Enough (i) subcontractors are engaged to satisfy

E uj > H( 1- B(Zi(H)))
j=o

Then we choose u0 = U0, uj = j (for j < i), and ui = u*, where

i-i

EZ !_ + ui = H(1 - B(Zi(H))); (31)
j=0

and x remains constant, equal to Zi(H);

or

2. The rate of order loss B(x) increases enough so that the right side of (17) becomes equal to
zero for some x* which is not equal to any Zj(H). That is,

uj = PH(1 - B(x*)) (32)
j=o

In both cases, x has reached a lower limit, since dx/dt has reached 0. (In the latter case, x may
approach the lower limit asymptotically, for suitable B(x).) x remains at this level until the demand
changes and D = L. At that point, the behavior described in Section 5.2 resumes. It is convenient
to define X as that lower bound and to define K' as the number of subcontractors used, i.e, the
value of i that satisfies either (31) or (32). In Case 1, X = ZK'(H); in Case 2, X = x*. Note that

K' = max{i max{Zi(H), Zi(L) > X}

'To summarize, the trajectory behaves as follows when D=H:

* If x > Zo(H), then uo = u0 and uj = 0 for j = 1,..., K. x decreases at rate uo -IH.

· If Zi-l(H) > x > Zi(H) and i < K', for j = 1,...,i < K, then uo = u0 , uj = uj for
j = 1,..., i - 1, and uj = O0 for j > i. x decreases at rate u 0 1+ l .±.. 1 -i-1 - H.

* If ZK-1 (H) > x > ZK (H) and x is constant, then uo = uo, uj = uj for j = 1, ... , K' - 1,

* if x = ZK' (H),

K'-1

UKI = H(1 - B(ZK'(H))) - S k
j=0

* if x = x, then UK = UK'

and uj = O for j = K' + 1,...,K.

22
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5.4 Characteristics of Zj(D)

So far, we know that

Zo(L) > Z 1(L) > Z 2(L) > ... > ZK(L),

and, for the same reasons

Z0 (H) > Z1(H) > Z 2(H) > ... > ZK(H).

When D = L, x increases until it reaches Zo(L), and it remains there until D = H. After the
change in demand, x decreases until it reaches X. We can therefore conclude that, for a steady-state
probability distribution to exist,

Zo(L) > X.

Since X < x < Zo(L), the objective function cannot be minimal if X > 0. In addition, since
sales are lost when x < 0, the objective function cannot be minimal if Zo(L) < 0. Therefore

Zo(L) > O > X.

6 Model with an Unreliable Manufacturing Facility and
Constant Demand

In this section, we present a model with an unreliable manufacturing facility and constant demand.
We describe the structure of the solution for this model by examining the equivalence of this model
to the model with reliable manufacturing facility and uncertain demand.

6.1 Model

Consider a system where the manufacturing plant is unreliable, the subcontractors are perfectly
reliable, and the demand is constant with rate d(t) = d. The state of the manufacturing facility at
time t is a(t) which is either up (U) or down (D). The failure and repair times of the manufacturing
plant are assumed to be exponential random variables with rates p and r respectively.

We assume that the production capacity is sufficient to meet the demand when it is up, i.e.,
u0 > d. All the other assumptions regarding the profits, costs, subcontracting, and the backlog-
dependent demand are identical to those given in Section 4.

6.2 Production Control Problem

With these changes, the production control problem for the unreliable plant-constant demand case
is
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V= max I' = E Aiui- g(x) dt (33)
UO,U1l, -,UK u (

dxJ K
= ui - d'(1 - B(x)) (34)

i=O

0 < u0 < auo (35)

0 < ui < ui i = 1, ... KKI. (36)

1 if a - U
=v 0 if a=D (37)

Markov dynamics for a with rates p from U to D and r from D to U (38)

6.3 Characterization of the Policy

Following the same steps in Section 5 shows that the structure of the optimal policy for this system
is identical to the case analyzed in the preceding sections.

Furthermore, setting uo = /H - L, d' = H - U0, r = ALH, and p = HL yields the same rates of
increase and decrease in each region as those generated by the constant production-uncertain de-
mand case. As a result, the optimal parameters for the control policy for the uncertain production-
constant demand case can be determined from the solution of the reliable production-uncertain
demand case.

Although the sample paths of these two cases are identical after these transformations, the effects
on the customers are quite different. Even though a maximum waiting time can be guaranteed for
the reliable production-uncertain demand case, an upper bound for the waiting time cannot be
set if the manufacturing facility is unreliable. Since a manufacturing plant can be down for an
extremely long period of time (with a very small probability), only an estimate of the waiting time
can be provided. Modeling the behavior of the customer when an estimate of the waiting time is
given is more challenging, since the customer may renege as well as defect.

7 Analysis of the Model

In this section, we analyze the model with subcontracting and volatile demand of Section 4. The
solution of this model yields the solution for the model with a single producer of Section 2 as a
special case, and also the solution for the model with an unreliable plant and uncertain demand
presented in Section 6, after a transformation.

In this section, we calculate the steady-state probability distribution of x and D assuming that
the system is operated under the policy of Section 5. In Section 8, we evaluate the expected profit
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Figure 4: Step-wise constant approximation of a continuous B(x) function

(as well as other performance measures). Then we find the optimal policy by finding the values of
Z(H), ..., ZK(H), ZO(L), ..., ZK(L) that maximize the expected profit.

7.1 Dynamics

The analysis of even simple systems with general non-zero B(x) results in non-closed form solutions.
In order to treat a wide variety of backlog-dependent demand functions, it is convenient to assume
that B(x) is piecewise constant. That is,

0
B(x) = B1

Bi

x>0
O> x > 3
di- > X > i

(39)

where /i, Bi, i = 1,..., M are constants. From (1) and (2),

0 < < B< Bi+l < 1,

0 > i > 3 i+.-

By a proper choice of these constants, and for large enough M, any monotonic B(x) can be arbi-
trarily closely approximated. Figure 4 shows a step-wise constant approximation of a continuous
B(x) function.

