
OPERA TIONS RESEARCH CENTER

Working Paper

Network Flow Models for Designing Diameter-Constrained
Minimum Spanning and Steiner Trees

by

Luis Gouveia
Thomas L. Magnanti

OR 359-01 August 2001

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Network Flow Models for Designing

Diameter-Constrained

Minimum Spanning and Steiner Trees

Luis Gouveia (1) and Thomas L. Magnanti (2)

(1) DEIO - CIO
Faculdade de Ciencias da Universidade de Lisboa

Bloco C/2 - Campo Grande
CIDADE UNIVERSITARIA

1700 Lisboa
Portugal

email address: lgouveiagfc.ul.pt

(2) Department of Electrical Engineering and Computer Science and
Sloan School of Management

MIT
Cambridge, MA USA, 02139

email address: magnanti(@mit.edu

August 2001

Abstract

The Diameter-Constrained Minimum Spanning Tree Problem seeks a least cost spanning tree
subject to a (diameter) bound imposed on the number of edges in the tree between any node pair. A
traditional multicommodity flow model with a commodity for every pair of nodes was unable to
solve a 20-node and 100-edge problem after one week of computation. We formulate the problem as
a directed tree from a selected central node or a selected central edge. Our model simultaneously
finds a central node or a central edge and uses it as the source for the commodities in a directed
multicommodity flow model with hop constraints. The new model has been able to solve the 20-
node, 100-edge instance to optimality after less than four seconds. We also present model
enhancements when the diameter bound is odd (these situations are more difficult). We show that
the linear programming relaxation of the best formulations discussed in this paper always give an
optimal integer solution for two special, polynomially-solvable cases of the problem. We also
examine the Diameter Constrained Minimum Steiner Tree problem. We present computational
experience in solving problem instances with up to 100 nodes and 1000 edges. The largest model
contains more than 250,000 integer variables and more than 125,000 constraints.

Keywords: Spanning Trees, Steiner Trees, Diameter Constraints, Multicommodity Flow Models,
Hop-Indexed Models

1. Introduction

The minimal spanning tree problem (MST) and Steiner tree problem (ST), along with the traveling

salesman (TSP), are the most celebrated problems in the field of combinatorial optimization. In the

classical minimal spanning tree problem, we are given a prescribed graph G = (V,E) with node set V and

edge set E as well as a cost ce associated with each edge e of E. We wish to find a spanning tree T of the

graph with minimum total cost, as measured by the sum of the costs of the edges in the spanning tree. In

the Steiner tree problem, the tree needs to span only a subset of the nodes in the underlying graph G. The

other nodes, called Steiner nodes, are optional. The MST and ST problems arise directly in many

applications (for example, the design of telecommunication systems) and as a subproblem in many other

applications, including the TSP.

In this paper, we consider a computationally challenging class of the MST and ST problems, those

with bounds imposed on the number of edges in the tree between node pairs. The most general version of

this problem imposes a bound Bpq on the number of edges in the tree between every pair of nodes p and q.

Note that we can assume that Bpq = Bqp since in any feasible constrained tree, the path between nodes p and

q can contain no more than min {Bpq, Bqp} edges and so we can replace Bpq and Bqp by min {Bpq, Bqp}.

One version of this problem, known as the Fixed Root Diameter Minimal Spanning Tree Problem or

Rooted Diameter Minimal Spanning Tree Problem (RDMST), imposes a constraint that the tree path from a

specified root node 1 to every other node j contains no more than H edges (H is a given positive integer).

That is, Blq = H and Bpq = +oo if p • 1 and q • 1 (or, Bpq > min{lVl-1,2H}). This problem models the design

of centralized telecommunication networks with quality of service constraints. The root node represents the

site of a central processor (computer) and the remaining nodes represent terminals that are required to be

linked to the central processor. The path constraints limit the number of edges between the root node and

any other node and guarantee a specified level of service with respect to certain performance measures, for

example, guarantee a prescribed level of reliability to potential link or node failures (see, for example,

Woolston and Albin (1988)). This special case has received considerable attention in the literature. Gouveia

(1998) has discussed applications, linear integer programming formulations, lower bounding methods, and

relevant references for the RDMST.

In this paper, we focus on a version of the problem with uniform constraints between every node pair,

which we refer to as the Diameter-constrained Minimal Spanning Tree Problem (DMST). In this case, we

set Bpq = D for all nodes p and q. This case imposes a bound on the diameter of the tree, which is the

maximum number of edges in any of its paths. The DMST models situations when all of the nodes can

communicate with each other, and we wish to guarantee a certain level of service between any node pair.

When D > 4, the DMST problem is NP-Hard (Garey and Johnson (1979)). When D = 2 or 3, the problem is

easy to solve (see Appendix 2). In a previous study of this problem, Achuthan, Caccetta, Caccetta and

1

Geelen (1992,1994) have proposed and tested several exact approaches. The first of these papers describes

several branch-and-bound algorithms that use the unconstrained minimum spanning tree solution as the

bounding component and differing branching rules. The authors solve complete random cost instances

containing up to 30 nodes. The second paper proposes a branching rule based upon the interesting fact that

the nodes of a feasible solution can be partitioned into layers around a central node (D even) or a central

edge (D odd). The branching assigns nodes to different layers and relaxes the problem into a kind of

minimum arborescence problem defined on a layered graph. With this approach, the authors have improved

upon their previously results and been able to solve instances with up to 50 nodes and D = 4. Achuthan,

Caccetta, Caccetta and Geelen (1992,1994) have also proposed two other alternative models, which we

briefly summarize in Section 3.1. More recently, Abdalla, Deo and Fraceschini (1999) have presented some

heuristics for the DMST and examined parallel implementations of these heuristics.

In this paper we examine network flow-based formulations for the DMST and for the Steiner tree

version of the problem. For ease of exposition, we cast most of our development for the minimal spanning

tree problem, and then later in Section 5 describe modest alterations needed to accommodate the more

general Steiner tree problem. After formulating a multicommodity flow-based integer programming model

for the general case, we introduce several alternative models for the DMST that lead to more effective

solution procedures. We then report on computational experience indicating that the modelling

improvements can induce very substantial reductions in solution time. For example, after over one week of

computations, the original formulation was unable to solve one problem, whereas computations with the

alternative formulations were able to solve the problem in less than one second.

Our modelling improvements use four essential ideas.

First, following Magnanti and Wong (1984), we use a multicommodity flow formulation that has

proven to be valuable in modelling many network design problems.

Second, we model the problem as a multicommodity flow problem with a single source, instead of the

traditional model with a commodity for every pair of nodes. We simultaneously find a "central node" or a

"central edge" that serves as the source for the commodities. This modelling approach permits us to reduce

the number of commodities by a factor of n, the number of nodes of the graph.

Third, we direct the problem treating the solution as directed tree from a selected central node or a

selected central edge. The idea of directing network design problems has proven to be a powerful

modelling construct in the past to improve formulations. In several contexts, Wong (1984), Balakrishan,

Magnanti and Michandani (1994), Goemans (1994), Geomans and Myung (1993), Chopra and Rao (1994),

and Magnanti and Raghavan (1999) have shown how to use this technique to improve models of the

hierarchical network design problem and various network connectivity problems including the Steiner tree

problem. In particular, the directing technique is useful for modelling the minimal spanning tree problem,

2

since the directed multicommodity flow model or an equivalent enhanced undirected model, but not a

traditional undirected model, gives an extended description of the convex hull of incidence vectors of

spanning trees (see Martin (1986) and Magnanti and Wolsey (1996)).

Fourth, following Gouveia (1998), we use a hop-indexed formulation to improve the multicommodity

flow formulation. His computational results suggest that in the context of network design problems

involving hop constraints, the linear programming relaxation of an appropriate hop-indexed reformulation

can improve substantially on the linear programming relaxation of a multicommodity flow formulation.

Our results will demonstrate the power of using the single-sourcing approach combined with directing

the model and using a hop-index formulation for obtaining significant improvements in solution times.

The remainder of this paper is organized as follows. In Section 2, we introduce a basic

multicommodity flow formulation of the diameter-constrained minimal spanning tree problem. In Section

3, we show how to model the DMST as a single source directed problem, distinguishing situations in which

the diameter restriction D is even and odd. We discuss both traditional network flow and hop-indexed flow

models. Our computational results show that these models are not as successful for solving the DMST

instances when D is odd as when D is even. Thus, we also present some valid inequalities for the situation

when D is odd. In Section 4, we present a different formulation when D is odd based upon solving the

problem in an expanded graph containing pseudo-nodes corresponding to potential central edges. Appendix

1 shows that the linear programming relaxation of these enhanced models dominates the linear

programming relaxation of the original models presented in Section 3. Section 5 briefly discusses minor

modifications to the spanning tree formulations for the Steiner case. In Section 6, we report on computation

experience on graphs with up to 80 nodes and 800 edges. These problems instances contain up to 250,000

integer variables. In Appendix 2, we present tight formulations for the polynomially-solvable cases of the

DMST when D = 2 and D = 3.

2. Basic Formulations

To formulate a multicommodity flow model MCF of the diameter-constrained problem, we use two sets

of variables. Variables Xe (e E E) indicate whether the minimum spanning tree contains edge e, and directed

flow variables ylq ({i,j } E E; p,q E V; p • j and q • i) specify whether the unique path from node p to node

q traverses edge {i,j} in the direction i to j.

3

Table 0. Modeling a Diameter Constrained Spanning Tree

This formulation is a multi-source multi-destination formulation for the minimum spanning tree

problem, as given in Magnanti and Wong (1974), augmented with the set of cardinality constraints

{(i,j}eE (y p
q + yP

q
)

< D for all p,q E V. These inequalities state that the path between any two nodes p to q

contains no more than D edges. The formulation MCF is quite similar to a formulation presented in

Balakrishnan and Altinkemer (1992) for a more general network design problem with hop constraints.

As stated, the MCF formulation has a commodity, and so flow variables yq, between every pair p and

q of nodes. Since yPq = yjq (for all i,j,p,q E V) in any integer solution to the problem, we can eliminate half

the variables and commodities, creating a reduced problem, using only the variables with p < q. If the value

of the variables (Xe, y pq with p < q) are feasible for the linear programming relaxation of the reduced

problem, then the value of the variables (XY
p q with p < q, yq = yqi with p > q) are feasible for the linear

programming relaxation of the full commodity problem. This observation permits us to conclude that the

value of the optimal solution of the linear programming relaxation of the reduced model is equal to the

value of the optimal solution of the linear programming relaxation of the full commodity model.

Unfortunately, the reduced MCF model still contains a large number of variables and constraints and

can be difficult to solve. On a Pentium Pro 450Mhz computer, the CPLEX solver (version 7.0) was unable

to solve a modest-sized 20 node and 100 edge instance of the MCF formulation after one week of

computation. This model contains about 40,000 integer variables and 20,000 constraints.

Following Balakrishnan, Magnanti and Wong (1989), we could tighten the linear programming

relaxation of the MCF formulation using generalizations of the constraints yPq +YPiq < x that include

flow variables for pairs of commodities on the lefthand side of the inequalities. However, the model with

4

Model MCF
minimize CeXe

eE

subject to ZXe =n

eeE

YiI -E YjP = i; p, qfor all i, p, q E V
jcV jEV 1 i=q

Ypq + YjPq < X for all e = {i, j} E E, p, q E V

(YPq +YPq) <D for all p,q E V
{i,}EE

yjE { O,1} for all e = i, j} E, p, q V

Xe E{0,1} for all e E.

the new constraints would contain a much larger number of constraints and it seems unlikely that using it

would permit us to solve this problem instance. A different idea is to tighten the linear programming

relaxation of the constrained path problem that is embedded in the MCF formulation. We describe one such

idea (a hop-indexed model) in the next section in the context of a different model for the DMST problem.

