OPERATIONS RESEARCH CENTER
Working Paper

Network Flow Models for Designing Diameter-Constrained
Minimum Spanning and Steiner Trees

by
Luis Gouveia
Thomas L. Magnanti

OR 359-01 August 2001

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Network Flow Models for Designing
Diameter-Constrained

Minimum Spanning and Steiner Trees

Luis Gouveia) and Thomas L. Magnanti @

(1) DEIO - CIO
Faculdade de Ciéncias da Universidade de Lisboa
Bloco C/2 - Campo Grande
CIDADE UNIVERSITARIA
1700 Lisboa
Portugal
email address: lgouveia@fc.ul.pt

(2) Department of Electrical Engineering and Computer Science and
Sloan School of Management
MIT
Cambridge, MA USA, 02139

email address: magnanti@mit.edu

August 2001

Abstract

The Diameter-Constrained Minimum Spanning Tree Problem seeks a least cost spanning tree
subject to a (diameter) bound imposed on the number of edges in the tree between any node pair. A
traditional multicommodity flow model with a commodity for every pair of nodes was unable to
solve a 20-node and 100-edge problem after one week of computation. We formulate the problem as
a directed tree from a selected central node or a selected central edge. Our model simultaneously
finds a central node or a central edge and uses it as the source for the commodities in a directed
multicommodity flow model with hop constraints. The new model has been able to solve the 20-
node, 100-edge instance to optimality after less than four seconds. We also present model
enhancements when the diameter bound is odd (these situations are more difficult). We show that
the linear programming relaxation of the best formulations discussed in this paper always give an
optimal integer solution for two special, polynomially-solvable cases of the problem. We also
examine the Diameter Constrained Minimum Steiner Tree problem. We present computational
experience in solving problem instances with up to 100 nodes and 1000 edges. The largest model
contains more than 250,000 integer variables and more than 125,000 constraints.

Keywords: Spanning Trees, Steiner Trees, Diameter Constraints, Multicommodity Flow Models,
Hop-Indexed Models

1. Introduction

The minimal spanning tree problem (MST) and Steiner tree problem (ST), along with the traveling
salesman (TSP), are the most celebrated problems in the field of combinatorial optimization. In the
classical minimal spanning tree problem, we are given a prescribed graph G = (V,E) with node set V and
edge set E as well as a cost c, associated with each edge e of E. We wish to find a spanning tree T of the
graph with minimum total cost, as measured by the sum of the costs of the edges in the spanning tree. In
the Steiner tree problem, the tree needs to span only a subset of the nodes in the underlying graph G. The
other nodes, called Steiner nodes, are optional. The MST and ST problems arise directly in many
applications (for example, the design of telecommunication systems) and as a subproblem in many other

applications, including the TSP.

In this paper, we consider a computationally challenging class of the MST and ST problems, those
with bounds imposed on the number of edges in the tree between node pairs. The most general version of
this problem imposes a bound B, on the number of edges in the tree between every pair of nodes p and q.
Note that we can assume that B, = By, since in any feasible constrained tree, the path between nodes p and

q can contain no more than min {By,, By} edges and so we can replace By and By, by min {B,,q, By}

One version of this problem, known as the Fixed Root Diameter Minimal Spanning Tree Problem or
Rooted Diameter Minimal Spanning Tree Problem (RDMST), imposes a constraint that the tree path from a
specified root node 1 to every other node j contains no more than H edges (H is a given positive integer).
That is, Biq = H and B,y =+ if p # 1 and q # 1 (or, B, > min{|V|-1,2H}). This problem models the design
of centralized telecommunication networks with quality of service constraints. The root node represents the
site of a central processor (computer) and the remaining nodes represent terminals that are required to be
linked to the central processor. The path constraints limit the number of edges between the root node and
any other node and guarantee a specified level of service with respect to certain performance measures, for
example, guarantee a prescribed level of reliability to potential link or node failures (see, for example,
Woolston and Albin (1988)). This special case has received considerable attention in the literature. Gouveia
(1998) has discussed applications, linear integer programming formulations, lower bounding methods, and

relevant references for the RDMST.