25

i1_ ·· L· IF·-· I--X(-^W _ _ _ _ __1-·

May 3, 2001Tan and Gershwin

1



Tan and Gershwin SUBCONTRACTING AND BACKLOG-DEPENDENT DEMAND

It is also convenient to assume that the /i and Bi are chosen so that (32) can be satisfied exactly.
That is, for each i such that Zi(H) < 0, there is an I(i) and a BI(i) such that

Euj = PH(1 - B(i))
j=0

When subcontracting and backlog-dependent demand are combined, the x axis is divided into
at most 2K + M + 4 regions. Within each of these regions, the right side of the x dynamics (17) is
constant and g(x) is linear. Let

R = {Zi(L) i = 0, 1, ... , K} U {Zi(H)i = 0, 1, ... ,K} U {0} U {ili = 1,., , M} U {X}

and let [[R11 + 1 be the number of unique elements in R. Assume R is indexed in decreasing order,
i.e., Ri > Ri+i, i = 0, 1, 2,..., R - 1 < 2K + M + 3. Since Zo(L) > 0 and i < for all i,

* Ro = Zo(L) > 0,

* RIIRII < 0

A sample path of a system with three subcontractors (K = 3) and complete backlogging (B(x) =
0) is depicted in Figure 5. We assume that uO +u1 +u22 < AH, and 0 +u +u2 > AL. That is, the low
demand AL can be met with the capacity of the factory and the two least expensive subcontractors,
but the high demand H cannot. When demand is high (d = AH), x(t) decreases and the slope,
which starts steeply negative, increases to zero at x = Z3 (H). When demand is low (d = AlL), 

increases and the slope, which starts steeply positive, decreases to zero at x = Zo(L).
Let AL be the rate of change of x in region i when the demand state D is low (L). Then

K

Z2L = E: j - L(1 - B(x)), R i < < Ri+l, i = 0, 1, 2, ... 1R1. (40)
j=o

where uj, j = 0,1, ..., K are given by (27). Recall that uj and B(x) are all constant in each region,
so AL is constant.

Similarly, let AH be the rate of change of x in region i when D = H. Then

K

Ai = E j-lH(1-B(x)), Ri < < Ri+, i = 0, 1, 2,... |lR[ (41)
j=0

where uj, j = 0, 1,..., K are described in Section 5.3.
As x decreases, more subcontractor capacity is utilized. Furthermore, some of the potential

customers choose not to order and this decreases the demand rate. As a result, when D = H, x
decreases in region i < J and increases in region i > J, where J is uniquely defined as

J= min {j AJ >0 } (42)

and the lower level is located at RJ = X.
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Zo (L)

0

Z1 (H)

Z1(L)

Z2 (H)

Z3 (H)

/H

/L

Figure 5: Sample paths for a system with three subcontractors and complete backlogging (B(x) = 0)
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Z,(H)
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- -- - _ _ _ - _ _ ' _
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Figure 6: Sample paths for a system with three subcontractors and backorder-dependent demand

Figure 6 depicts the sample path of the system shown in Figure 5 with backorder-dependent
demand described by fi, Bi, i = 1, 2, 3. In this case the hedging levels are located at Ro and R 6

and the regions 6 to 7 are transient. Furthermore, only one subcontractor is used.
Incorporating backlog-dependent demand into the model guarantees that x is always bounded

between Ro and RJ. Even if the production capacity (including the additional capacity obtained
from the subcontractors) is not sufficient to meet the average demand Ed, the backlog-dependent
demand of (17) yields a feasible equilibrium where a portion of the demand is matched with the
available capacity and the remaining portion is lost. As a result, a steady state probability distri-
bution always exists.

In the following sections, we describe how the optimal policy is determined. First, the sys-
tem is evaluated by determining the probability density functions in the interior, and probability
masses at the upper and lower levels for given values of Zo(L), Zi(L), Z 2(L), ... , ZK,(L) and
Zo(H), Z1(H), Z 2 (H), ... , ZK(H). Then, the optimal values of these parameters are determined by
maximizing the expected profit.

7.2 Probability distribution

When the surplus/backlog x is not equal to the upper or lower levels (RO or Rj), the system is said
to be in the interior. The system state at time t is S(t) = (x(t), D(t)) where RJ < x(t) < Ro and
D(t) E {H, L}.
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The time-dependent system state probability distribution for the interior region, FD(t,x), is
defined as

FD(t,x) = prob[D(t) = D,x(t) < x], t > 0, D E {H, L, R < x(t) < Ro (43)

The time-dependent system state density functions are defined as

fD(t,x) = OFD t > 0, D C {H,L}, RJ < x(t) < Ro (44)Ox
We assume that the process is ergodic and, thus, the steady-state density functions exist. The

steady-state density functions are defined as:

fD (x) = lim fD(t, x), D E H, L}, R < (t) < Ro. (45)

It is possible to show ergodicity by observing that in the Markov process model, all of the states
constitute a single communicating class. It is also possible to demonstrate aperiodicity.

7.3 Region i: Ri+i < x < Ri

Suppose Ri+1 < x(t + 3t) < Ri, i = 1, 2,..., J - 1, and D(t + St) = H. Then, since we are modeling
this system as a Markov process,

fH(t + 6t, X) = fH(t, - AHt)(1 - AHLSt) + fL(t, )(ALH6 t) + O(6t) (46)

where o(St) approaches to zero faster than St. This equation can be written in differential form, for
t -+ 0, as

O (t, + AH (t -HLfH(t,X) + ALH fL (t,x) (47)at Ox

Taking the limit of (47) as t -- oc yields the following steady-state differential equation for
fH ():

AHdfH(x) = -AHLfH(Z) + ALHfL(X), Ri+1 < < Ri (48)
dx

Following the same steps for fL yields

L dL( = AHLfH(X) - ALHfL(X) Ri+1 < < Ri (49)dx
In order to solve the set of first order differential equations given in (48) and (49), two boundary

conditions are needed. First, note that at any given level of the finished goods inventory, the number
of upward crossings must be equal to the number of downward crossings. Let N(D, f, T) denote the
total number of level crossings in demand state D, at surplus level , in the time interval [t, t + T]
for large T. Then
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lim N(H, C, T) = lim N(L, S, T) (50)
T-*oo T-4oo