The possible improvements obtained in this way for the MCF model will not, however, be readily

realizable because of the large number of commodities in the formulation. Thus, we will not explore the

hop-indexed approach in the context of the MCF model.

Throughout the remainder of our discussion, for any optimization model P, we let PL denote its linear

programming relaxation, F(P) denote its set of feasible solutions, and v(P) denotes its optimal objective

value. To obtain the linear programming relaxation MCFL of any model like MCF that contains binary

variables, we replace constraints of the form xe E {0,1} and yiq E {0,1} by the lower and upper bound

constraints 0 < xe < 1 and 0 < yPq < 1.

As noted, the MCF model is based on a multi-source multi-destination network flow model for the

minimum spanning tree presented in Magnanti and Wong (1974). As is well known, we can obtain a single-

source multi-destination model for the minimum spanning tree whose linear programming relaxation is as

tight as the linear programming relaxation of the multi-source multi-destination model (see, for instance,

Magnanti and Wolsey (1996) and the next section of this paper). This single-source model involves only

n-l commodities, defined from a specific node to all other nodes in the graph. The "distance" constraints

between every pair of nodes involved in the DMST problem suggest that we might not be able to use a

similar idea for modeling the DMST problem. However, as shown in the next section, special properties of

trees will permit us to also model the DMST problem as a single-source network flow problem.

3. Single Sourcing and Directing the Problem

In this section, we use the following elementary properties of trees to formulate single source and

directed versions of the DMST problem. This formulation permits us to reduce the number of commodities

by a factor of n and to obtain much better algorithmic performance.

i) A tree T has diameter no more than an even integer D if and only if some node p of T

satisfies the property that the path from node p to any other node of the tree contains at most

D/2 edges.

ii) A tree T has diameter no more than an odd integer D if and only if some edge {p,q} of T

satisfies the property that the path to any other node of the tree from either node p or node q

contains at most (D-l)/2 edges.

5

As observed by to Handler (1973), the "central" node p and "central" edge {p,q} in these properties are

easy to determine. If a tree has diameter D, then starting from any node i, we find any node j that is farthest

away from it, in the sense of number of edges in the unique path connecting these nodes. Then from node

j, we find the node k farthest from it. The midpoint of the tree path joining nodes j and k is either a node p

or the midpoint of edge {p,q}. This result shows an intimate relationship between the diameter constrained

spanning tree problem and a center location problem. Other researchers (Camerini, Galbiati and Maffioli

(1980)) have used this observation when studying a related minimax diameter spanning tree problem.

These observations show that when D is even we could solve the diameter constrained minimum

spanning tree problem by solving IVI fixed root problems and that when D is odd we could solve the

problem by solving El fixed root problems after shrinking each edge to create a pseudo node. We will

instead create single models that simultaneously select the central node and central edge and the diameter-

constrained tree.

To easy our notation in describing these models, we will augment the original network by adding an

additional node 0 and zero cost edges {0,j} for all node j E V to create an augmented graph. We will refer

to this network as the augmented network and the network without the node 0 and its incident edges as the

original network. We let V0 = V u {0} and E0 = E u {{O,j} for all jeV} denote the node and edge sets in

the n+l node augmented network. Then in this graph:

i) when D is even, we wish to select a minimum cost spanning tree containing a single edge {0,j}

and ensure that the unique path from node 0 to every node contains at most (D/2) + 1 edges, and

ii) when D is odd we wish to select a minimum cost set of n+l edges so that: (i) n edges form a

spanning tree containing exactly two edges {0,i} and {0,j}, (ii) the unique path from node 0 to

every node contains at most [(D-I)/2] + 1 edges, and (iii) the (n+l) th edge e = {i,j} from the

original network connects the endpoints i and j of the two edges {0,i} and {0,j .

Figures 1 and 2 give examples of the diameter constrained spanning tree problems on the augmented

networks when D = 4 and D = 5.

6

Added
Node 0

Original
Graph

Figure 1 - Augmented Network for Situations with D Even (D = 4)

Added
Node 0

Original
Graph

Figure 2- Augmented Network for Situations with D Odd (D = 5).

In choosing the underlying tree in Figure 1 or 2, we could choose n undirected edges or we could

replace each edge {i,j} in the network with two directed arcs (i,j) and (j,i), each with the same cost cij as the

edge {i,j}. For the directed version of the models, we let Ao denote the (directed) arc set in the augmented

graph and A denote the (directed) arc set in the original network. In the following sections, we will

investigate both the undirected and directed models.

Achuthan and Caccetta (1992,1993) have proposed formulations for the DMST based on a similar

augmented network. Their models are based on a set of modified Miller-Tucker-Zemlin subtour

elimination constraints. Although their models are quite compact, results given in Gouveia (1995) using a

similar model for the fixed-root version of the problem have shown that the modified Miller-Tucker-

7

.,a

Zemlin subtour elimination constraints represent a rather weak modeling approach, in terms of the

associated linear programming relaxations, for imposing a limit on the maximum number of arcs in a path.

Some results given in Section 6 using a simplified version of their model, as suggested in subsequent work

by Achuthan, Caccetta, Caccetta and Geelen (1994), exhibit the same computational behavior for the

DMST.

3.1 Underlying Core Models

The models presented in this section for the diameter constrained spanning tree problem contain two

core subproblems: a rooted minimum spanning tree problem and hop-constrained path problem. We can

model these core models in different ways and by mixing and matching the possible core components, we

can create several alternate models for the diameter constrained spanning tree problem.

Table I shows core models for a rooted minimum spanning tree problem defined on an undirected

graph (Vo,Eo) with n + 1 nodes and a rooted directed minimum spanning tree problem (the minimum

arborescence problem) defined on a directed graph (Vo,Ao) with n + 1 nodes. Although the directed graph

(Vo,Ao) could have any general structure, for our purposes, we obtain it by directing a given undirected

graph (V,A) as indicated in the last section. The undirected model uses two sets of variables. Variables Xe (e

E E) indicate whether the minimum spanning tree contains edge e, and directed flow variables y ({i,j E

E; k V; i • k) specify whether the unique path from the root node to node k traverses edge {i,j} in the

direction i to j. The directed model uses two sets of variables as well: the directed flow variables as in the

undirected model and variables xij ((ij) E A) indicating whether the spanning tree contains the directed arc

(i,j).

Table I. Modeling a Rooted Spanning Tree

The cardinality constraints in these models guarantee that the tree solution contains n edges (arcs). The

inequalities yk i < x, and yi < xj prohibit flowing on any edge e or arc (ij) that is not included in the

8

Undirected Minimum Spanning Tree Model Minimum Arborescence Model
minimize C eXe minimize E cix.

eeEo (i,j)EAO

subject to Z xe = n subject to xij= n
eEEo (ij)cAo

1 i=O 1 i=O

E' yL -yyk i0 i O,k for all k E V,i V 0 i0,k for all k V,i E V,
jEv jVo -1 i = k jv jEVo 1 i=k

yi + k < <x for all e = {i, j} Eo , k E V yk < xi for all (i,j) E ,keV

yk >0 for all e={i,j}eEo,keV k >0 for all (i,j)E Ao,keV

Xe {0, 1} for all e EEo. xj E {O, 1} for all (i, j) Ao.

minimum spanning tree. Together with the flow conservation constraints, they guarantee that the solution is

connected. Note that the constraints in the directed model imply that 1 < iyik < iXik for all values of

keV, which together with the constraint "(ij)AXI = n imply that iyi
k

= iXik = 1 for all k V.

Let ST denote the feasible set of the undirected minimum spanning tree model and DST the feasible set

of the directed minimum spanning tree (directed arborescence) model.

As is well known (see, for example, Magnanti and Wolsey (1996)), the linear programming relaxation

of the directed model always has an optimal solution with integer values for the variables x. The undirected

model might not have an integer optimal solution. As noted by Magnanti and Wolsey (1996), it is not

difficult to formulate an undirected model whose linear programming bound is equal to the linear

programming bound given by the directed model. However, the enhanced undirected model contains far

more constraints than the directed model and, for our purposes, is impractical from a computational

perspective.

To model the hop constraints we can use either of the two models shown in Table II. In both cases, we

assume we are modeling a problem of finding a directed path containing at most H arcs from a given root

node (node 0) to a specific node k. The constrained path model uses only flow variables defined on the arcs

of the underlying network, sending one unit of flow from the root node to node k, but using at most H arcs.

The hop-constrained model is an extended formulation. Besides the flow variables, it also uses binary

variables zihk indicating whether arc (ij) is the hth arc in the path joining the root node and node k.

Table II. Modeling a Hop-Constrained Path (from node 0 to node k)

Since the 0-1 variables yk specify a path between the root and node k, the inequality

li. j)i) ykj < H in the constrained path model restricts the chosen path to contain at most H arcs. The

Hop-Constrained Path model contains constraints stating that an arc enters node i in position h if and only

9

Constrained Path Model Hop-Constrained Path Model

E Zo: = 1

E~kY Ykj 0 i•O,k EZYJ =zov for all iEV1 Ei=OVezi{Zo, for all i, A
j~v jet1 i~~k C zi:''' = hk=0 forall i E V,h = 2,..,H -1

(i,j)EAo zHk 1

yU E {0, 1} for all (i, j) E A k= Zk for all (i, j) E A
Yi

-
Z h=iK H Zii

zj E {0,1} for all (i, j)E Ao,h =1,...,H

Zkk EE{0,1} for all k V, h = 2,..., H.

if another arc emanates from this node in position h + 1 and that one arc enters node k in position H. Note

that this model contains "loop" variables hk (h = 2,..., H) with zero cost to model situations when the path

from the root node to node k contains fewer than H arcs (that is, ihk = 1 for some node i and h < H). The

equalities yk .= E-,: H Z hk relate the original variables with the extended variables. Although the original

flow variables y are unnecessary for obtaining a valid formulation for the core subproblem, we will need

them for relating the hop-indexed variables with the flow variables included in the tree models.

Let DP denote set of feasible solutions of the constrained path model and DHP the set of feasible

solutions of the hop-constrained model.

The hop-constrained problem contains far more variables than the constrained path problem.

However, it is a network flow (path) problem on an expanded network and so has the advantage that the

extreme points of its linear programming relaxation are integer-valued (see Gouveia (1998)) whereas, in

general, the linear programming relaxation of the constrained path model has fractional extreme points.

This result implies that for the linear programming relaxations, in the space of y variables, the feasible set

of the hop-constrained path model is contained in the feasible set of the constrained path model.

3.2 Network Flow Models for the Diameter Constrained MST Problem

3.2.1 The Situation When D is Even

As shown in Table III, by choosing either direct or undirected versions of the spanning tree problem

and the constrained path or hop variable versions of the hop-constrained path problem, when D is even, we

can create four different models of the diameter constrained minimum spanning tree problem.

10

Table III. Models of the DMST when D is Even

The degree constraint imposed on the root, the flow conservation for the root node, and the constraints

linking the x and y variables guarantee that the linear programming relaxation of these models satisfy the

equalities yj = xoj (ykj = x 0j}) for all j,k X 0 and thus, when we impose integrality, the node k E V

with Xok = 1 serves as a transshipment node for all the commodities. In accordance with the interpretation

given at the beginning of this section, this transshipment node will be the central node of the tree in the

original graph.

Our computational results show that the linear programming bound given by the undirected multi-

source/multi-destination MCF model is generally much better than the linear programming bound given by

the undirected UMCF model. However, in some cases the UMCF model can provide a tighter linear

programming relaxation.

Example. In a complete graph on five nodes numbered 1 to 5, suppose D = 2 and edges {i,j} with j = i+l

(mod 5) have cost 1. Each remaining edge has a cost 10. The MCF model has an optimal linear

programming value of 7 while the UMCF model has an optimal linear programming value of 8.5. The

optimal value to the problem is 22.