In this paper, we focus on a version of the problem with uniform constraints between every node pair,
which we refer to as the Diameter-constrained Minimal Spanning Tree Problem (DMST). In this case, we
set By = D for all nodes p and q. This case imposes a bound on the diameter of the tree, which is the
maximum number of edges in any of its paths. The DMST models situations when all of the nodes can
communicate with each other, and we wish to guarantee a certain level of service between any node pair.
When D > 4, the DMST problem is NP-Hard (Garey and Johnson (1979)). When D = 2 or 3, the problem is
easy to solve (see Appendix 2). In a previous study of this problem, Achuthan, Caccetta, Caccetta and

Geelen (1992,1994) have proposed and tested several exact approaches. The first of these papers describes
several branch-and-bound algorithms that use the unconstrained minimum spanning tree solution as the
bounding component and differing branching rules. The authors solve complete random cost instances
containing up to 30 nodes. The second paper proposes a branching rule based upon the interesting fact that
the nodes of a feasible solution can be partitioned into layers around a central node (D even) or a central
edge (D odd). The branching assigns nodes to different layers and relaxes the problem into a kind of
minimum arborescence problem defined on a layered graph. With this approach, the authors have improved
upon their previously results and been able to solve instances with up to 50 nodes and D = 4. Achuthan,
Caccetta, Caccetta and Geelen (1992,1994) have also proposed two other alternative models, which we
briefly summarize in Section 3.1. More recently, Abdalla, Deo and Fraceschini (1999) have presented some

heuristics for the DMST and examined parallel implementations of these heuristics.

In this paper we examine network flow-based formulations for the DMST and for the Steiner tree
version of the problem. For ease of exposition, we cast most of our development for the minimal spanning
tree problem, and then later in Section 5 describe modest alterations needed to accommodate the more
general Steiner tree problem. After formulating a multicommodity flow-based integer programming model
for the general case, we introduce several alternative models for the DMST that lead to more effective
solution procedures. We then report on computational experience indicating that the modelling
improvements can induce very substantial reductions in solution time. For example, after over one week of
computations, the original formulation was unable to solve one problem, whereas computations with the

alternative formulations were able to solve the problem in less than one second.
Our modelling improvements use four essential ideas.

First, following Magnanti and Wong (1984), we use a multicommodity flow formulation that has

proven to be valuable in modelling many network design problems.

Second, we model the problem as a multicommodity flow problem with a single source, instead of the
traditional model with a commodity for every pair of nodes. We simultaneously find a “central node” or a
“central edge” that serves as the source for the commodities. This modelling approach permits us to reduce

the number of commodities by a factor of n, the number of nodes of the graph.

Third, we direct the problem treating the solution as directed tree from a selected central node or a
selected central edge. The idea of directing network design problems has proven to be a powerful
modelling construct in the past to improve formulations. In several contexts, Wong (1984), Balakrishan,
Magnanti and Michandani (1994), Goemans (1994), Geomans and Myung (1993), Chopra and Rao (1994),
and Magnanti and Raghavan (1999) have shown how to use this technique to improve models of the
hierarchical network design problem and various network connectivity problems including the Steiner tree

problem. In particular, the directing technique is useful for modelling the minimal spanning tree problem,

since the directed multicommodity flow model or an equivalent enhanced undirected model, but not a
traditional undirected model, gives an extended description of the convex hull of incidence vectors of

spanning trees (see Martin (1986) and Magnanti and Wolsey (1996)).

Fourth, following Gouveia (1998), we use a hop-indexed formulation to improve the multicommodity
flow formulation. His computational results suggest that in the context of network design problems
involving hop constraints, the linear programming relaxation of an appropriate hop-indexed reformulation

can improve substantially on the linear programming relaxation of a multicommodity flow formulation.

Our results will demonstrate the power of using the single-sourcing approach combined with directing

the model and using a hop-index formulation for obtaining significant improvements in solution times.