Renewal analysis shows that

lim N(D, ,T) = A\Df(() (51)
T-oo T 

where AP is the rate of change in the buffer level when the demand state is D and C is in region i,
and fD(() is the steady-state density function. This kind of analysis was also employed by Yeralan
and Tan (1997). Then, equation (50) can be written as

-A fH(x) = A fL(X). (52)

Using this result in equation (48) gives the following first order differential equation

dfH () HL( ALH) (X (53)
dx A/n AL fH(x)

whose solution is

fH(X) = cie lix , Ri+1 < x < Ri (54)

where

AHL ALH

AH A

and ci is a constant to be determined. Following equation (52),

AH
fL(x) -= -ci a i, Ri+ < < Ri (55)

7.4 External Boundary Conditions

The steady-state probabilities P0 and PJ that the finished goods inventory is equal to the hedging
level Zo(L) and the lowest level X are defined as

P0 = limprob[x(t)= RO], (56)

PJ = lirnprob[x(t)= Rj]. (57)

Now consider the probability PO that the finished goods inventory is equal to the hedging point
Zo(L). Because /L < uo < H, and because we are considering an optimal policy in non-transient
conditions, the inventory level can increase only when the demand is low. Therefore, if x - Zo(L),
d = /L. Each time the inventory level increases and reaches the level Ro = Zo(L), it stays there
until the state of the demand changes to high and the inventory level starts decreasing. As a result
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of the memory-less property of the exponential distribution, the expected remaining time for the
state of the demand to change from L to H is 1/AHL. P is fraction of time that x = Zo(L):

PO lim N(L,R o,T) 1 = ALfL(R )
1 =-co 0 e (58)

T+oo T ALH ALH ALH

Similarly

PJ lim N(H'RJT) 1 J- fH(R) 1 _ j-(59)
T-*oo T AHL -1HL HL

Let us also define PiH and PiL i = 0, 1..., J -1 as the probabilities that the process is in region i
in the long run when the demand is high and when it is low, respectively:

PiH = limprob[Ri < x(t) < Ri+l, D(t) = H] i = 0,..., J - 1 (60)
t-+oo

piL = limprob[Ri < x(t) < Ri+l, D(t) = L] i 0,..., J- 1 (61)t-+oo

Once the density functions are available, piH and pL can be evaluated as

iRi-H fH(x)d i -0,., J - 1 (62)

Ri

Pi = fR fL()dx i = O..., J- 1 (63)

7.5 Internal Boundary Conditions

To complete the derivation of the density functions, the coefficients ci, i = 0,1, ,..., J- must be
determined. Since there are J unknowns, J boundary conditions are needed. The J- 1 internal
boundary conditions come from the equality of the number of upward and downward crossings at
the switching points. Let R + and R- denote the points just above and just below the hedging level
Ri respectively. Then for large T

lim N(j, R +, T) - lim N(j, R, T), j C {H, L}, i=1, 2 . J-1. (64)
T-~oo I T--+oo

By using equation (51), this equation can be written

A_ 1Lfj(Ri+) = Aifj(R ),j {H, L, i=1, 2,.· , J-1. (65)
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8 Solution of the Model

8.1 Coefficients

Writing (65) in terms of the solution of the density function for j = H given in equation (54) yields

H i- R i _ AiH ie iR i, i-12,... J-1,_Ici-le - i i ,, .. .J. (66)

or

(67)A/-1 (i_-,-ri)Rici = ei ci-, i = 12,... J- 

'Then all the constants ci i = 1, 2,..., J -1 can be determined by co, since ci = ico where

i-1 AHl
i = I e(3- -j)Rj i = 1, J- 1

j=l '

(68)

and 0 = 1.
Finally, the constant co is determined by using the normalizing condition. The sum of all the

probabilities must add up to 1, or

J-1

pO + E (pH + pL) + pJ =
i=O

Equations (54), (55), (58), (59), (62) and (63) yield

(69)

([H - UO)eoRo

ALH

qJ_1AH e r l J 1 R 1

AHL

(i -Ri _ e)iRi+l)/rui

(Ri - Ri+,)

if yi 0,

if 7Ti = 0.

8.2 Evaluation of the Objective Function

In order to determine the optimal values of the hedging levels, the profit must be evaluated. Let
FIi be the total profit rate generated through production at source i, i = 0, 1, ... , K'. The profit
generated by the plant, IoI0 is determined by using the optimal production rate given in equation
(26) as

Aouod- = Ao (prob[x < Ro]u + prob[x = Ro][ZL) (71)Iwo = lim E T
T-hoo T p

which can be simplified as
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Io = Ao (1- co(U - L)(/H - o)

ALH

The fraction of time subcontractor i, i = 1, 2, ... , K' - 1 is used, denoted by Ti, can be written

as

where I{Zi(H)>Rj} = 1 if Zi(H)
used, i.e, To = 1.

Pi I{zi(L)>Rj}) (73)

> RJ and 0 otherwise. Note that the manufacturing plant is always

Then, the total profit rate generated through production at subcontractor i, i = 1, 2, ... , K' - 1
is determined as

Hi = AiviTi (74)

The term for the profit obtained from the last subcontractor depends on whether the lower level
is determined by the subcontractor hedging level or by the customer behavior. If it is determined
by the subcontractor hedging level then the last subcontractor provides goods at a rate which is
sufficient to keep x at this lower level as discussed in Section 5.3. Then, the profit obtained from
subcontractor K' can be written as

J-1

PFI{zK,(H)>RJ} + E (pK-
j=1

I{ZK(H)>Rj } + P'I{ZK,,(L)>Rj })j + AK'U*K P I{ZK,(H)=Rj}

The second term in equation (18) reflects the inventory carrying costs. Let Hi be defined as
(75)

Ri

qj i= xl

Ri+1

(fH(x) + fL(x)) dx = ci A L Qi

((riRi- l)eiRi - (iRi+l 1 - 1)eAiRi+1)/r]2

Qi =
i (R2- R)/2

Let io be the index of the region boundary at x = 0:

io = {j Rj = 0}

Then the average inventory level EWIP is

io-1

EWIP = )E q'j + RoPO
j=o

33

er7o Ro (72)

J-1

Ti = PJI{zi(H)>RJ} + E (P I{Zi(H)>Rj} +
j=l

HI: = AKIIVK

where

(76)

if hri 0,

if i = 0.