Using the directed DMCF formulation, the CPLEX solver was able to solve the previously mentioned

DMST instance with 20 nodes and 100 edges within 200 seconds. For all instances that we tested, the linear

programming bound given by the directed DMCF model is as good (actually better) than the linear

11

Undirected Directed

Path Model UMCF Model DMCF

minimize ,cexe minimize E cijxii
eEo (i,j)E A

subject to (x, y) E ST subject to (x, y) E DST

Xoj} = 1 xoi =1
jcV jEV

Y E DP(D/2)+1 for all k E V. Y E DP(D2)+l for all k E V.

Hop Model HopUMCF Model HopDMCF

minimize I minimize E CeXe
eEEO (iJ)0

subject to (x, y) ST subject to (x, y)E DST

- {,i} E=o 'oi=1

(Z,y) E DHP/ 2)+l for all k E V. (z,y) E DHP(/ 2)+1 for all k E V.

programming model given by the traditional model MCF. We have been unable to verify whether this

relationship holds for all cases. For the previous five-node example, the DMCF model has a linear

programming value of 13.0.

As in other related models (see Magnanti and Wolsey (1996)), the linear programming relaxation of the

directed model DMCF is at least as strong as (and generally is much stronger than) the linear programming

relaxation of the undirected model UMCF. Similarly, the directed hop-indexed model has a stronger linear

programming relaxation than the undirected model.

We note that when creating these UMCF and DMCF models, we can remove one set of flow balancing

constraints for each node k • 0 (either from the tree model or from the constrained path model) since they

become redundant. A similar observation applies to the hop-indexed models HopUMCF and HopDMCF.

Using the equalities = 1 (D/2)+1Zhk, it is easy to show that the flow conservation constraints of the

tree model are aggregations of the hop-indexed flow conservation constraints of the Hop-Constrained Path

model. Therefore, we can remove the flow conservation constraints from the tree model. Furthermore, the

constraints yk = Zh= i(Do2)+l zk relating the two sets of flow variables permit us to rewrite the linking

constraints (y < Xi in the directed model and yk + yk < Xe in the undirected model) using the z and x

variables and so we can eliminate the y variables from the hop-indexed models. With these observations, it

is easy to show that the directed models DMCF and HopDMCF are the same as the models described by

Gouveia (1996,1998) for the fixed-root version of the problem with an additional degree constraint

imposed on the extra node.

Finally, we note that the previously stated property that the extreme points of the linear programming

relaxation of the Hop-Constrained Path model are integer-valued whereas, in general, the linear

programming relaxation of the constrained path model has fractional extreme points permits us to show that

the linear programming relaxation of the directed hop-indexed model HopDMCF is at least as strong as the

linear programming relaxation of the directed model DMCF. Similarly, the linear programming relaxation

of the undirected hop-indexed model HopUMCF is at least as strong as the linear programming relaxation

of the undirected model UMCF. Formally, we have:

Proposition 3.1: v (HopDMCFL) > v (DMCFL). v (HopUMCFL) > v (UMCFL).

Proof. As we have previously noted for the linear programming relaxation, in the space of y variables,

the feasible set of the hop-constrained path model is contained in the feasible set of the constrained path

model. Adding the (directed) spanning tree constraints retains this property, which implies the stated

result.

12

The computational results given in Section 6 indicate that this dominance is strict for most cases. Using

the directed hop-indexed formulation, the CPLEX solver was able to solve the previously mentioned 20

node and 100 edge DMST instance in less than four seconds.

3.2.2 The Situation When D is Odd

We have observed that our models for D even are simple modifications of models for the fixed-root

version of the problem. As Figure 2 shows, for deriving a model for situations when D is odd, we need to

be more elaborate. To model these situations, we must choose a single (central) edge {i,j } from the original

network as well as two incident edges 0,i} and 0,j} (or two incident arcs (0,i) and (0,j) for the directed

models). To do so, we let Ee be a zero-one variable indicating whether or not we choose the central edge e

= {i,j and impose the following edge selection constraints:

EEe =1
e~E

Xok = Ee for all k E V
eEE(k)

Ee E {0,1} for all eE E.

In these expressions, E(k) denotes the set of original edges incident to node k. In the space containing

all of the x variables and the edge variables Ee from the original network, we let ES denote the set of

feasible solutions to these Edge Selection constraints. Since the chosen edge e has two incident nodes,

exactly two of the variable xok in this model will have value one. Consequently, we need not include the

extra constraint stating that exactly two edges emanate from the root node, node 0. We also note a similar

observation in the context of the corresponding linear programming relaxation. In fact, by addingthe

constraints X,, = E(EE for all k V, we obtain 'kX = 2 F EE . The equality E E e 1

implies x = 2.

As in the situation when D is even, we obtain four different models. We might make one other

observation about these models: if the network contains the central edge {j,k}, then it will contain both

edges {0,j and {0,k} and so we can send commodity k directly from node 0 to node k and not send any of

this commodity on edge 0,j}. Consequently, we can replace the constraint yok < Xoij • k) with the

stronger constraint yk < x - Ejk.

13

Table IV. Models of the DMST when D is Odd

As we observed before, the two directed models satisfy the constraints xik = 1 for all k E V. The

equalities Xok = Ze-E(E in the set ES imply that Yio0xXik + eEE(k)Ee = 1 for all k V. That is, every

node k E V either receives an incoming arc from the original network or is an endpoint of the central edge.

k
One way to view these models (e.g., by eliminating the variables x0k but retaining the variables yj) is that

we are establishing a node (the index 0 plays this role) in the middle of the chosen edge (with Ee = 1) with

the property that the unique path from this node to any other node contains at most [(D-1)/2+1] edges or

arcs. This formulation avoids the need to add nodes in the middle of each edge of the original network and

then treat the added and original nodes differently since we do not require a path to added nodes.

As in the D even models, some constraints for the D odd models become redundant when we combine

the formulations for the two core subproblems. As for the D even case, the hop-indexed models produce a

better linear programming bound than the constrained path models. Formally, we have

Proposition 3.2: v (HopDEMCFL) > v (DEMCFL). v (HopUEMCFL) > v (UEMCFL).

Our computational results show that our models are not as successful for solving DMST instances when

D is odd as when D is even. One possible explanation for this result might be given by the constraints

linking the flow variables with arc (edge) design variables for the arcs (edges) emanating from the

14

Undirected Directed

Path Model UEMCF Model DEMCF

minimize I CX + CeEe minimize E c'xo' + E ceEe
eE 0o eEE (i,j)EA0 ecE

subject to (x, E) E ES subject to (x, E) E ES

(x, y) E ST (x, y) E DST

Y E DP(D-)/ 2)+i for all k E V Y E DPoD-1)/2)+1 for all k E V
k - xEl forall k,jV; k Ej.

Yoj < xo j - Ejk for all k, j E V;k j. y0j xoj - Ek for all k, j E V;k j.

Hop Model HopUEMCF Model HopDEMCF

minimize A CeXe + CeEe minimize E ciXi + CeEe
ecE0 eeE (i,j)EA0 eE

subject to (x, E) E ES subject to (x, E) E ES

(x, y) E ST (x, y) E DST

(z, y) DHP(Di)2)+l for all k E V (z,y) E DHP(Dl)/2)+l for all k E V

yk< xoj - Ejk for all k, j E V;k y - Ek forall k, j EV; k j.

additional node 0. As we have noted before, the four models for situations when is D even satisfy the

equalities y = Xoj (yk = xo j) for all j,k • 0 and thus, node k • 0 with Xok = 1 serves as a transshipment

node for all the commodities. In the context of the D odd models, we cannot guarantee that one of the two

nodes p and q with xop = X0q = 1, say node p, will be a transshipment node for a given commodity k. The

best we can say is that node p could be a transshipment node for that commodity (which is easily seen by

combining the linking constraints for arc (O,p) (or edge {O,p}) with the corresponding flow conservation

constraint). This behavior motivates, in a certain sense, the formulation described in Section 4.

3.2.3 Equivalent and more compact formulations when D is odd

By using an auxiliary augmented network, we have developed formulations for situations when D is

even and D is odd. It is fairly easy to obtain equivalent formulations (in terms of corresponding linear

programming relaxations) involving only variables associated with the original network.

As one such example, let us develop a reduced formulation with an equivalent linear programming

relaxation to the model HopDEMCF. The equalities Xok = EE(k) Ee for all k V in the model

HopDEMCF permit us to eliminate the variables x (k E V) from the model. Then, the cardinality

constraint (i)EAox = n becomes (ij)eA X + 2 EeE = n, which simplifies even further to

Z(ij)AXj = n-2 since EEEe = 1. The inequalities Zk +Eik < xoi for all i,k E V (we ignore the term

i"+ Ei} when i = k) become Zok eeE(i)\{ik} E

Next, we use the equalities jv zik = Zk for all i,k E V to remove the hop indexed flow variables

associated with the arcs leaving the auxiliary root node (that is, the hop indexed variables with h = 1). The

equalities 1i z0 =1 for all k E V become i jv zlk = 1. Finally, the inequalities

Z -< eeF(i){ikEe for all i,k V become A-jvZik < eeEe(i)\{ik}Ee . Note that when i = k, these

inequalities reduce to Z2 < ZE()
E e because the model does not contain the variables z' ij E V (i • j).

When i • k the previous inequalities have the following intuitive interpretation: if any arc in position 2

emanates from a given node i and belongs in the path to node k, then the central edge should be adjacent to

node i and should differ from the edge {i,k}. Table V depicts these modifications to the model:

15

Table V. Reducing the number of variables and constraints in the model HopDEMCF

To close this subsection, we note that the linear programming relaxation of the HopDMCF formulation

always has an optimal integer solution for the DMST when D = 2 (as shown in Appendix 2). However,

when D is odd even the strongest of our models, the model HopDEMCF, can have fractional extreme

points. We describe exact formulations for the case D = 3 in Appendix 2. As a direct consequence of the

study of the D = 3 case, in the next subsection we present a set of valid inequalities that permit us to

strengthen the linear programming relaxation of HopDEMCF.

3.2.4 Valid inequalities when D is odd

The inequalities presented in this section are based on an observation concerning any optimal solution

when D is odd, namely, any node linked to the central edge is always linked to the closest endpoint of the

central edge. For every non-central arc (i,j) E A, let L(i,j) denote a set of potential central edges {i,p} E

whose endpoint i is not farther to node j than is node p. That is, L(i,j) = { {i,p} e E: p j and cij < cpj}. The

previous observation concerning optimal solutions for situations when D is odd indicates that if an optimal

solution contains an arc (i,j) connected to the central edge, then L(i,j) contains the central edge.

We show next how to use information from the sets L(i,j) to derive valid inequalities for situations

when D is odd. These inequalities are based on disaggregated versions of the inequalities

vzk < E eE(i)\{i,k} Ee (for all i,k E V and i k) described in the previous subsection. We start by

weakening the these inequalities into k <. Ee for all (i,j) A and k V. We can interpret

these weaker inequalities as indicating that if arc (i,j) is in position 2 on the path to node k, then the central

edge should be adjacent to node i and should differ from the edge {i,k}. However, by our previous

observation concerning optimal solutions for situations when D is odd, we know that the central edge is

restricted to the set L(i,j)\{i,k}. That is, we can strengthen these inequalities to z 2
k < e L(ij)\{i,k} Ee for all

(i,j) E A and k E V.

The new set of constraints permit us to obtain two new models for the situations when D is odd. We obtain

one of the new models, denoted HopDEMCF+, by adding the new constraints to the model HopDEMCF.