The remainder of this paper is organized as follows. In Section 2, we introduce a basic
multicommodity flow formulation of the diameter-constrained minimal spanning tree problem. In Section
3, we show how to model the DMST as a single source directed problem, distinguishing situations in which
the diameter restriction D is even and odd. We discuss both traditional network flow and hop-indexed flow
models. Our computational results show that these models are not as successful for solving the DMST
instances when D is odd as when D is even. Thus, we also present some valid inequalities for the situation
when D is odd. In Section 4, we present a different formulation when D is odd based upon solving the
problem in an expanded graph containing pseudo-nodes corresponding to potential central edges. Appendix
1 shows that the linear programming relaxation of these enhanced models dominates the linear
programming relaxation of the original models presented in Section 3. Section 5 briefly discusses minor
modifications to the spanning tree formulations for the Steiner case. In Section 6, we report on computation
experience on graphs with up to 80 nodes and 800 edges. These problems instances contain up to 250,000
integer variables. In Appendix 2, we present tight formulations for the polynomially-solvable cases of the

DMST whenD =2 and D = 3.

2. Basic Formulations

To formulate a multicommodity flow model MCF of the diameter-constrained problem, we use two sets

of variables. Variables x, (e € E) indicate whether the minimum spanning tree contains edge e, and directed

flow variables y;* ({i,j} € E; p,q € V;p #j and q # i) specify whether the unique path from node p to node

q traverses edge {i,j} in the direction i to j.

Table 0. Modeling a Diameter Constrained Spanning Tree

Model MCF

minimize Zcexe

eckE
subject to er =n

ecE

li=p

Zy;-’q —ny,»q ={ 0 i#p,qforalipqgeV
Jjev jev —1 l _ q

v +y <x, foralle={i,jleE,pqeV
Z G +yi)<D foralp,geV

{i.j}eE
v 6{0,1} foralle={i,j}e E,p,qeV
X, € {O,l} forall ee E.

This formulation is a multi-source multi-destination formulation for the minimum spanning tree

problem, as given in Magnanti and Wong (1974), augmented with the set of cardinality constraints
Z i vk (y,j."’ + yﬁ.")< D for all p,q € V. These inequalities state that the path between any two nodes p to q

contains no more than D edges. The formulation MCF is quite similar to a formulation presented in

Balakrishnan and Altinkemer (1992) for a more general network design problem with hop constraints.

As stated, the MCF formulation has a commodity, and so flow variables y/?, between every pair p and

q of nodes. Since y/* = y#% (for all i,j,p,q € V) in any integer solution to the problem, we can eliminate half
the variables and commodities, creating a reduced problem, using only the variables with p < q. If the value

of the variables (x, y?? with p < q) are feasible for the linear programming relaxation of the reduced

problem, then the value of the variables (x, y;* with p <q, y}? = y¥ with p > q) are feasible for the linear

programming relaxation of the full commodity problem. This observation permits us to conclude that the
value of the optimal solution of the linear programming relaxation of the reduced model is equal to the

value of the optimal solution of the linear programming relaxation of the full commodity model.

Unfortunately, the reduced MCF model still contains a large number of variables and constraints and
can be difficult to solve. On a Pentium Pro 450Mhz computer, the CPLEX solver (version 7.0) was unable
to solve a modest-sized 20 node and 100 edge instance of the MCF formulation after one week of

computation. This model contains about 40,000 integer variables and 20,000 constraints.

Following Balakrishnan, Magnanti and Wong (1989), we could tighten the linear programming
relaxation of the MCF formulation using generalizations of the constraints y;? + y7? <x, that include

flow variables for pairs of commodities on the lefthand side of the inequalities. However, the model with

the new constraints would contain a much larger number of constraints and it seems unlikely that using it
would permit us to solve this problem instance. A different idea is to tighten the linear programming
relaxation of the constrained path problem that is embedded in the MCF formulation. We describe one such
idea (a hop-indexed model) in the next section in the context of a different model for the DMST problem.
The possible improvements obtained in this way for the MCF model will not, however, be readily
realizable because of the large number of commodities in the formulation. Thus, we will not explore the

hop-indexed approach in the context of the MCF model.