(77)
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Finally, the average profit per unit time is

K'

II = Z ni - gEwIP (78)
i=o

The optimal values of Z0 (L), Z 1(L), Z2 (L),..., ZK (L) and Zo(H), Z 1 (H), Z 2 (H),... , ZK (H) are
determined by maximizing II.

8.3 Other Performance Measures

We can also evaluate other quantities of interest. The average sales rate or throughput rate is

TH = P 0IL+Z Vi PJ I{Z(H)>R + + (PHI + Z(L)>R) +(UK,-VK,)P IIZK(H)=RJ}
i=O j=l

(79)
The service level, the ratio of the average sales to the average demand, is

S = TH/Ed (80)

The fill rate is the probability that a customer receives his product as soon as he arrives:

io-1

FR = prob[x > 0] = po + (pH + pL)
i=O

The average backlog level is EBL which is evaluated as

J-1

EBL = - j - RJPJ (81)
j=io

8.4 Waiting Time

An important performance measure of the system is W, the waiting time for a customer. In this
section we derive expressions for the expected waiting time and also the minimum and maximum
of the waiting time for a customer who arrives when the backlog is x.

8.4.1 Expected waiting time

In order to derive the expected waiting time, TH can be written as

TH = TH+prob[x > 0] + TH-prob[x < O0] (82)

where TH + and TH- are the conditional throughput rates when x > 0 and x < 0 respectively.
Since all the demand can be satisfied when x > 0, TH+ is equal to Ed+, the conditional average
demand rate when x > 0, which can be evaluated as
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Ed+ - TH+ F (- AL P + E0 (-1HPiH + LP L ) (83)
FR =~, (HH+ILj=0

Then the expected waiting time E[W] is

E[W] = (I - FR) EBL (84)TH-

where TH- is determined from equations (82) and (83).

8.4.2 Bounds on waiting time

In order to derive the bounds for the waiting time, the demand rate is set to its minimum and
maximum and the resulting dynamics are solved deterministically. The maximum waiting time of a
customer who arrives when there is a backlog of x is determined by the very conservative assumption
that all new customers will arrive at rate iL. Let y(t) be the amount of remaining work in front
of a customer who has joined at t = 0 when the backlog is y(O) = . Then the following set of
differential equations determine the maximum waiting time WMAX:

dydt = u*(x, L)+ u~(x, L), V(O) = (85)

dx K
dt= u*(x, H)+ u (x, L) - L(1- B(x)), x(0) = (86)

WMAX(X) = min {tly(t) = 0 } (87)

Similarly, the minimal waiting time is determined by the assumption that all new customers
will arrive at rate 1UH In this case, the minimum waiting time WMIN is determined by the following
equations:

dy K
d = 2*(x, H)+ u (x, H),y(O) = x (88)

i=1dx = u*(x, H)+ u* (x, H) /PH(1 - B(x)), x(O) = x (89)

WMIN(X) = min{tly(t) = 0 (90)

Figure 7 shows WMIN and WMAX for four different cases. In all the cases, the upper line depicts
WMAX and the lower one depicts WMIN. In the first case (a), there is a single manufacturing facility
and there are no subcontractors. In this case, the waiting time for a customer who arrives when
the backlog is x is x/Uo, and WMIN = WMAX = X/UO0.
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Figure 7: WMIN and WMAX for four different cases (H = 1.5
g+ = 0.1, xo = -3, M = 10, y = 0.5, (a): u o = 0.6, Ao =
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In the second case (b), there is one manufacturing facility and one subcontractor. The subcon-
tractor is used when X < x < 0 and D = H and it is not used when X < x < 0 and D = L. In this
specific case, WMIN = /(UO + u1) and WMAX = X/UO

In the third case (c), there is also a manufacturing facility and a subcontractor. However, due to
different system parameters, Z1 (H) < 0. In this case, when x is close to zero, WMIN = WMAX = X/UO.
Note that WMIN and WMAX are not equal when x is sufficiently negative. The fourth case (d) depicts
a similar picture for a system with one manufacturing plant and two subcontractors.

8.5 Performance Measures for the Subcontractors

In addition to the terms of the agreement with the manufacturing company, frequency and duration
of the requested deliveries are important operational performance measures from a subcontractor's
perspective.

Let Ai be the long run average frequency at which subcontractor i is asked to deliver. When x de-
creases and reaches Zi(H), subcontractor i starts delivery. While Zi(L) < x < Zi(H), subcontractor
i starts and stops delivery as the demand state switches from low to high and from high to low. Sub-
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Figure 8: Effect of demand variability on the total number of managerial interventions (PH = 1.5,

/L = 0.3, Ed = 0.9, Ao = 3, Al = 2, A 2 = 1, uo = 0.5, ul = 0.7, u 2 = 1, g+ = 0.1, xo = -6,

M = 10, -y = 0.5)

contractor i delivers all the time (regardless of the demand state) when x < Zi(L). It is reasonable

to assume that prob[Zi(L) < x < Zi(H)1 is much smaller than prob[x > Zi(H] + prob[x < Zi(L)]

or equivalently Zi(H) is close to Zi(L). Section 9.6 justifies this approximation numerically. Under

this assumption, the delivery frequency can be approximately determined by using equation (51) as

m N(H, Zi(H), T) = -_ H f(Zi(H))
i == lim T

T-+oo T
(91)

where A H. is the rate of decrease in the region just above Zi(H), i.e.,

j* = max {j IRj > Zi(H)}

This approximation is exact if there is one subcontractor with ul > H -- 0, or ul < H - uo and

Z,(L) < X. The total number of times all the subcontractors are asked to deliver per unit time,

K=1 Ai can be seen as a measure of managerial intervention. Figure 8 shows the effect of demand

variability on the number of managerial interventions for a system with a manufacturing plant and

two subcontractors. Note that as the demand variability increases, the length of a demand cycle

also increases and therefore the number of managerial interventions decreases.