We obtain the other, denoted HopDEMCF* by replacing the O(n2) constraints

16

Original Model Reduced Model

E xY=n E xi=n-2
(ij)eA (i,j)EA

Zik + Eik < Xoi for all i, kE -V Ez
2k < A Ee for all i, k E V

zj =1 for all k E V. jeV e=E(i)\{i,k}

Z Voi Z z k for all k V.
iV = 1 for all k V.
iEV jV

Cv z2k < (ecE(i)\{i k} Ee (for all i,k E V and i k) in HopDEMCF by the new set of O(n*JAI) constraints

z2k -< 'eL(i,j)\{i,k} Ee for all (i,j) E A and k E V. Consequently, the original model HopDEMCF differs

from the model HopDEMCF* only concerning the set of constraints relating the hop-indexed variables

z2k with the central edge variables Ee . Table VI depicts the differences between the three models:

Table VI. The three directed hop-indexed models for D odd

Clearly, the linear programming lower bound given by HopDEMCF+ cannot be worse than the linear

programming lower bound given either by HopDEMCF or HopDEMCF*. Thus, we have the following

result.

Proposition 3.3. v(HopDEMCF+L) 2 v(HopDEMCFL). v(HopDEMCF+L) 2 v(HopDEMCF*L).

Our computational results show that these inequalities can be strict. In general, neither of the linear

programming models HopDEMCF and HopDEMCF* dominates the other. Our computational results show

that for random cost graphs the new model HopDEMCF* produces a better bound than the original model

HopDEMCF. The situation is reversed for the instances with Euclidean costs.

Using the new model HopDEMCF+, we have been able to solve problems that we could not solve using

the HopDEMCF model because its linear programming lower bound was not tight enough. We note,

however, that in some cases, the extra constraints in HopDEMCF+ have contributed to huge solution times

to obtain the integer solution. In some of these cases, the third model, the model HopDEMCF* which

produces a weaker linear programming bound but is more compact than the strongest model, proved to be a

viable alternative for obtaining the optimal integer solution.

We also note that due to the inclusion of the new set of constraints, the linear programming relaxation of

the models HopDEMCF+ and HopDEMCF* always have an optimal integer solution for the DMST when

D = 3 (the Appendix 1 establishes this result). This observation also implies that v(HopDEMCF*L)

v(HopDEMCFL) when D = 3.

17

Model HopDEMCF Model HopDEMCF+ Model HopDEMCF*
2'i < E Ee for all i V z2'< E Ee for all i V 2 < I Ee for all i V

ecE(i) eeE(i) eeE(i)

E 2k < k
2 k• E

jv E
jcV eaE(i)\{i,k} jeV eeE(i)\{i,k}

for all i,k V and i k. for all i,k E V and i k

for all (i,j) E A and k E V. for all (i, j) e A and k V.

- I-
11111 ->· -1_ _~- I

4. Enhanced Formulations for the DMST when D is odd

The formulations described in this section are also based on our prior observation that in an optimal

solution to situations when D is odd, any node linked directly to the central edge is always linked to the

closest endpoint of the central edge. In this section we use this property to construct a different model. We

will contract every possible central edge {p,q} into a supernode and replace the two arcs connecting the

nodes p and q to any other node j by the shorter of the arcs (p,j) and (q,j).

This observation permits us to model situations when D is odd as a special version of the D even

problem in an appropriately expanded graph. Let G = (V,E) be the original undirected graph. We define the

expanded graph GE = (VE,EE) as follows:

VE =V U {{i,j}: {ij} E}

EE=E {{{i,j},k}: {i,j}e VE\V, k eV\{i,j} and ({k,i}e E or {k,j}e E)}.

The set VE includes all the nodes in V plus a new set of nodes, the "supernodes," corresponding to

edges in E. The set EE includes all the edges in E plus a new set of edges linking each supernode to the

neighbors of either of the endnodes of the edge corresponding to the supernode. The number of edges in the

path from the supernode (say {p,q}) to any other node in TE is at most (D-1)/2 if and only if the number of

edges in the path from the central edge {p,q} is at most (D-1)/2 in T.

Based on our experience with the models presented in the previous section, we shall cast our discussion

in terms of only directed models. Thus, we replace each edge e = {i,j} E EE of the undirected expanded

graph by two directed arcs (i,j) each with the same cost as the edge e and obtain a directed expanded graph

GE = (VE,AE). We replace an edge of the form { {i,j},k} in the undirected graph by only the single arc

({i,j},k) in the directed graph. We define the arc cost structure in GE as follows. If an arc in GE is of the

form (i,j) with i,j E V, then it has the same cost as it has in the original graph G. Otherwise, the arc has the

form ({i,j } ,k) and we set its cost equal to the minimum of cik and Cjk. The definition of the new arcs and the

way their costs are defined is typical of graph theory algorithms that shrink several nodes into supernodes

(Edmonds' minimum cost arborescence algorithm is an example). Using the definition of the arc costs in

AE, it is easy to transform any feasible tree TE in GE into a feasible tree T in G with the central edge {p,q}.

Furthermore, the definition of the costs in GE guarantees that TE is optimal in GE if and only if T is optimal

in G.

Following our discussion of Section 3, we will augment the expanded graph by adding an additional

node 0 and zero cost arcs connecting the root node to each supernode. Figure 3 illustrates this

transformation. In this augmented graph, we wish to select a tree TE containing a single arc emanating from

18

node 0, spanning a single supernode p,q}, and all the original nodes in V except nodes p and q. The tree

must satisfy the property that the unique path from node 0 to every node contains at most (D-1)/2 + 1 arcs.

A

-Am
/ 1 ~~~~~~~~~~~~0

Cei = min (CppCq)

t~.- ;;, ~
MUUUU vrily ilia1
Node 0 Edges Graph

Figure 3 - Augmented Enhanced Network for Situations with D Odd

The resulting model is similar to the problem discussed in Section 3 for situations when D is even.

Indeed, we can write the DMCF and HopDMCF models for situations when D is odd in the context of this

augmented graph with minor modifications of the models when D is even. The variables x and y will now

have indices corresponding to three types of arcs:

(i) the arcs (0,e) for e = {p,q} E E,

(ii) the arcs (e,j) for e = {p,q} E E, j E V\{p,q} and ({p,j}e E or {q,j} E)}.

(iii) the arcs (i,j) for (i,j) E A.

19

Table VII. Modeling a Directed Rooted Restricted Tree in the Augmented Expanded Graph

Based on our observation motivating this formulation, when e = {p,q} the cost cej (e E E; j E V\{p,q})

is given by cej = min {Cpj,Cqj}. The first two constraints state that the tree contains n - 1 arcs and that

exactly one arc leaves the auxiliary root node. The conservation flow constraints for the nodes in V state

that when i = k, either (i) Eee(k) Xoe = 0 and node k receives one unit of flow from the root node (note

that the model does not contain the variables y;. for all k,j E V) and node k is included in the tree, or (ii)

yZeE(k) Xoe = 1 and node k does not receive flow from the root node (we use again the fact that the model

does not contain the variables y;. for all k,j E V) and thus, it is not included in the tree. When i X k, the

corresponding constraint simply states that node i is a transshipment node for commodity k. The flow

conservation constraints for the nodes e E E state that if e = {k,p} for some p E V, then node e receives one

unit of flow of commodity k if and only if arc (O,e) is in the solution (the model does not contain the

variables ye4 for all k,j E V, e E E and e = {k,p} for some p in V). Ife = {p,q} for p,q • k, then node e is a

transshipment node for commodity k. The remaining constraints are self-explanatory.

To obtain valid formulations when D is odd, we need to combine this model with simple adaptations of

the path models described in the previous section. In this way, we shall obtain an enhanced directed

multicommodity flow model (Enh-DMCF) and an enhanced directed hop indexed flow model (Enh-

HopDMCF). For simplicity we do not formally state the complete models (we refer the reader to the

Appendix 1 which contains a complete description of the model Enh-HopDMCF).

20

Directed Restricted Tree Model
minimize Z cijx.

(i,j)AE

subject to E xj =n-1
(i,j)EAE

E Xoe 1
eEE

jEO for all i, k E V; i k

Y-(i (\iE+ A Yeki)=
E x,, -1 for all i,k E V; i= k

jcV j~v ecE\(E(i)uE(k))

k k 0 for all k E V, e = {p, q} E E\E(k)

YeJYV\e - for all k E V, e = {p, q} E E(k)

yke =1 for all k E V
eeE

yi < x for all (i, j)E AE,k E V

yk>o for all (i,j)E AE,k E V

xi E{0,1} for all (i,j) E AE.

It is possible to show that the linear programming relaxation of the enhanced models Enh-DMCF and

Enh-HopDMCF dominate the linear programming relaxation of DEMCF and HopDEMCF+ respectively.

That is,

Proposition 4.1 v(Enh-DMCFL) 2 v(DEMCFL). v(Enh-HopDMCFL) > v(HopDEMCF+L).

As demonstrated by our computational results, the inequalities can be strict. The proof of this full result

is quite elaborate and so we omitted from this discussion. Appendix 1 provides a proof of half of the result,

namely that the linear programming relaxation of the model Enh-HopDMCF dominates the linear

programming relaxation of the model HopDEMCF+.

Our computational results show that the lower bound given by the linear programming relaxation of the

new model Enh-HopDMCF is in general significantly better than the lower bound given by the linear

programming relaxation of the models described in the previous section for situations when D is odd. In

fact, the lower bounds given by this model for situations with D odd are close to the optimal integer value

and nearly of the same quality as the lower bounds given by DMCF when D is even. However, there is an

obvious disadvantage to using the Enh-HopDMCF formulation. Notice that while the original graph G has

n nodes and m edges, the expanded graph GE contains n + m nodes and O(nm) edges. The number of

variables and constraints in the new model is substantially larger than the number of variables and

constraints in the other models. In fact, our computational results show that either the linear programming

relaxation of the new model is too large to be solved or the CPU times needed to solve its linear

programming relaxation are quite large when compared with the CPU times of the models described in the

previous section.

Besides being a good choice for solving small-sized instances of problems with D odd, we also note that

the study of this new model together with the study of the D = 3 case suggested the inequalities described

in Section 3.2.4. These inequalities have permitted us to solve instances that are not solved by either the

original HopDEMCF model (its linear programming lower bound was not tight enough) or the enhanced

model Enh-HopDMCF (its linear programming model was too large to be solved or requires too much time

to be solved).

5. Minimum Steiner Trees With Diameter Constraints

In many applications the tree need not connect all the nodes of the network. The set of nodes is

partitioned into two sets, R and S. In telecommunications settings, the elements of the set R usually are

terminals that must be connected to each other and the set S represents switching nodes. The tree is

required to span all nodes in R and might or might not include some of the nodes in S, the so-called Steiner

nodes. The problem defined in this way is the classical Minimum Steiner Tree Problem (see Hwang,

Richards and Winter (1992) and Magnanti and Wolsey (1996)). As mentioned in the introduction, quality

21

of service requirements might suggest a diameter constraint stating that the number of edges in the tree path

between every pair of nodes in R does not exceed a given value D. When R = V, we obtain the DMST

problem discussed in the previous sections. When IRI = 2, the problem becomes a shortest path problem

between two specified nodes with an additional constraint stating that the path cannot contain more than D

edges. This problem is modeled simply as an unconstrained shortest path problem in an appropriate graph

and the solution for this problem provides the underlying idea for creating the hop-indexed models

discussed in Section 3.

It is easy to modify all the models we have presented for the DMST problem for the Steiner version of

the problem: (i) the commodity indices in the formulations range only over the set R instead of the entire

node set V; and (ii) we replace the constraint stating that the number of edges (arcs) in the spanning tree is

equal to IVI - 1 by a constraint stating that the number of edges (arcs) in the tree should be greater or equal

to RI- 1.

Because of modification (i), when IRI is small our models would be small and so more easily solvable.

Computational results presented in Section 8 for the diameter Steiner tree problem with IRI = IVI/2 and R =

IVl/4 confirm that these Steiner instances are easier to solve than the corresponding spanning tree versions.