Throughout the remainder of our discussion, for any optimization model P, we let P, denote its linear

programming relaxation, F(P) denote its set of feasible solutions, and v(P) denotes its optimal objective

value. To obtain the linear programming relaxation MCF} of any model like MCF that contains binary

variables, we replace constraints of the form x, € {0,1} and y/* € {0,1} by the lower and upper bound

constraints 0 < x, <land 0< y{}q <1.

As noted, the MCF model is based on a multi-source multi-destination network flow model for the
minimum spanning tree presented in Magnanti and Wong (1974). As is well known, we can obtain a single-
source multi-destination model for the minimum spanning tree whose linear programming relaxation is as
tight as the linear programming relaxation of the multi-source multi-destination model (see, for instance,
Magnanti and Wolsey (1996) and the next section of this paper). This single-source model involves only
n—-1 commodities, defined from a specific node to all other nodes in the graph. The “distance” constraints
between every pair of nodes involved in the DMST problem suggest that we might not be able to use a
similar idea for modeling the DMST problem. However, as shown in the next section, special properties of

trees will permit us to also model the DMST problem as a single-source network flow problem.

3. Single Sourcing and Directing the Problem

In this section, we use the following elementary properties of trees to formulate single source and
directed versions of the DMST problem. This formulation permits us to reduce the number of commodities

by a factor of n and to obtain much better algorithmic performance.

i) A tree T has diameter no more than an even integer D if and only if some node p of T
satisfies the property that the path from node p to any other node of the tree contains at most
D/2 edges.

ii) A tree T has diameter no more than an odd integer D if and only if some edge {p,q} of T
satisfies the property that the path to any other node of the tree from either node p or node q
contains at most (D-1)/2 edges.

As observed by to Handler (1973), the “central” node p and “central” edge {p,q} in these properties are
easy to determine. If a tree has diameter D, then starting from any node i, we find any node j that is farthest
away from it, in the sense of number of edges in the unique path connecting these nodes. Then from node
Jj, we find the node k farthest from it. The midpoint of the tree path joining nodes j and k is either a node p
or the midpoint of edge {p,q}. This result shows an intimate relationship between the diameter constrained
spanning tree problem and a center location problem. Other researchers (Camerini, Galbiati and Maffioli

(1980)) have used this observation when studying a related minimax diameter spanning tree problem.

These observations show that when D is even we could solve the diameter constrained minimum
spanning tree problem by solving |V| fixed root problems and that when D is odd we could solve the
problem by solving [E| fixed root problems after shrinking each edge to create a pseudo node. We will
instead create single models that simultaneously select the central node and central edge and the diameter-

constrained tree.

To easy our notation in describing these models, we will augment the original network by adding an
additional node 0 and zero cost edges {0,j} for all node j € V to create an augmented graph. We will refer
to this network as the augmented network and the network without the node 0 and its incident edges as the
original network. We let Vo=V U {0} and Eo=E U {{0,j} for all jeV} denote the node and edge sets in
the nt1 node augmented network. Then in this graph:

1) when D is even, we wish to select a minimum cost spanning tree containing a single edge {0,j}
and ensure that the unique path from node 0 to every node contains at most (D/2) + 1 edges, and

if) when D is odd we wish to select a minimum cost set of nt+1 edges so that: (i) n edges form a
spanning tree containing exactly two edges {0,i} and {0,j}, (ii) the unique path from node 0 to
every node contains at most [(D-1)/2] + 1 edges, and (iii) the (n+1)th edge e = {i,j} from the

original network connects the endpoints i and j of the two edges {0,i} and {0,j} .

Figures 1 and 2 give examples of the diameter constrained spanning tree problems on the augmented

networks when D =4 and D = 5.

Added Original
Node 0 Graph

Figure 1 - Augmented Network for Situations with D Even (D = 4)

Tree

Added Original
Node 0 Graph

Figure 2- Augmented Network for Situations with D Odd (D =5).