Let Fi be the expected duration of subcontract i's deliveries each time it starts a delivery. Note

that the fraction of time subcontractor i is used can also be written as
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Figure 9: Demand
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cycle and
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duration of subcontractor deliveries (/ZH = 1.5, P/L = 0.3, Ed = 0.9,
= -6, M = 10, y = 0.5, uo = 0.5, Case 1: ul = 0.7, Case 2: ul = 2)

T = lim (H, = (H),T) Airi (92)
T-4oo T

Since Ti is determined by equation (73), equations (91) and (92) yield the expected duration of
subcontractor i's deliveries.

Figure 9 depicts Fl for a system with one manufacturing plant and one subcontractor for different
lengths of a demand cycle that has a duration of 1/AHL + 1/AHL. As the figure shows, the duration
of the subcontractor's deliveries increases with the duration of the demand cycle.

The frequency at which the firm starts and stops deliveries from subcontractors is comparable
to the frequency at which important random events occur. In our primary model, in which demand
changes, the frequency of starting and stopping subcontracting is close to the frequency with with
demand changes from high to low and low to high in most cases. However, this is also influenced
by other factors such as the cost of holding inventory which is also investigated in Section 9.3.

In the other version of the problem, where demand is constant and the factory is unreliable, the
same statement is true: the frequency of subcontracting should be comparable to the frequency of
repairs and failures. However, subcontracting is generally less frequent. In particular, if a machine
typically fails for half a day, the typical worst backlog will be a day. If customers can tolerate
such a backlog without defecting, there is no reason to pay for a subcontractor. Similarly, the
typical inventory level (in the absence of strict control), will be about a day. If the company can
afford one day's worth of inventory, again there is little reason to subcontract, and the frequency of
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subcontracting will be low.

9 Behavior of the Model

9.1 Effect of Customer Defection Behavior

The effect of the function B(x) on the performance of the system is depicted in Figure 10 for a
system with a single plant. In this figure, B(x) is a sigmoid, a function of the form

1
B (x) =1 + e(-o)'

Figure 1 shows a sigmoid function with y = 1/2 and x0 = -10. In the examples of Figure 10,
we chose y = 1/2 and a variety of values of x0. In the discretization of B(x), we let the step size
d = ln[ + o] in order to reach 1 -e in M steps. Then we chose /o = 0,

/i = 6i, ]

2 Bi1 + e(Ii--o) + 1 e(ji-0xo)

and, in these cases, = 0.001 and M = 10.
As customers become more sensitive to backlog, i.e., as x0 increases, the profit and the service

level decrease, and the expected inventory level increases. Due to the loss of more and more
customers, expected backlog level also decreases. Note that the service level is quite low for this
case. The upper and lower hedging levels increase as the customers become more sensitive to the
waiting time.

Figure 11 shows the effect of x 0 on the hedging levels. In this case, g+ is very high and therefore it
is not desirable to hold finished goods inventory. Moreover as the customers become more impatient,
that is as x 0 approaches 0, all the hedging levels approach each other and coincide at x = 0 when
x0 = 0. In this specific case, X = ZH(2) > ZL(2) and ZH(O) > ZL(O) and therefore ZL(2) and
ZH(0) do not affect the dynamics. When x0 = 0, it is not possible to hold finished goods inventory
or backorder. In this case, when the demand is low, only the manufacturing plant operates at the
demand rate and when the demand switches to high, a number subcontractors are engaged in the
order of decreasing profit until the demand is met instantaneously. When the demand switches
back to low, the subcontractors stop delivery in the reverse order. Since it is not possible to store
or backorder electrical power, the operation of the production/subcontracting policy for this special
case is analogous to the policy used to operate different power generators with different costs and
capacities described in Schweppe, Caramanis, Tabors, and Bohn (1988). Note also that when
Zo(L) = 0, this special case is analogous to a make-to-order system where it is not possible to carry
finished goods inventory.
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Figure 11: Effect of B(x): A Special case (H = 1.5, L = 0.4, AHL = 0.05, ALH = 0.05, u0 = 0.6,
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9.'2 Effect of Demand Variability

The effect of the variability of demand on the performance of the system is depicted in Figure 12 for
a system with a single plant. The variability of demand is indicated by the coefficient of variation
of the demand rate cv. As the demand variability increases, the profit and service level decrease
and the average backlog and the average inventory increase. Increasing demand variability pushes
the hedging point Zo(L) upward. Since there is a single manufacturing facility and there are no
subcontractors, the lower limit is not affected by the demand uncertainty; it is determined by the
customer behavior from (16).

Figure 13 shows the effect of variability on a system with one plant and one subcontractor for the
lost sales case (B(x) = 1 for all x < 0). Since all the demand is lost when x < 0, the lower hedging
level is located at x 0 and there is no backlog. Just as in the previous case, as cv increases, the
upper hedging level and the expected WIP level increases. Furthermore the profit and the service
level decreases as the demand variability increases. decreases.

9.3 Effect of Inventory Carrying Cost

Figure 14 shows the effect of inventory carrying cost on the performance of a system with one
manufacturing plant and one subcontractor. As g+ increases, the upper hedging level approaches
zero and consequently EwjP decreases to zero. The step-wise behavior of the lower level X is caused
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Figure 12: Effect of the demand variability (H = 1.5, P/L = 0.3, Ed = 0.9, u = 1, Ao = 3,
g+ = 0.1, xo = -3, M = 10, y = 0.5)
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by the customer behavior. In this specific example, B(x) takes different values at x = 0, -0.6, -1.2
and constant between these values. As g+ increases, we can tolerate more customers and therefore
X first switches from 0 to -0.6 after staying at 0 and then from -0.6 to -1.2. This behavior of X
also drives EBL and SL to behave similarly. The slight bump on SL for g+ = 0.27 is caused by
numerical optimization routine.