6. Computational Experience

6.1 Problem Instances

To understand what might be achievable with the models discussed in this paper, we have generated

several problem instances with up to 100 nodes and 1000 edges. We have considered two groups of

instances: random cost instances and Euclidean instances. For each value of n (number of nodes) and m

(number of edges) we have generated different random and Euclidean instances. We have used a uniform

distribution in the interval [1,100] to obtain the cost of each edge included in each random cost instance. To

obtain the Euclidean instances, we have i) randomly generated the coordinates of n nodes in a 100 by 100

square grid, ii) selected the cost of each candidate edge (i,j) as the integer part of the Euclidean distance

between the two nodes i and j, and iii) defined the edge set E associated with each instance by choosing the

m least cost edges of the corresponding complete graph. The directed models will contain twice as many

arcs as the undirected models. For each instance, we have tried several values of the diameter parameter

ranging from 4 to 8.

Several of the generated instances are infeasible for small values of the parameter D. Thus, for some

instances, we have omitted the results for D = 4 and 5. The problems are infeasible because of the way we

have selected the edges for each instance. To address this concern, we have conducted a few preliminary

results with Euclidean instances generated in a different manner. First, we select the edges of the minimum

star solution. Then, we select the m - (n-l) least cost edges of the corresponding complete graph minus the

22

minimum star edges. Our results have shown that these instances are much easier to solve than the ones

tested in this paper. We believe these problems are easier to solve because the minimum star solution might

give some relevant information concerning the optimal integer solution for D greater than 2. We noticed,

for instance, that when D is even, the root of the minimum star is the root of the optimal integer solution of

many of the instances tested.

We performed all tests in a Pentium II, 450 Mhz computer. We used the CPLEX 7.0 package to solve

the linear programming models and to obtain the optimal integer values.

6.2 Situation When D is Even

Table VIII and IX summarize our results for the random and Euclidean instances with n = 20 and 30

and D even, i.e., D = 4, 6 and 8. The first column specifies the number of nodes, edges and required nodes.

We choose the set R arbitrarily. The second column specifies the value of D. The next four columns depict

the gaps given by the optimal linear programming bound of the models MCF, UMCF, DMCF and

HopDMCF. These columns indicate the value [(OPT - LB)/OPT]*100 (OPT is the value of the optimal

solution and LB is the value of the lower bound given by the optimal linear programming solution of the

model indicated at the top of the column). The last column indicates the optimal value. We have restricted

the results corresponding to MCF and UMCF to the n = 20 instances and have truncated the lower bounds

to the first decimal digit. We specify two values beneath the reported lower bound. The first value is the

CPU time needed to solve the linear programming relaxation. To assess the quality of the lower bounds,

using branch-and-bound we have tried to obtain the optimal solution or an upper bound value on the

optimum. The second value, when given, is the additional CPU time needed to obtain the optimal value.

CPU times are given in seconds.

Our results show that the multi-source/multi-destination model MCF is not able to solve instances with

20 nodes. Single sourcing allows us to solve many such problems. The reported CPU times indicate that we

can solve these instances, though with some difficulty, using the undirected model UMCF. On the other

hand, the directed model DMCF solves these instances rather easily, but requires huge CPU times to solve

the n = 30 instances. The hop-indexed model is able to quickly solve the n = 20 and 30 instances.

23

Table VIII - Results for the RANDOM instances with n = 20, 30 and even
specification ? indicates that we did not attempt to solve the integer program.

values of D. The

We also tested the formulation using the modified Miller-Tucker-Zemlin (MTZ) constraints given in

Achuthan, Caccetta, Caccetta and Geelen (1994) for the spanning instances with 20 and 30 nodes. This

formulation uses a small number of variables and constraints when compared to the other formulations.

Thus, we were able to obtain the corresponding linear programming bounds very quickly. On the other

hand, these lower bounds are rather weak and for most of the cases tested, we have obtained huge search

trees when attempting to obtain the optimal integer solution. In fact, we could not solve any of the

Euclidean 30 node instances due to memory storage limitations. Moreover, the best lower bound obtained

at the moment we ran out of memory were still far from the optimal solution (as an example, for the

Euclidean instance with D = 8 the best lower bound was equal to 410 after nearly 40,000 seconds of

computation). It is interesting to note that for all the cases tested the MTZ lower bounds are worse than the

trivial lower bounds given by the cost of the unconstrained spanning tree. Consider, for instance, the

previous Euclidean example with n=30 and D = 8. The MTZ linear programming bound is equal to 340.4

while the minimum spanning tree bound is equal to 396.

24

IVI,IEI,IRI D MCF UMCF DMCF HopDMCF Optimum
20,100,10 4 30.0 38.2 9.7 0.0 138

(25 + 41782) (2 + 953) (2 + 108) (1 + 0)
20,100,10 6 29.1 38.5 2.5 0.0 119

(16 + 24100) (2 + 2098) (4 + 60) 2 + 0)
20,100,10 8 29.0 39.3 2.1 0.0 115

(8 + 9397) (2 + 2663) (2 + 195) (8 + 1)
20,100,20 4 22.4 25.7 13.8 0.0 233

(375 + ?) (14 + 2530) (17 + 1134) (4 + 0)
20,100,20 6 15.3 16.8 12.5 1.0 178

(68 + ?) (6 + 38594) (11 + 4400) (11 + 35)
20,100,20 8 4.8 5.3 4.0 0.0 154

(33 + ?) (4 + 12628) (6 + 499) (10 + 0)
30,200,15 4 12.4 0.0 159

(29 + 1409) (2 + 0)
30,200,15 6 7.7 0.0 108

(12 + 1371) (5 + 0)
30,200,15 8 0.0 0.0 96

(4+0) (5 + 0)
30,200,30 4 11.4 0.0 234

(182 + 7373) (6 + 0)
30,200,30 6 9.5 0.0 157

(69 + 18135) (22 + 1)
30,200,30 8 1.1 0.0 135

(28 + 537) (17 + 1)

Table IX - Results for the EUCLIDEAN instances with n = 20, 30 and even values of D. The
specification ? indicates that we did not attempt to solve the integer program.

Table X specifies the gaps given by the linear programming bound of the hop-indexed model

HopDMCF for the instances with n = 40, 60, 80 and 100. As before, the first column of this new table

indicates the number of nodes, number of edges and number of required nodes of the corresponding

instance. The next three columns refer to the random instances and the remaining three columns refer to the

Euclidean instances. Each group of three columns specifies the gaps for D = 4, 6 and 8 respectively. Each

entry is similar to the entries in the previous tables. That is, the value on top center of any cell is the gap

multiplied by 100 and the value on the right-hand corner is the optimal integer value. The values on the

bottom of a cell indicate, respectively, the CPU times for obtaining the linear programming solution and the

optimal integer solution. As noted before, and as indicated by the designation INF, the corresponding

problem may be infeasible in some cases.

25

IVI,IEI,IRI D MCF UMCF DMCF HopDMCF Optimum
20,100,10 4 12.2 22.4 0.8 0.0 235

(44 + 38150) (3 + 532) (2 + 21) (0 + 0)
20,100,10 6 16.2 26.1 0.0 0.0 217

(26 + 176423) (2 + 3778) (1 + 0)
20,100,10 8 22.1 31.4 2.1 0.0 217

(8 + 86209) (2 + 2224) (1 + 0) (4 + 0)
20,100,20 4 2.8 7.6 1.3 0.0 369

(684 + ?) (20 + 2790) (16+186) (1 + 0)
20,100,20 6 2.2 6.1 1.0 0.2 322

(216 + ?) (9 + 2864) (15 + 241) (6 + 19)
20,100,20 8 2.5 5.4 0.7 0.0 308

(97 + ?) (6+ 11907) (10 + 887) (9+0)
30,200,15 4 3.5 0.4 338

(25 + 771) (3 + 4)
30,200,15 6 2.7 0.1 289

(12 + 882) (10+3)
30,200,15 8 0.5 0.0 274

(13 + 80) (32 + 0)
30,200,30 4 5.5 1.7 599

(258 + 22179) (20 + 1026)
30,200,30 6 3.2 0.8 482

(298 + 23639) (156 + 10899)
30,200,30 8 3.4 0.8 437

(94 + 21717) (319 + 8569)

Table X - Results for the RANDOM and EUCLIDEAN instances for the model HopDMCF with n > 40
and even values of D. The specification t) indicates that we did not obtain the optimal solution after 2 days
of CPU time (the value shown on the right-hand top is an upper bound). The designation m) indicates that
we could not solve the problem due to memory requirements.

The results show that the HopDMCF model maintains the behavior already shown for the smaller

instances, namely that its linear programming bound is quite good. The CPU times required to obtain the

optimal linear programming solution increase with the diameter parameter value for the Euclidean

instances and, in certain cases, are huge. Notice, however, that the largest model being solved (the

HopDMCF model with n = 80, m = 800, IRI = 80 and D = 4) contains about 250,000 integer variables (but

far fewer constraints, 130,000). The results also show that the CPU times needed for obtaining the optimal

integer solutions of the Euclidean instances are, in general, much higher than the CPU times needed for

solving the random instances.

6.3 Situation When D is Odd

For the instances with D odd we have restricted our computational experiments to the models DEMCF,

HopDEMCF, HopDEMCF+, HopDEMCF* and Enh-HopDMCF (the results for D even suggest that the

traditional MCF model and the undirected models are not worth comparing with the previous four models).

Tables XI and XII have the same format as Tables VIII and IX and contain the results for the random and

Euclidean instances with n = 20 and 30 and D odd, that is, D = 5 and 7. Tables XI and XII also empirically

compare the linear programming relaxations of the HopDEMCF, HopDEMCF+, HopDEMCF* and Enh-

26

Random Euclidean
IVI,IEI,IRI 4 6 8 4 6 8
40,400,20 1.6 165 2.7 106 0.0 90 0.0 392 0.7 326 0.0 303

(16 + 10) (74 + 398) (49 + 1) (17 + 1) (84 + 243) (167 + 1)
40,400,40 0.0 309 0.0 189 0.0 161 0.04 672 0.6 555 0.5 507

(86 + 1) (445 + 2) (277 + 3) (135 + 34) (1801 + 35054) (4865 + 46166)
60,600,15 0.0 115 2.8 70 0.0 52 0.0 326 1.6 292 0.0 268

(9 + 1) (65 + 448) (41 + 2) (8 + 1 (164 + 1012) (181 + 1)
60,600,30 0.9 255 1.6 120 0.0 95 0.0 707 0.3 505 0.3 464

(64 + 161) (434 +4967 (262 + 4) (33 + 2) (819 + 19131 (3055+ 13023)
60,600,60 0.7 326 1.3 175 0.0 127 0.1 1180 0.5 837

(340 + 11943) (12037 + t)) (1567 + 129) (260 + 1282) (12397 + t) m)
80,800,10 0.0 62 0.0 36 0.0 34 0.0 277 0.0 220 0.0 214

(4 + 1) (27 + 0) (13 + 1) (5 + 1) (50 + 1) (207 + 1)
80,800,20 0.0 140 0.0 82 0.0 71 0.0 567 0.8 417 0.7 377

(299 + 2) (27 + 0) (473 + 3) (6 + 1) (639 + 3749) (2284 + 12139)
80,800,40 3.8 249 0.0 125 0.0 104 0.0 939 1.3 627 0.0 552

(145 + 4486) (925 + 4) (2068 + 5) (28 + 3) (3652 + 115866) (9504 + 6)
80,800,80 5.7 424

(1082 + 105273) m) m) m) m) m)
100,1000,12 2.7 55 0.0 40 0.0 40 0.0 55 0.5 466 0.0 427

(5 + 10) (43 + 2) (168 + 2) (4 + 1) (181 + 219) (489 + 2)
100,1000,25 2.7 123 0.0 75 0.0 67 0.0 894 0.4 679 0.5 630

(33 + 60) (401 + 3) (920 + 5) (10 + 2) (612 + 6542) (1647 + 17531)
100,1000,50 2.1 274 1.3 153 0.0 127

(341 + 15853) (10304 + 99319) (9987 + 10) INF m) m)

HopDMCF models. We have indicated the "best" model by designating in bold the CPU times

corresponding to the model that most quickly produces the optimal integer solution.