In choosing the underlying tree in Figure 1 or 2, we could choose n undirected edges or we could
replace each edge {i,j} in the network with two directed arcs (i,j) and (j,i), each with the same cost c;; as the
edge {i,j}. For the directed version of the models, we let A, denote the (directed) arc set in the augmented
graph and A denote the (directed) arc set in the original network. In the following sections, we will

investigate both the undirected and directed models.

Achuthan and Caccetta (1992,1993) have proposed formulations for the DMST based on a similar
augmented network. Their models are based on a set of modified Miller-Tucker-Zemlin subtour
elimination constraints. Although their models are quite compact, results given in Gouveia (1995) using a

similar model for the fixed-root version of the problem have shown that the modified Miller-Tucker-

Zemlin subtour elimination constraints represent a rather weak modeling approach, in terms of the
associated linear programming relaxations, for imposing a limit on the maximum number of arcs in a path.
Some results given in Section 6 using a simplified version of their model, as suggested in subsequent work
by Achuthan, Caccetta, Caccetta and Geelen (1994), exhibit the same computational behavior for the
DMST.

3.1 Underlying Core Models

The models presented in this section for the diameter constrained spanning tree problem contain two
core subproblems: a rooted minimum spanning tree problem and hop-constrained path problem. We can
model these core models in different ways and by mixing and matching the possible core components, we

can create several alternate models for the diameter constrained spanning tree problem.

Table I shows core models for a rooted minimum spanning tree problem defined on an undirected
graph (V,E¢) with n + 1 nodes and a rooted directed minimum spanning tree problem (the minimum
arborescence problem) defined on a directed graph (V,,A,) with n + 1 nodes. Although the directed graph
(Vo,Ag) could have any general structure, for our purposes, we obtain it by directing a given undirected

graph (V,A) as indicated in the last section. The undirected model uses two sets of variables. Variables x, (e

€ E) indicate whether the minimum spanning tree contains edge e, and directed flow variables yg. ({ij} €

E; k € V; i # k) specify whether the unique path from the root node to node k traverses edge {i,j} in the
direction i to j. The directed model uses two sets of variables as well: the directed flow variables as in the

undirected model and variables x;; ((i,j) € A) indicating whether the spanning tree contains the directed arc
@p-

Table I. Modeling a Rooted Spanning Tree

Undirected Minimum Spanning Tree Model Minimum Arborescence Model
minimize Z c.X, minimize Z CiXy
ecky (i./)edy
subject to Z X, =n subject to Z X;=n
eckp (i,j)edy
1i=0 1i=0
Zy;—Zyﬁz 0i#0,k forallkeV,ieV, Zy,.';—nyl: 0i#0,k forallkeV,ieV,
jev FE 1i=k jev iV “1i=k
yi+yi<x, foralle={i,jleE keV yi<x; forall (i,j)e A keV
y520 foralle={ijieE,keV yi20 forall (i,j)e A, keV
x, €{0,1} for all ec E,,. x; €{0,1} for all (i,j)€ 4,.

The cardinality constraints in these models guarantee that the tree solution contains n edges (arcs). The

inequalities yé‘. + yfi <x,and yi';. < x; prohibit flowing on any edge e or arc (i,j) that is not included in the

minimum spanning tree. Together with the flow conservation constraints, they guarantee that the solution is

connected. Note that the constraints in the directed model imply that 1< Z‘, yh < foik for all values of

keV, which together with the constraint Z (i)eaXs =1 imply that Ziy,-'i = Zixik =1forall keV.

Let ST denote the feasible set of the undirected minimum spanning tree model and DST the feasible set

of the directed minimum spanning tree (directed arborescence) model.

As is well known (see, for example, Magnanti and Wolsey (1996)), the linear programming relaxation
of the directed model always has an optimal solution with integer values for the variables x. The undirected
model might not have an integer optimal solution. As noted by Magnanti and Wolsey (1996), it is not
difficult to formulate an undirected model whose linear programming bound is equal to the linear
programming bound given by the directed model. However, the enhanced undirected model contains far
more constraints than the directed model and, for our purposes, is impractical from a computational

perspective.