9.4 Effect of a Subcontractor's Price

Figure 15 shows the effect of the price per unit that a single subcontractor charges. If the final
sales price of the item is 7r per unit, the cost for making it in-house is r - Ao per unit (other than
inventory cost), and the price charged by the subcontractor is r - Al. A measure of the additional
subcontractor cost relative to A0, which is independent of final product sales price, is therefore
(Ao - A 1 )/A 0, the horizontal axis of Figure 15. When this ratio is close to 0, the subcontractor cost
is low; when it is close to 1, the price is high.

The vertical axis of Figure 15 is the fractional increase in optimal profits as a result of making
use of the subcontractor. The total profit for the case where no subcontracting is used is denoted
by H ° and the total profit for the case where the subcontractor is available is denoted by I. When
the profit from to the subcontractor's supplies is very small compared to the profit from using
the manufacturing facility, i.e. when 1 - A 1/Ao is close to one, the subcontractor is not used and
therefore there is no profit gain. However, as the profit due to the subcontractor approaches the
profit from the manufacturing facility, i.e., as 1- Al/Ao approaches 0, the subcontracting increases
the total profit substantially, as much as 63%.

9.5 Capacity Options

Having a subcontractor always available allows the manufacturer to reduce backlog and therefore
customer loss. Furthermore, since the subcontractor is used when it is necessary and only paid for
the volume of production received, this agreement is attractive for the manufacturer. In order to
make this agreement more attractive for the subcontractor, the contractual agreement may include
a fixed up-front payment for the duration of the agreement. Tan (2001) analyzes this kind of
agreement as options. An option is the right, but not obligation, to take an action in the future and
a real option is the extension of financial option theory on real (non-financial) assets (Amram and
Kulatilaka 1999). Since the contractual agreement is related to increasing the capacity, we refer
this option as a capacity option.

Similar contractual agreements are reported to be used between manufacturers and their sub-
contractors and analyzed in Bassok and Anupindi (1997), Eppen and Iyer (1997), Costa and Silver
(1996), Jain and Silver (1995), and Tsay and Lovejoy (1999), among others. Most of these studies
consider a two-period model and analyze the contracts from the buyer perspective where the buyer
has an option of receiving more when the uncertainty is resolved.

Consider the following capacity option: the company pays an up-front fee of Ci to subcontractor
i to receive an extra capacity of 0 < ui(t) < u i at time t for a duration of T. The exercise cost of the
option is Ao - Ai. Due to demand volatility, the company may consider this option to decrease the
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Figure 14: Effect of the inventory carrying cost (H = 1.5, AL = 0.3, Ed = 0.9, cv = 2.98, o = 0.6,
u = 1, A = 5, A = 2, xO = -3, M = 10, y = 0.5)
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need. of holding an excessive inventory or investing in capacity expansion. This is also advantageous
for the contractor if it has extra capacity not fulfilled with its own demand. Furthermore, the up-
front payment will be received regardless of whether the option is exercised or not in the specified
time period.

Let Jl* be the maximum profit that the company can obtain without using subcontractor i, but
possibly using the other subcontractors. Let () be the maximum profit that can be obtained by
having the option of receiving additional production from subcontractor i as well, assuming a zero
up-front payment. If the duration of the contract is long enough, the total profits during [0, T)
can be approximated by Il*T and rI(i)T. Then the maximum amount that should be paid as an
up-front payment to subcontractor i is the additional profit that is obtained by using this option,
or,

Ci (*- -I(i))T

Figure 16 depicts how this procedure can be used to evaluate the terms of an option for a
company with a single plant and only one available subcontractor. The up-front payment is set
to ., 10%, and 20% of the expected profit that the company can generate in the duration of the
option without using a subcontractor. The x axis is the exercise cost of the option as a ratio of
the per unit profit of the plant, i.e., (Al - Ao)/Ao. The figure suggests that this option allows the
company to increase its profits even after paying an up-front payment and agreeing on a higher
exercise cost. For example, if the company pays 20% of the expected profit as an up-front payment
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Figure 16: Evaluating the terms of a capacity option (H 1.5, /UL = 0.3, AHL = 0.1, ALH = 01,

u0 = 0.6, ul = 1 Ao = 3, g+ = 0.1, x0o = -3, M = 10, y = 0.5, T = 100, C1 = 0, 10%HI, 20%1o0 )

to the subcontractor, it can justify paying an exercise cost to the subcontractor that reduces its
per unit profit to 40%A 0 . Similarly as the up-front payment and the exercise cost decrease, this
agreement with the subcontractor further increases the profit.

As the demand volatility increases, having the option of increasing the capacity temporarily
becomes more important. However, if the demand volatility is low, the up-front payment and the
exercise cost may not be justified. Figure 17 shows the effect of demand volatility on the profit
increase for a system with a plant and a subcontractor. The up-front payment for this case is 20%
of the expected profit during T = 100 without the subcontractor. The exercise cost of the option
2/3A0 . In this case, the capacity option is attractive and increases the profit for cv > 2.6. For lower
levels of demand volatility, the up-front payment and the exercise cost of the contract cannot be
justified and the company satisfies the demand without the subcontractor.

9.6 An Approximate Subcontracting Policy

9.6.1 Justification

The optimal feedback policy derived in this study is a function of the inventory/surplus x and the
demand state D. Although the inventory/surplus can be observed easily, the demand state may
not be observable. Therefore, an approximate policy that does not depend on the demand state
may be necessary. In particular, setting Zi(H) = Zi(L) = Zi yields an approximate policy that does
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Figure 17: Effect of demand variability on a capacity option (/H = 1.5, L = 0.3, AHL = 0.1,
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Figure 18: Value comparison for the demand-insensitive policy (H = 1.5, /AL = 0.3, Ed = 0.9,
uo = 0.5, u = 0.8, u2 = 1, AO = 3, Al = 2, A 2 = 1, g+ = 0.1, x0 = -3, M = 10, -y = 0.5)

not depend on the demand state. We call this approximation the demand-insensitive policy.
Moreover, as AHL and ALH approach infinity, i.e. as the demand state switches faster between

high and low, incorporating the demand information in the feedback policy provides less value.
Having different levels for each demand state can be beneficial only when the demand persists in a
given state, that is, when the demand variability is high.