IVI,IE[,IRI D DEMCF HopDEMCF HopDEMCF+ HopDEMCF* Enh-HopMCF Optimum

20,100,10 5 6.9 0.0 0.0 0.0 0.0 120
(1+ 145) (0+0) (0+0) (0+0) (11 + 1)

20,100,10 7 9.7 5.1 0.0 2.7 0.0 116
(1 + 33) (1+41) (1+0) (1+ 33) (70 + 1)

20,100,20 5 22.3 8.5 2.4 4.1 0.0 205
(8 + 4190) (2 + 132) (4 + 84) (2 + 57) (49 + 1)

20,100,20 7 12.2 6.7 1.5 4.3 1.5 165
(5 + 1241) (4.4 + 272) (8+47) (3 + 215) (442 + 310)

30,200,15 5 19.4 9.2 3.7 4.7 0.0 132
(8 + ?) (2 + 9(5 + 115) (3 + 104) (157 + 4)

30,200,15 7 3.7 2.5 0.0 0.0 0.0 98
(6+?) (3 + 3) (6 + 0) (3+1) (880 + 4)

30,200,30 5 20.4 6.6 0.0 2.8 0.0 195
(43 +) (7 + 1211) (9+1) 5 + 245) (462 + 7)

30,200,30 7 7.8 4.4 0.0 0.5 0.0 144
(25 + ?) (16 + 957) (29 + 107) (19 + 207) (4228 + 7)

Table XI - Results for RANDOM instances when n = 20, 30 and D is odd. The specification ? indicates
that we did not attempt to solve the integer program..

IVl,IE,IRI D DEMCF HopDEMCF HopDEMCF+ HopDEMCF* Enh-HopMCF Optimum

20,100,10 5 8.8 6.8 0.0 4.9 0.0 225
(1 +71) (0+40) (2+0) (11 + 1) (10+0)

20,100,10 7 6.3 5.5 1.7 7.3 0.0 217
(1 + 92) (1 + 60) (9+314) (2 + 417) (142 + 1)

20,100,20 5 8.7 4.6 2.2 4.9 0.0 347
(12 + 3855) (3 + 179) (7 + 238) (2 + 287) (41 + 1)

20,100,20 7 6.1 3.7 1.1 3.2 0.0 316
(6 + 1219) (6 + 958) (14 + 414) (4 + 541) (395 + 1)

30,200,15 5 12.2 6.7 2.4 11.8 0.0 309
(19 + ?) (4 + 1004) (24 + 806) (4+1156) (95 + 3)

30,200,15 7 7.6 5.1 2.1 9.4 0.0 278
(10 + ?) (25 + 964) (78 + 1238) (9 + 1914 (6976 + 3)

30,200,30 5 11.2 5.8 4.2 10.2 0.1 534
(104 + ?) (22 + 8257) (61 + 17947) (7 + 31496) (195 + 6)

30,200,30 7 9.8 5.7 3.8 6.0 1.2 463
(44 + ?) (47 + 102013) (140 + 62216) (32 + 77941) (31168 + 24129)

Table XII - Results for EUCLIDEAN instances when n = 20, 30 and D is
indicates that we did not attempt to solve the integer program.

odd. The specification ?

The results show that the model HopDEMCF is not as successful in solving DMST instances when D is

odd as is the HopDMCF model for solving DMST instances when D is even. As a consequence, we have

used valid inequalities for the D odd case (see Section 3.2.4) and have derived the Enh-HopDMCF

formulation with all the edges shrunk into nodes. Our results show that from a theoretical perspective, the

linear programming relaxation of this enhanced model is quite good. In fact, for most of the Euclidean

instances tested, this model proved to be the best choice for obtaining the optimal integer solution.

Unfortunately, because the enhanced model contains so many variables and constraints, it may become

27

impractical computationally for larger problem instances. For instance, we encountered computer storage

limitations when attempting to solve several instances with this formulation with n = 40 and m = 400.

The HopDEMCF+ model with the addition of n*[Al inequalities implied by the enhanced formulation

provides a compromise. Our results for the n = 20 and 30 instances show the importance of the

HopDEMCF+ model when solving some of the instances with odd values of D. In most of the cases, the

formulation reduced the gap given by the original HopDEMCF model by more than half. For the random

cases, the HopDEMCF+ produces zero gaps in several cases and proved to be a sound alternative to the

enhanced model. Unfortunately, the results are not as good for the Euclidean cases. These instances proved

to be more difficult to solve. It is interesting to note that the "alternate" hop-indexed model HopDEMCF*

is also worth using for the random cases. For the Euclidean cases, the linear programming bounds are quite

bad. In fact, in a few situations, it produces a lower bound that is worse than the one obtained by the model

DEMCF.

The next two tables, Tables XIII and XIV, present results for situations when D is odd for larger

instances. We do not report results from the weak DEMCF model and the huge enhanced model Enh-

HopDMCF (as we have mentioned before, we have tried unsuccessfully, to solve some of these instances).

For the Euclidean instances, we do also not show the results from the model HopDEMCF* as the results of

Table X indicate that this model behaves rather poorly for this class of instances.

The results demonstrate the relevance of the models developed in Section 3.2.4. The HopDEMCF+ and

HopDEMCF*models (this one in the context of the Random instances), have helped to solve instances that

we have not been able to solve with the original hop-indexed model HopDEMCF. Unfortunately, with

these improvements, our best models for the situations when D is odd are not of the same quality level as

our models for the situations when D is even.

As before, we have indicated the "best" model by designating in bold the CPU times corresponding to

the model that most quickly produces the optimal integer solution. We note that the CPU times needed for

obtaining the optimal integer solution depend strongly on the behavior of the integer programming

package, namely in how it obtains a good upper bound. In several cases, the linear programming bound

given by the model HopDEMCF+ is at least as good as the best lower bound obtained by the original model

HopDEMCF after 1 day of computations of the branch-and-bound code. However, in a few of these cases,

the strengthened HopDEMCF+ requires a reasonable amount of time to obtain the optimal integer solution

because it finds a good upper bound rather late in the optimization process. One example of this is the

instance with n = RI = 60, D = 7 and 300 edges. After 10,000 seconds of computation of the branch-and-

bound method using the HopDEMCF+ model, the best lower bound was already within one unit of the

optimal integer solution. Unfortunately, the computations yielded an upper bound corresponding to the

optimal value rather late in the optimization method yielding about 90,000 seconds of CPU time.

28

Table XIII - Results for Random instances when n > 40 and D is odd. The designation t) indicates that
we did not obtain the optimal solution after 2 days of CPU time. The designation u) indicates that the
value shown on the right-hand column is an upper bound since none of the three models was able to
solve the corresponding problem.

29

IVI[,EI,IR I D HopDEMCF HopDEMCF+ HopDEMCF* Optimum

40,400,20 5 7.5 2.5 6.5 128
(14 + 737) (22 + 890) (10 + 372)

40,400,20 7 9.4 2.9 6.0 101
(39 + 1381) (99 + 749) (29 + 233)

40,400,40 5 9.1 5.6 7.5 253
(56 + 13529) (104 + 23645) (40 + 8642)

40,200,40 7 1.0 0.0 0.0 171
(114 + 209) (174 +4) (69+4)

60,600,15 5 16.1 6.0 9.4 88
(7 + 667) (13 + 640) (9 + 477)

60,600,15 7 9.0 1.6 7.7 61
(34 + 769) (139 + 183) (25 + 715)

60,600,30 5 8.5 3.5 7.0 160
(33 + 12240) (62 + 3318) (30 + 6425)

60,600,30 7 7.7 2.1 6.4 109
(150 + 5313) (395 + 7093) (90 + 5897)

60,600,60 5 14.8 10.0 13.5 257 u)
(142 + t)) (280 + t)) (96 + t))

60,600,60 7 7.2 2.9 6.0 150
(686 + 61113) (1795 + t)) (551 + 85466)

80,800,10 5 16.9 9.7 14.5 46
(5 + 188) (6 + 234) (5 + 184)

80,800,10 7 14.7 0.0 5.8 34
(15 + 294) (89 + 2) (18 + 1011)

80,800,20 5 9.4 4.8 8.6 111
(17+ 2252) (33 + 2405) (19 + 2455)

80,800,20 7 8.0 3.8 8.5 78
(164 + 4408) (253 + 3049) (114 + 8836)

80,800,40 5 12.3 7.8 12.2 186
(74+ 50355) (124 + 103318) (58 + 19673)

80,800,40 7 3.6 0.0 2.8 114
(418 + 25887) (1306 + 10) (362 + 120191)

100,1000,12 5 5.1 0.0 0.0 45
(7 + 483) (7 + 3) (8 + 9)

100,1000,12 7 4.2 0.0 2.5 40
(30 + 1038) (59 + 4) (38 + 773)

100,1000,25 5 7.9 1.2 7.4 97
(40 + 7179) (67 + 152) (23 + 1675)

100,1000,25 7 6.3 1.4 3.3 71
(145 + 7074) (577 + 2217) (110 + 2530)

I[V,IE[,IRI D HopDEMCF HopDEMCF+ Optimum

40,400,20 5 6.3 3.6 362
(32 + 3921) (71 + 7815)

40,400,20 7 4.4 2.1 317
(136 + 7962) (1052 + 27565)

40,400,40 5 4.1 2.4 612
(185 + 52493) (641 + 81911)

40,400,40 7 4.8 3.3 527 u)
(1021 + t)) (3770 + t))

60,600,15 5 6.4 3.1 307
(36 + 3386) (76 + 5720)

60,600,15 7 6.6 4.3 280
(193 + 50002) (1004 + 46240)

60,600,30 5 7.7 5.0 585
(142 + 98422) (697 + t))

60,600,30 7 5.9 4.3 481 u)
(992 + t)) (5443 + t)

80,800,10 5 16.9 9.7 46
(5 + 188) (6 + 234)

80,800,10 7 14.7 0.0 34
(15 + 294) (89 + 2)

80,800,20 5 9.4 4.8 111
(17+ 2252) (33 + 2405)

80,800,20 7 8.0 3.8 78
(164 + 4408) (253 + 3049)

Table XIV - Results for Euclidean instances when n > 40 and D is odd. The designation a) indicates
that we did not obtain the optimal solution after 2 days of CPU time. The designation u) indicates that
the value shown on the right-hand column is an upper bound since none of the three models was able to
solve the corresponding problem.

6.4 Summary and Conclusions

Our computational results lead to the following conclusions:

(1) Using the models presented in the paper, we have been able to solve Steiner instances containing

up to 100 nodes and 1000 edges (with IRI < (1/2)IVI and D < 8) and spanning tree instances with

up to 60 nodes and 600 edges and with D < 8.

(2) Euclidean problems appear to be more difficult than random instances.

(3) For situations when D is even, the linear programming relaxation of the model HopDMCF

produces gaps of less than one percent for almost all problem instances.

(4) Situations when D is odd appear to be more difficult than those when D is even.

(4a) The linear programming gaps for the models range from a few percent to as much as 17

percent, with gaps of 5 to 8 percent being typical.

(4b) For these instances, the models HopDEMCF, HopDEMCF+ and HopDEMCF* compete for

generating solutions most quickly.

30

7. Conclusions

We have introduced single source models for the diameter constrained minimum spanning tree and

Steiner tree problems. A traditional model introduces a commodity and imposes a hop constraint for each

pair of required nodes. By simultaneously selecting a central node or a central edge and using it as source

for the commodities in a multicommodity flow model, our models contain only n commodities.