To model the hop constraints we can use either of the two models shown in Table II. In both cases, we
assume we are modeling a problem of finding a directed path containing at most H arcs from a given root
node (node 0) to a specific node k. The constrained path model uses only flow variables defined on the arcs
of the underlying network, sending one unit of flow from the root node to node k, but using at most H arcs.

The hop-constrained model is an extended formulation. Besides the flow variables, it also uses binary

variables zg" indicating whether arc (i,j) is the h™ arc in the path joining the root node and node .

Table II. Modeling a Hop-Constrained Path (from node 0 to node k)

Constrained Path Model Hop-Constrained Path Model
Z zé’; =1
1 i= 0 il 2k 1k
ZJ’;_ZJ’;= 0 i#0.k ;ZU =z forallieV
jehy Jjev _1 . k J Belk Ak
1= ZZU“ —Zzﬁ =0 forallieV,h=2,..,H-1
k jeV 134
Z y; <H g !
Wit Yz =1
k .. jev
y; €{0,1} for all (i,) € 4,. o
yij". = thmﬁz;k for all (i, j) e A,
z;' €{0,1} for all (i, j)e 4y, h=1,...,.H
z,’c‘: 6{0,1} forallkeV, h=2,.,H.

Since the 0-1 variables y,.’; specify a path between the root and node k, the inequality
Z (.)edo yif. < H in the constrained path model restricts the chosen path to contain at most H arcs. The

Hop-Constrained Path model contains constraints stating that an arc enters node i in position h if and only

if another arc emanates from this node in position h + 1 and that one arc enters node k in position H. Note
that this model contains “loop” variables zj; (h=2,..., H) with zero cost to model situations when the path
from the root node to node k contains fewer than H arcs (that is, zj = 1 for some node i and h < H). The

equalities yi'j‘. = Z K H z;" relate the original variables with the extended variables. Although the original

flow variables y,.’J‘. are unnecessary for obtaining a valid formulation for the core subproblem, we will need

them for relating the hop-indexed variables with the flow variables included in the tree models.

Let DP} denote set of feasible solutions of the constrained path model and DHP} the set of feasible

solutions of the hop-constrained model.

The hop-constrained problem contains far more variables than the constrained path problem.
However, it is a network flow (path) problem on an expanded network and so has the advantage that the
extreme points of its linear programming relaxation are integer-valued (see Gouveia (1998)) whereas, in
general, the linear programming relaxation of the constrained path model has fractional extreme points.
This result implies that for the linear programming relaxations, in the space of y variables, the feasible set

of the hop-constrained path model is contained in the feasible set of the constrained path model.

3.2 Network Flow Models for the Diameter Constrained MST Problem
3.2.1 The Situation When D is Even

As shown in Table III, by choosing either direct or undirected versions of the spanning tree problem
and the constrained path or hop variable versions of the hop-constrained path problem, when D is even, we

can create four different models of the diameter constrained minimum spanning tree problem.

10

Table II1. Models of the DMST when D is Even

Undirected Directed
Path Model UMCF Model DMCF
minimize Z c.X, minimize Z C;iX;
ecky (1,7)e4y
subject to (x,y)e ST subject to (x,y) € DST
2 %o,y =1 D %o =1
Jjev jev
ye DP}Z,ZM forallkeV. ye DH’,‘),Z)H forall keV.
Hop Model HopUMCF Model HopDMCF

minimize Z C;X;
(i./)edy
subject to (x,y) e DST

minimize Z c.x,
eckEy

subject to (x,y)e ST

]';/x{(])j} =1 jeZonj =1

(z,y)e DHP('E,,Z),(1 forallkeV. @y e DHHIB/z)n Jor all keV.

The degree constraint imposed on the root, the flow conservation for the root node, and the constraints

linking the x and y variables guarantee that the linear programming relaxation of these models satisfy the

equalities y:j =x,, (y:j =X,,,) for all jk # 0 and thus, when we impose integrality, the node k € V

withx,, =1 serves as a transshipment node for all the commodities. In accordance with the interpretation

given at the beginning of this section, this transshipment node will be the central node of the tree in the

original graph.