Figure 18 depicts the profits for a system with a manufacturing facility and two subcontractors
for the optimal and the demand-insensitive policies denoted by and HIs respectively. As the
figure shows, when the demand variability is low, both policies give the same profit. Even when the
demand variability is high, the difference between the optimal profit and the near-optimal profit is
less than 1.5%.

9.6.2 Application

When the demand-insensitive policy is used, a system with a manufacturing facility and a number
of subcontractors that is operated with this policy can be represented as a network of stations and
buffers. Consider a system with a manufacturing facility and two subcontractors. Assume that a
demand-insensitive policy with levels Zo > 0 > Z 1 > Z2 is used to operate this system. A network
representation of this system is given in Figure 19.
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Figure 19: An equivalent network representation of the approximate policy
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In this system, the manufacturing facility, the subcontractors, and the demand are represented
by stations that are drawn as boxes. The facility and the subcontractors generate finished parts;
the demand machine generates orders which are matched up with parts at the synchronization
machines.

When two streams meet at an assembly station, the parts and orders are assembled instanta-
neously. The assembly stations are referred as synchronization stations because they are infinitely
fast and perfectly reliable. If both buffers at an assembly contain material, enough material will be
removed from both so that one (or possibly both) of the buffers is empty. After that, since material
arrives at both at finite speeds, at least one buffer is always empty. The rate at which assembly
takes place is equal to the rate at which material arrives at the empty buffer.

In particular, either Buffer 0 or Buffer 1 is empty at every time instant. Then Buffer 0 represents
the finished goods inventory, x when x > 0. If Buffer 0 is empty, the total inventory level in the
other buffers gives the backlog, x when x < 0.

The output of the manufacturing facility goes into Buffer 0, which has capacity Z0. The output
of the demand station is split into three routes where an upper route has priority over the lower one.
That is, the demand first goes to Buffer 1 until it is full. When Buffer 1 becomes full, the overflow
is routed to Buffer 2, which has capacity Z 2 - Z 1. When this buffer is also full, the remaining part
of the demand goes into Buffer 3, which has infinite capacity.

The manufacturing facility works with the maximum rate u until Buffer 0 fills up. When that
happens, the output rate from the manufacturing facility drops down to the demand rate, which is
just enough to keep Buffer 0 full. This is the optimal operating policy given in (26).

Subcontractor 1 can start producing when there is demand flowing into Buffer 2, (i.e., when
Buffer 1 becomes full). When Buffer 1 fills up, the amount of demand that flows into Buffer 1 is
equal to the current demand minus the maximum production rate of the manufacturing facility uo.
When the backlog reaches Z 1, Subcontractor 1 starts delivering goods with its maximum rate ul
and continues as long as Buffer 2 is not full, i.e., as long as x < Z 2. Similarly, Subcontractor 2
produces when Buffer 1 and 2 are full, or equivalently, when x > Z2.

A set of control policies which can be represented as a network of stations and buffers, and whose
performance can possibly be evaluated by a decomposition method, is described by Gershwin (2000).
For such policies, the optimal values of the control parameters can be determined by using a buffer
sizing algorithm. The policy described here is an extension of that set of policies, and decomposition
methods do not currently exist for the network. We suggest that finding such a method would be
valuable future research.

10 Conclusions

10.1 Summary

We have extended the widely-studied dynamic programming model of real-time scheduling control
of manufacturing systems in two important ways: we model the efect of backlog on profits through
an explicit representation of customer behavior; and we model the availability of subcontractors to
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provide finished goods when the factory's short-term capacity is insufficient. We also model random
demand.

The new model of customer behavior involves a defection function which indicates what fraction
of the potential customers choose not to complete their orders when the backlog reaches a given
level. Because of this phenomenon, the model has a novel feature: the demand need not be less than
capacity (including the capacities of the subcontractors) for there to exist a steady-state probability
distribution of the inventory/backlog and the demand state.

We use the Bellman equation to determine a solution structure, and we find that the solution
involves a hedging point (to limit how far production should be allowed to go ahead of demand),
and a set of thresholds (that indicate when to use each of the subcontractors). To calculate the
hedging point and the thresholds, we find the steady-state probability distribution. We evaluate
the objective function and choose values of the parameters to maximize it.

Finally, we have performed a set of numerical experiments to demonstrate the behavior of the
new model and the solution.

10.2 Future Research

This research can be extended in several different directions:

* An extension of the hedging point policy to complex systems (multiple part types; multiple
stages; general routing including reentrant flow) is described by Gershwin (2000). In the
present system, lead time is due only to the producer falling behind demand. In the more
complex system, lead time is also due to the fact that material flows from stage to stage,
and may have to wait at each stage. The policy in (Gershwin 2000) is based on a dynamic
programming problem that includes an explicit backlog cost. It would be of interest to replace
that backlog cost with the present model of customer behavior.

* The amount of sales that a business has should be a function of its past delivery performance.
However, there is no way in the present model to account for the producer's reputation for
on-time delivery. One way to include such an effect might be to add an appropriate state
variable. For example, consider

t K

XS ui(T)dT

Rl (t)= i=

Jo d(T)dT

This quantity is the average amount of demand actually served as a fraction of total potential
demand. We can extend the demand model so that the demand parameters (L, A/H, ALH,

AHL) are functions of R1 (t).

Another possible reputation variable is
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R2 (t) (1- B(x(T))dT
t

which might be easier to include in the system dynamics. The integrand is the fraction of
customers who do not defect.