Our best model, which introduces a directed version of the model with hop constraints, has been able to

solve a small sized instance in less then one second that the traditional model has not been able to solve

after one week of computation. We have presented computational results for spanning tree and Steiner tree

instances with up to 100 nodes and 1000 edges and have been able to solve a model with slightly more than

250,000 integer variables and 250,000 constraints. To the best of our knowledge, our results provide the

first computational experience in solving the diameter-constrained Steiner tree problem.

We have also shown that the linear programming relaxation of the best models discussed in this paper

always produce an integer optimal solution for two easily solved cases of the DMST.

Our progress in improving the algorithmic performance of solution methods for this class of problems

rests upon several modeling ideas: exploiting underlying graph structure, using multicommodity flow

models for network design problems, directing network design models, introducing extended (in this case

hop-indexed) formulations, and using polyhedral methods (valid inequalities). As in other application

contexts reported in the literature, our experience illustrates the value of embracing a multi-faceted

modeling approach for solving (mixed) of integer programming models.

Acknowledgments

We are grateful to the referees for their suggestions leading to a substantially improved presentation of

the results of this paper. We are particularly grateful to the referees whose comments have led us to cast our

models using the auxiliary network.

References

Abdalla, A., Deo, N., and Fraceschini, R., "Parallel Heuristics for the Diameter-Constrained Minimum

Spanning Tree Problem," Congressus Numeratium, (1999)

Achuthan, N. R., Caccetta, L., Caccetta, P., and Geelen, J. F. (1992), "Algorithms for the Minimum Weight

Spanning Tree with Bounded Diameter Problem," in Optimization Techniques and Applications, Vol. 1,

(Edited by P. H. Phua, et al.), World Scientific, pp 297-304..

31

Achuthan, N. R., Caccetta, L., Caccetta, P., and Geelen, J. F. (1994), "Computational Methods for the

Diameter Restricted Minimum Weight Spanning Tree Problem," Australasian Journal of Combinatorics,

Vol. 10, pp 51-71.

Balakrishnan, A., and Altinkemer, K. (1992), "Using a Hop-Constrained Model to Generate Alternative

Communication Network Design," ORSA Journal on Computing, Vol. 4, pp. 192 - 205.

Balakrishnan, A., Magnanti, T., and Wong, R. (1989), "A Dual Ascent Procedure for Large-Scale

Uncapacitated Network Design," Operations Research, Vol. 37, pp. 714-740.

Balakrishnan, A., Magnanti, T., and Mirchandani, P. (1994), "Modelling and Heuristic Worst-Case

Performance Analysis of the Two-Level Network Design Problem," Management Science, Vol. 40, pp.

846-867.

Camerini, P., Galbiati, G., and Maffioli, F. (1980), "Complexity of Spanning Tree Problems: Part I,"

European Journal of Operational Research, Vol. 5, pp. 346-352.

Chopra, S., and Rao, M. (1994), "The Steiner Tree Problem I: Formulations, Compositions and Extensions

of Facets," Mathematical Programming, Vol. 64, pp. 209-229.

Garey, M., and Johnson D. (1979), "Computers and Intractability: a Guide to the Theory of Np-

Completeness," Freeman, San Francisco.

Goemans, M. (1994), "The Steiner Tree Polytope and Related Polyhedra," Mathematical Programming,

Vol. 63, pp. 157-182.

Goemans, M., and Myung, Y. (1993), "A Catalog of Steiner Tree Formulations," Networks, Vol. 23, pp.

19-28.

Gouveia, L. (1995), "Using the Miller-Tucker-Zemlin Constraints to Formulate Minimal Spanning Trees

with Hop Constraints," Computers and Operations Research, 22, pp. 959-970.

Gouveia, L. (1996), "Multicommodity Flow Models for Spanning Trees with Hop Constraints," European

Journal of Operational Research, Vol. 95, pp. 178-190.

Gouveia, L. (1998), "Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning

and Steiner Trees with Hop Constraints," INFORMS Journal on Computing, Vol. 10, pp. 180-188.

Handler, G. Y. (1973), "Minimax Location of a Facility in an Undirected Tree Graph", Transportation

Science, Vol. 7, pp. 287-293.

32

Hwang, F., Richards, D., and Winter, P. (1992), "The Steiner Tree Problem," North Holland, Amsterdam.

Magnanti, T. and Raghavan, S. (1999) Strong Formulations for Network Design Problems with

Connectivity Requirements, Working paper OR 332-99, Operations Research Center, MIT, April 1999.

Magnanti, T. and Wolsey, L. (1996), "Optimal Trees" in "Network Models," Handbooks in Operations

Research and Management Science, Vol. 7, pp. 503-615.

Magnanti, T. and Wong, R. (1984), "Network Design and Transportation Planning: Models and

Algorithms.," Transportation Science, Vol. 18, pp. 1 - 55.

Martin, R. (1986), "A Sharp Polynomial Size Linear Programming Formulation of the Minimum Spanning

Tree Problem," Working Paper, University of Chicago

Wong, R.T. (1984), "A Dual Ascent Approach for Steiner Tree Problems on a Directed Graph,"

Mathematical Programming, Vol. 28, pp. 271-287.

Woolston, K. and Albin, S. (1988), "The Design of Centralized Networks with Reliability and Availability

Constraints," Computers and Operations Research, Vol. 15, pp. 207-217.

33

Appendix 1 - Comparing the Enhanced and Original Models

In this Appendix we show that the linear programming relaxation of the enhanced model Enh-

HopDMCF dominates the linear programming relaxation of the model HopDEMCF+ described in Section

3.2.4. To make the proof easier to understand, in Tables XV and XVI we rewrite the models HopDEMCF+

and Enh-HopDMCF (we consider the reduced model HopDEMCF described in Section 3.2.3 augmented

with the valid inequalities described in Section 3.2.4).

Table XV. The Model HopDEMCF+

minimize E cojxi + cceEe
(i,j)EA eeE

subject to E xij = n-2
(i,j)EA

XEe =1
eEE

z2k =

iEV jeV

Zh+l,k Zhk = O

jEV jeV

Z[(D-1
)/

2]+
l k
- 1

jk

hk < Xij

h=2,...,H

E Zi < E EjEv
jeV eEE(i)\{i,k}

2i < E Ee
eeE(i)

z E eEL(i,j)i,k} Ee

hk E {0,1}

Ee E {0,1}

for all k E V

for all i,k E V,h = 2,...,[(D-1)/2]

for all k E V

for all (i, j)E A, k E V

for all i,k E V and i k

for all i E V

for all (i, j) E A and k E V

for all (i, j) E A,h = 2,...,[(D-1)/2] + ,k E V

for all k E V,h = 2,...,[(D-1)/2]+1

for all (i, j) A

for all e E E.

As in our discussion of the reduced model in Section 3.2.3, this model does not contain variables

associated with arcs leaving the auxiliary root node.

To simplify the relationship between the Enh-HopDMCF formulation and the formulation

HopDEMCF+, we shall define the variables of the enhanced model in the context of the original graph G =

(V,A). As mentioned in Section 4, the enhanced formulation uses the following sets of arc design

variables. Variables XOe (e = {p,q} E) indicate whether the tree contains the arc (O,e). Variables Xej (e =

{p,q} (E; j E V\{p,q}) indicate whether the tree contains the arc (e,j). Variables x ((ij) E A) indicate

whether the tree contains the arc (i,j) and node i is not an endnode of the root edge.

34

Table XVI. The Model Enh-HopDMCF

As before, we have eliminated the flow variables y from this model. Given the structure of the

hk
augmented graph, the model contains three types of hop-indexed variables ((i) variables zh with h > 3

have the same interpretation as before: they specify whether arc (i,j) is the h hi arc in the path from the root

node to node k, (ii) variables Ze2k (e = {p,q} E; j,k E V\{p,q}) indicating whether arc (e,j) is the second

arc in the path to node k and (iii) variables zfk (e = {p,q} e E; k E V\{p,q}) indicating whether arc (O,e) is

the first arc in the path to node k or to a edge e E(k). The model also contains two types of "loop"

variables: (i) variables zhk (e E E(k) and h = 2,...,H) with zero cost to model situations when the path from

the root node to node e contains fewer than H arcs (that is, Zhek =1 for some e E E(k) and h < H) and (ii)

variables zhk (k E V and h = 3,...,H) with zero cost to model situations when the path from the root node

to node k contains fewer than H arcs (that is, Zk = 1 for some h < H).

35

minimize CiXE o + C eijX
(i,j)EA eEE jeV ecE\E(j)

subject to I Xij + XOe + Xej = n-1
(i,j)EA eeE jeV eeE\E(j)

E XOe = 1
eEE

Z Zoe= for all k E V
eE

z Ze +z ee ZOe for all e = {p, q} E E,k E V
jeV\{p,q}

zi3k Z Zei for all i, k E V
jeV eEE\(E(i)vE(k))

zh+l',k Zhk = for all i,k E V,h = 3,...,[(D-1)/ 2]
jEV jeV

Z[(D-1)
2
]+

1
k + Z[(D-)-2+sk = 1 for all k E V

2 jk ee
jEV eEE(k)

hk = h+l,k for all k E V, e e E(k), h = 2,...,[(1
ee ee

Zik < x for all (i,j)E A,k E V
h=3,...,H

z
2

k < X for all e = {p,q} E E,k, j E V \ {p,q

zhk {0,1} for all (i,j)E A,h = 3,..., [(D -1)/

ZOe E {0,1} for all e E E,k E V

4 2k e{t0,1} for all e = {p,q} E E, j,k E V\{p,}

zhk {0,1} for all e E E(k), k E V, h = 2,..., [(D
eehk

Zkk E {0,1} for all k E V, h = 3,..., [(D - 1)/ 2] +1

XOe E {0,1} for all e= {p, q} E

x,ej {0,1} for all e = {p,q} E E, j E V \ {p,q}

Xi. E {0,1} for all (i, j) E A.

) -1)/2]

!]+Ik E V

- 1)/ 2] +1

As noted before, the enhanced model for situations with D odd is a version of the D even model in a

special graph. Thus, it is natural that it shares some of the properties of the D even models presented in

Section 3.2.1. In particular, any feasible solution of the corresponding linear programming relaxation

satisfies the linking constraints for arcs emanating from the auxiliary root node as equalities. That is,

zoe = X0 e for all e E E and k E V and so we can substitute for the variables zk in terms of the variables

xoe in the formulation. After making these substitutions, we can remove the constraints in the third set

because they become equal to the second set. The constraints Ejv\{ + p,q ek = X
O
e for all e E and k

E V (we have substituted for the z variable on the righthand side of the original constraint using the

corresponding x variable) are easier to understand if we consider the two mutual exclusive cases, e E E(k)

or e E E\E(k). When e E E(k), the variables z2k are not defined and so Zek = Xoe. When e E E\E(k), the

variables Zek are not defined and so jv\{pq} Z J = ZOe

We can relate the edge shrinking effect used for defining the supernodes in the enhanced network with

the sets L(i,j). However, we need to consider carefully the situations when cij = pj for three different nodes

i, j and p. When shrinking the edge {i,p}, we need to specify the arc of the original network that

corresponds to arc ({i,p},j) of the expanded network. For simplicity, we may break ties by choosing arc (i,j)

as the original arc if and only if i < p. This choice reflects a slightly altered definition of the sets L(i,j) as

the set of potential root edges {i,p} e E whose endpoint i is closer to node j than is node p. That is, L(i,j) =

{{i,p} E E: p j and (cij < pj or (cij = pj and i < p))}. The last condition in the definition of L(i,j)

guarantees that an edge does not belong to two different sets L(i,j) and L(p,j) with i : p. That is, if cij = pj

(i < p), then {i,p} belongs to L(i,j) but not to L(p,j).

For simplicity, we let (xl,zl,El) denote a solution in the model HopDEMCF and by (x2,z2) a solution

in the enhanced model Enh-HopDMCF. Table XVII depicts the relationships between variables of these

two solutions.