Our computational results show that the linear programming bound given by the undirected multi-
source/multi-destination MCF model is generally much better than the linear programming bound given by
the undirected UMCF model. However, in some cases the UMCF model can provide a tighter linear

programming relaxation.

Example. In a complete graph on five nodes numbered 1 to 5, suppose D = 2 and edges {i,j} with j = i+1
(mod 5) have cost 1. Each remaining edge has a cost 10. The MCF model has an optimal linear
programming value of 7 while the UMCF model has an optimal linear programming value of 8.5. The

optimal value to the problem is 22. .

Using the directed DMCF formulation, the CPLEX solver was able to solve the previously mentioned
DMST instance with 20 nodes and 100 edges within 200 seconds. For all instances that we tested, the linear
programming bound given by the directed DMCF model is as good (actually better) than the linear

11

programming model given by the traditional model MCF. We have been unable to verify whether this
relationship holds for all cases. For the previous five-node example, the DMCF model has a linear

programming value of 13.0.

As in other related models (see Magnanti and Wolsey (1996)), the linear programming relaxation of the
directed model DMCF is at least as strong as (and generally is much stronger than) the linear programming
relaxation of the undirected model UMCF. Similarly, the directed hop-indexed model has a stronger linear

programming relaxation than the undirected model.

We note that when creating these UMCF and DMCF models, we can remove one set of flow balancing
constraints for each node k # 0 (either from the tree model or from the constrained path model) since they

become redundant. A similar observation applies to the hop-indexed models HopUMCF and HopDMCF.

hk

pik b/ 2 » 11 €asy to show that the flow conservation constraints of the

Using the equalities yij’f = Z

tree model are aggregations of the hop-indexed flow conservation constraints of the Hop-Constrained Path

model. Therefore, we can remove the flow conservation constraints from the tree model. Furthermore, the

constraints y;. = z z™ relating the two sets of flow variables permit us to rewrite the linking

h=1K(D/2)+17¥
constraints (y;. < x; in the directed model and y; + y; < x, in the undirected model) using the z and x

variables and so we can eliminate the y variables from the hop-indexed models. With these observations, it
is easy to show that the directed models DMCF and HopDMCF are the same as the models described by
Gouveia (1996,1998) for the fixed-root version of the problem with an additional degree constraint

imposed on the extra node.

Finally, we note that the previously stated property that the extreme points of the linear programming
relaxation of the Hop-Constrained Path model are integer-valued whereas, in general, the linear
programming relaxation of the constrained path model has fractional extreme points permits us to show that
the linear programming relaxation of the directed hop-indexed model HopDMCEF is at least as strong as the
linear programming relaxation of the directed model DMCF. Similarly, the linear programming relaxation
of the undirected hop-indexed model HopUMCEF is at least as strong as the linear programming relaxation

of the undirected model UMCF. Formally, we have:
Proposition 3.1: v(HopDMCF,) > v(DMCF}). v(HopUMCEF}) = v(UMCF.).

Proof. As we have previously noted for the linear programming relaxation, in the space of y variables,
the feasible set of the hop-constrained path model is contained in the feasible set of the constrained path
model. Adding the (directed) spanning tree constraints retains this property, which implies the stated

result. .

12

The computational results given in Section 6 indicate that this dominance is strict for most cases. Using
the directed hop-indexed formulation, the CPLEX solver was able to solve the previously mentioned 20

node and 100 edge DMST instance in less than four seconds.
3.2.2 The Situation When D is Odd

We have observed that our models for D even are simple modifications of models for the fixed-root
version of the problem. As Figure 2 shows, for deriving a model for situations when D is odd, we need to
be more elaborate. To model these situations, we must choose a single (central) edge {i,j} from the original
network as well as two incident edges {0,i} and {0,j} (or two incident arcs (0,i) and (0,j) for the directed
models). To do so, we let E, be a zero-one variable indicating whether or not we choose the central edge e

= {i,j} and impose the following edge selection constraints:

Y E, =1

eck

X, = Z E, forallkeV

ecE(k)

E,e{0,1} forallecE.