* The method to value a given option explained in Section 9.5 can be used to evaluate the terms
of a given contract from a single subcontractor directly. However, if there are a number of
available options from alternative subcontractors, determining the best group of subcontrac-
tors requires simultaneous evaluation of the terms of the contracts.

* An important extension would be to include competition in the formulation, and turn it into
a game. Now the B(x) function as seen by one firm depends on the actions taken by all
competing firms. A simple example of this is described in Appendix A. A related extension
would be to model the competition among the subcontractors.

* To make the model more complete, we should include possible delays in subcontractor per-
formance. Another extension would be to guarantee lead times to customers, but this may
require creating classes, one for each guaranteed lead time.

* We have postulated the existence of the defection function B(x). It would be very desirable
to use empirical data to confirm or refute the existence of such a function.

* In Appendix A, we analyze the effect of customer behavior on the customer defection func-
tion in a queueing model. This approach can be extended to analyze the effect of customer
behavior, the capacity and the competitive position of the firm on customer defection.
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A Effect of Customer Behavior on the Defection Function

In this section, we briefly discuss the effect of customer response to waiting on the customer defection
realized by servers. In order to analyze this phenomenon, we employ a simple queueing model. See
Figure 20.

Consider a system with two queues, two exponential servers and Poisson arrivals. Assume that
when a customer arrives, she joins the shortest queue (and ties are broken with equal probability).
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Figure 20: Shortest queue system

Under this customer behavior assumption, each server will see a customer defection rate that de-
pends on the queue length. Namely, given that there are a number of customers in the first queue,
the first server sees that a certain percentage of the arriving customers join the other queue.

Let N 1 and N 2 denote the number of customers in the first and the second system respectively.
The steady-state joint probability function is defined as

p(nl, n2) = prob[N1 = nl, N 2 = n2]

The steady-state dynamics of the system are given by the following set of flow equations:

Ap(O, 0) = ip(l, 0) + I'2P(0, 1)

X
(j1i + A)p(l, 0) = p(O, 0) + /ilp( 2, 0) + P2P(1, 1)

2

(p 1 + A)p(nl, 0) = lp(nl + 1, 0) + 2p(nl, 1), nl > 2

A
(M2 + A)p(O, 1) = p(O, 0) + Pip(1, 1) + P2p(O, 2)

2

("2 + A)p(0, n2) = 1Ip(l, n2 ) + 2p(0, n2 + 1), n2 > 2

( + + )p(n1, n) = Ap(1, n - 1) + Ap(n - 1, n) + plp(n + 1, n) + p(, nl + 1), ni > 1

A
(f1t + + + A)p(n + 1, n) = p(nl, nl) + plp(n, + 2, nl) + 2p(nl + 1, n + 1), nl A 1

A
(P -/2 q- ))P(nl, n + 1) = P(nI, n) + 1p(n + 1, n + 1) + 2P(nl, n + 2), n > 12
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(]I1+ q-2+ )p(nl, n2) = Ap(nl,n2 - 1)-+ lp ( n
1 - 1, n 2) -+ - 2 P ( n l , n 2 + 1), n1 > 3, n - 2 n2 1

(/ 1+ 2 + A)p(n, n 2) = Ap(n, n2 + 1)+ ip(n + 1, n 2)+ /t2p(n, n2 + 1), n2 -2 > n > 1, n 2 > 3

Solution of the above set of equations with E E p(ni, n 2) = 1 yields the steady-state joint
fl =0n2=0

probability function.
When n > n 2, the first server looses all the arriving customers. When nl = n2, an arriving

customer defects with 50% probability. Therefore, the conditional probability that an arriving
customer defects when there are n customers waiting in the system gives the customer defection
function. By denoting the number of customers waiting as negative numbers, B 1 (x) and B 2(x) are
determined as

BI(x) = prob[N1 > N 2 1N = -x] + -prob[N 1 = N2lNI = -
2

Similarly

B 2(x) = prob[N < N2 N2 -x] + -prob[N = N 2 ]N2 = -x]2

Figure 21 depicts the realized BI(x) and B 2(x) for four different cases. In the first case, 1 = 2
and therefore both servers see the same defection function. In the other cases, the customer defection
rate is higher for the slower server. Note that the shape of the realized customer defection functions
is similar to the one used in this study.

Customer behavior and the competitiveness of the company in the market determine the cus-
tomer defection rate. In the previous example, the combined effect of customers choice of joining
the shortest queue, availability of an alternative server, and the difference between the service rates
of the servers determine the customer defection function.

Now, consider an alternative customer behavior. Assume that customers choose to join a queue
with a shorter expected waiting time. In the above model, since the service time is exponential,
when there are nl customers waiting for the first server and n2 customers are waiting for the second
server, the expected waiting time for a potential customer is n/ul for the first server and n 2/[ 2

for the second server. Therefore, an arriving customer chooses the first server when n < 2 and
the second server when ! > 2. We assume that a tie is broken with choosing a server with equal
probability. The steady-state joint density of this system can be determined by deriving the flow
equations.

The customer defection functions for this case are defined as

B, (x) = prob N > N2 N 1 = -x + prob =- N1 = -x
I /2 Similarly1 2

Similarly

58

_ _C �� � __

May 3, 2001



Tan and Gershwin SUBCONTRACTING AND BACKLOG-DEPENDENT DEMAND May 3, 2001

= 2, P2=
2 , A =2 = 4 , pL =2, A =2

P1 = 1, P2 = 4 , A = 3 1I = 1 0 , 2 = 1 , A = 6

-8 -6 -4 -2 0
x

Figure 21: Realized customer defection functions, B l (x) and B 2(x) for a two-server shortest-queue
system
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B2(x) = prob - <-N 2I =-x + -prob N- N 2 =-x
L= 1 22 2 1 1 /2 J

It is possible to extend this approach to analyze alternative customer behaviors and also the
effect of competition in the market. Furthermore, a company can obtain valuable information
on customers' attitude towards waiting, the competition in the market by observing customer
defections. This information can then be used to decide on capacity levels or operate the system
more effectively. The investigation of this phenomenon is left for future research.
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