36

Table XVII. Relating the Variables in the Enhanced Model and Original Model

The first equality follows from the fact that a feasible solution for any of the models defined in the

original graph contains the edge e as a central edge if and only if a feasible solution for the enhanced

models contains the edge (O,e). The second equality follows from the fact that a feasible solution for the

original model contains an arc (O,j) if and only if a feasible solution for the enhanced model contains one of

the arcs (O,e) for e E E(j). The third equality follows from the fact that a feasible solution for the original

models contains an arc (i,j) if and only if a feasible solution for the enhanced models contains the arc (i,j)

or one of the arcs (e,j) with e E L(i,j). The relations for hop-indexed variables are based on similar

arguments. We note, however, that the layout of the enhanced graph permits us to distinguish between hop-

index variables for h = 2 and h > 3 in the model defined in the original graph. When establishing the

relationships for these variables with h = 2, we need to consider the commodity index k and remove edges

incident to k from the range of variation of the index e (when j • k). The last two relations follow from the

fact that a solution in the original network contains a loop for node k in position h if and only if the

corresponding solution in the enhanced network contains a loop for a node e E E(k) in the same position or

a loop for node k in the same position (the last alternative only holds for h > 3).

Proposition 8.1 v(Enh-HopDMCFL) > v(HopDEMCFL).

Proof: Starting with a feasible solution (x2,z2) for Enh-HopDMCFL, let (xl,zl,El) be the solution

obtained by using the relations in Table XVII. We will show that the solution (xl,zl,El) is feasible for

HopEMCFL.

Constraints ZeE Ee = 1 in ES: The relationEle = x20e for all e E (from Table XVII) shows that

(x2,z2) satisfies the constraint I EEX20e = 1 in Enh-HopDMCFL if and only if (xl,zl,El) satisfies the

constraint eE Ele = 1 of HopDEMCF+ L.

37

Original Enhanced

Ele = X20e e E

Xli. = 2ij + X2ej (i, j) E A
eeL(i,i)

zl1k = z22k (i, j) E A,k V
eEL(i,j)\E(k)

zihk = z 2 ik (i, j)E A,k E V,h = 3,..., ,H

zkk = E 2ee k EV
eeE(k)

Zk = Z2ee + z2kk k E V, h = 3,..., H.
ecE(k)

Cardinality constraints '(ij) A xi, = n - 2: By adding xl = x2 o + E(ij)x2ej (from Table XVII) for all

(i,j) E A, we obtain 1(i,j)AxlIj = "(iOj)A x2ij + jcV eEE\E(j)X2ej (the index in the last term follows

from the fact that we obtain the edge set E\E(j) when we consider the union of the sets L(i,j) for all i and a

fixed j). By adding Ele = X20e for all e E E to the result to the previous equality we obtain

eEEle + (i,j)EA Xlij = eE X20e
+

(ij)AX2 + E jV EeE\E(j) X2ej Using eE Ele = 1 in

HopDEMCF+L, we can conclude that (x2,z2) satisfies the cardinality constraint

E eE X2 + (i,j)A + jV EE x2ej = n -I in Enh-HopDMCFL if and only if (xl,zl,E1) satisfies the

cardinality constraint Z(i,j)EA xl1j = n- 2 of HopDEMCF+L.

Constraints i v-E'jcV Zi
k

= 1 for all k E V: By adding zl 2k = eL(i,j\E(k) Z2k (from Table XVII) for

all i and j and the same k, we obtain 'jEViv z 1
= jV eeE\(E(j)uE(k)) Z2e Since the model Enh

HopDMCFL does not contain the variables z22k with e E E(k), we know that

eEE jEV e jEV eE\(E()E(k)) z2 ej and the previous equality becomes

j" jEV ZIi =12VZ Zk Consider, now, the flow conservation constraint

E jE Z vZ27 + Ee(k)z2 2k = 1 from Enh-HopDMCFL for the same k. Combining the two previous

equalities, we obtain Z i v-i vzlI
2 k

+ E(k)Z22ek =1 for the same k. Since " z22k = l2k (from
equalities, we obtain YijC=itv1iE=V ii 1,~E(k) eEE(k) ee kk

Table XVII), i t Vz l2k = 1 for the same k. Thus, the solution (xl,zl,El) satisfies the constraints

iV E jE Zl 2k = 1 for all k E V of HopDEMCF+L.

Hop-indexed flow conservation constraints (h 2 3)- Consider the equality obtained by adding the

constraints z 2 h+l'k = z2 hk for all e E E(k) (from Enh-HopDMCFL) and fixed values of k and h > 3 together

with Z vz2 h+l 'k -" vZ2 hk
= 0 for a given i and the same values of k and h > 3 (also from Enh-

HopDMCFL). By combining this equality with the sets of equalities from Table XVII, zlk = z2 Uk for all

(i,j), k and h 3 and zl1 = E E(k)z2ee +z2kk for all k E V and h > 3, we obtain the constraint

I h+'k -j'vZzlhi = 0 for the same i, k and h 2 3 in HopDEMCF+L. Thus, the solution (xl,zl,El)

satisfies the hop-indexed flow conservation constraints for h > 3.

38

Hop-indexed flow conservation constraints (h = 2); By adding the equalities

zk = e(ij)\E(k) z22 (from Table XVII) for all i, a fixed j and a fixed k to zlkkk
= E ,E(k)Z2e (also

1 = Ee~L(i,j)\E(k) 2jE(k)

from Table XVII) for the same k and h = 2, we obtain

Zvzgk +Z2lk = Z2E\(E()E(k k + 2E(k)Z2ee (the index in the first term of the right-hand sideEi-Vzl k zle,= E\(E(j)uE(k))Z e +.eE(k) ee

follows from the fact that we obtain the edge set E\(E(j)uE(k)) when we consider the union of the sets

L(i,j)\E(k) for all i and a fixed j). By combining this equality with the flow conservation constraints

iv Z2J = eEz2\(E(j)uE(k)) 2Z for the same j and k (from the model Enh-HopDMCFL) and with

3k 2k
Z2ee = Z2ee for all e E E(k) (also from the model Enh-HopDMCFL) we obtain

ZEievz23j +- E(k)Zee = Z 2k 2k for the same j and k. Finally, by using Zlhk = z2
hk (from

Table XVII) for adequate pairs (i,j), the same k and h = 3 together with to zlk E(k) 2k +z2k for

the same k and h = 3, we obtain i- VZ13ik = E -' z l2jk for the same j and k of the original model

HopDEMCF+L. Thus, the solution (xl,zl,El) satisfies the hop-indexed flow conservation constraints for h

= 2 of HopDEMCF+L.

Hop-indexed flow conservation constraints (h = ((D-1)/2) + 1); By using zlik = z2.k for all (i,j), k and

h = ((D-)/2) + 1 together with zlkk = eE(k)z2e +2kk for the same k and h we can show that (x2,z2)

satisfies thek + E(k)Z
2
ee = 1 for all k EV and h = ((D-1)/2) + 1 in Enh-HopDMCFL

if and only if (xl,zl,El) satisfies the constraint Cj"vzlj =1 for all k E V and h = ((D-1)/2) + 1 in

HopDEMCF+L.

Constraints linking the z with the x variables: Fix a triple (i,j,k). By adding constraints z22 < X2e, (from

Enh-HopDMCFL) for all e L(i,j)\E(k) to the constraint h3 [(D_)l2]+1 z2 k X2ij (also from Enh-

HopDMCFL) for the same triple (i,j,k), we obtain the inequality

eEL(i,j)\E(k) Z2eJ Eh=3, ,[(Dl)/2]+lZ2k
- EeE(ij)\E(k)X2ei +X2ej. By using the following relations from

Table XVII, xi = x2i .+ C ee(ij)x2ej for the same (i,j), zl 2k = E2eE(ij)\E(k)z2ejk for the same (i,j) and the

same k and zlh k
= z2 hk for the same (i,j), k and h > 3, we see that the previous inequality implies the

forcing constraint Zh2 ... HZlk < Xli for the same triple (i,j,k) in the model HopDEMCF+L. Thus, the

solution (xl,zl,El) satisfies the constraints -h2 HZ1hk <Xli. for all (i,j) E A and k E V of

HopDEMCF+L.

39

Constraints jZ z2k < ecE(i)\{i,k} Ee for all i,k E V linking the z with the E variables: Consider the

moiie inigConstraints Y]tv 222 2k
modified linking constraints EjV Z2ej + Z2 2ee = X20e for all e and k from Enh-HopDMCFL. Let us replace

the "=" sign by a "<" sign (note that after this modification, we are still obtaining a valid inequality for

Enh-HopDMCFL). By adding these constraints for all e E E(i)\{i,k} for a fixed i k, we obtain the

inequality EecE(i)\{i,k} jEVz 2
2k < E(i) X20 e for the same i and k (note that variables z2 ek are not

defined when e E E\E(k)). By using Ele = X20e for all e E(i)\{i,k}, we obtain

EeEE(i)\{i,k} E jEV Z
2

ej
<

eEE(i)\{i,k} Ele Since eEL(i,j)\E(k) jeV Z2
-

ecE(i)\i,k} E jV Z2 and

ZjEvZ1i < ZeEE(i)\{i,k} jEV z2k (the first inequality results from the fact that L(i,j)\E(k) c E(i)\{i,k) for

all i and j and the second results by adding zl12k = Ze2(i,j)\E(k) Z2k (from Table XVII) for all j and a fixed

i and again noting that L(i,j)\E(k) c E(i)\{i,k)), we obtain jE, zlk _ eE(i)\{ik} Ele for the same i and k

with i k. Thus, the solution (xl,zl,El) satisfies the constraints -jvZilk < eE(i)\{i,k}) Ele for all i,k E V

(with i • k) of HopDEMCF+L.

When i = k, we add the constraints E , V Z22eJ + Z2e2k < X20e for all e E E(k) and, by noting that variables

z22k are not defined when e E E(k), we obtain -e 2E(k)z2e < E(k)X
2
Oefor the same k.

eEI e e < ecE 2 e

Considering Ele = X20e (from Table XVII) for all e E E(k) and zl = Yee(k)z2e (also from Table

XVII) for the same k, we obtain zlk < EeE(k)Ele and thus, the solution (xl,zl,El) satisfies the

constraints zl 2 k e E(k)Ele for all k E V of HopDEMCF+L. [Note: Once more, we can derive these

inequalities as equalities - see Section 3.2.3 - if we start with E z22jk + 22 = X2 e.

Constraints z 2k < "eL(i j)\E(k)E e for all (ij) E A and k E V linking the z with the E variables: We

consider a weaker version of the inequalities V Z22 + Z2 k <x20 namely the inequalities z 2 2k< X2oe

for all e = {p,q} and j p,q. Using Ele = X20e (from Table XVII) for all e, we obtain z2k < El_. By

adding these inequalities for all e E L(i,j)\E(k) and a fixed i E V, using z12k = 'L()\E(Z
2
e2

k (from

Table XVII) for the same triple (i,j,k), we obtain Z12k < EeL(i,j)\E(k) Ele for the same triple (i,j,k). Thus, the

solution (xl,zl,El) satisfies the constraints z12k < eL(i,j)\E(k) Ele for all (i,j) E A and k E V of

HopDEMCF+L.

40

Variable bound inequalities: It is easy to show that the solution (xl,zl,El) satisfies the variable bound

inequalities in HopDEMCFL because the solution (x2,z2) satisfies the variable bound inequalities in Enh-

HopDMCFL.

We have shown that the solution (xl,zl,El) obtained from (x2,z2) by using expressions in Table XVII

is feasible for HopEMCFL. We note that the definition of the costs guarantees that the two solutions have

the same cost and, thus, the optimal linear programming value of a model defined in the original graph

cannot exceed the optimal linear programming value of the corresponding model defined in the expanded

graph, thus establishing the validity of Proposition 8.1.

41