In these expressions, E(k) denotes the set of original edges incident to node k. In the space containing
all of the x variables and the edge variables E. from the original network, we let ES denote the set of
feasible solutions to these Edge Selection constraints. Since the chosen edge e has two incident nodes,

exactly two of the variable x, in this model will have value one. Consequently, we need not include the

extra constraint stating that exactly two edges emanate from the root node, node 0. We also note a similar

observation in the context of the corresponding linear programming relaxation. In fact, by addingthe

constraints x,, = ZEEW)Ee for all k € V, we obtain kaOk = 22255 E_ . The equality ZeeEEe =1
implies kaw =2.

As in the situation when D is even, we obtain four different models. We might make one other
observation about these models: if the network contains the central edge {j,k}, then it will contain both

edges {0,j} and {0,k} and so we can send commodity k directly from node 0 to node k and not send any of

this commodity on edge {0,j}. Consequently, we can replace the constraint y:j <x,(# k) with the

stronger constraint yf,'j <x, - Ep

0,

13

Table IV. Models of the DMST when D is Odd

(z,y) € DHP}} 1y ., for all ke V
Ve <x,~E, forall k,jeVik#j.

Undirected Directed
Path Model UEMCF Model DEMCF
minimize Z c,x, + ZCEEB minimize Z C; %y + ZceEe
ecEy ecE (i,j)eAy eckE
subject to (x,E) € ES subject to (x,E) € ES
(x,y)e ST (x,y)e DST
ye€ DP(f‘D_l) jyn Jorall keV ye DP({‘D_,) iy Jor all keV
y(')‘j Sxp—Ey foralk,jeVik+j. ygj <xy;,—E; foralk,jeV;k#+j.
Hop Model HopUEMCF Model HopDEMCF
min imize Z c.x, + ZceEe minimize Z C;x; + ZceEe
ecky ecE (i,))edy ecE
subject to (x, E) € ES subject to (x,E) € ES
(x,y)e ST (x,y)e DST

(z,y) e DHP(fD_l) iy Jor dll keV
Vi <x;—E, forall k,jeV;k#j.

As we observed before, the two directed models satisfy the constraints zixl.k =1 forallk € V. The
equalities x,, = Zeeque in the set ES imply that Zi: o ik +Ze€ iy Be =1 for all k € V. That is, every
node k € V either receives an incoming arc from the original network or is an endpoint of the central edge.
One way to view these models (e.g., by eliminating the variables x,, but retaining the variables y(/;' ;) 1s that

we are establishing a node (the index 0 plays this role) in the middle of the chosen edge (with E, =1) with

the property that the unique path from this node to any other node contains at most [(D-1)/2+1] edges or
arcs. This formulation avoids the need to add nodes in the middle of each edge of the original network and

then treat the added and original nodes differently since we do not require a path to added nodes.

As in the D even models, some constraints for the D odd models become redundant when we combine
the formulations for the two core subproblems. As for the D even case, the hop-indexed models produce a

better linear programming bound than the constrained path models. Formally, we have
Proposition 3.2: v(HopDEMCEF,) > v(DEMCF,). v(HopUEMCF,) > v(UEMCF).

Our computational results show that our models are not as successful for solving DMST instances when
D is odd as when D is even. One possible explanation for this result might be given by the constraints

linking the flow variables with arc (edge) design variables for the arcs (edges) emanating from the

14

additional node 0. As we have noted before, the four models for situations when is D even satisfy the

equalities y,f/. =x, (yh , =X,,) for all jk # 0 and thus, node k = 0 withx,, =1 serves as a transshipment

node for all the commodities. In the context of the D odd models, we cannot guarantee that one of the two

nodes p and q with x, =x, =1, say node p, will be a transshipment node for a given commodity k. The
q 0p = Xoq p

best we can say is that node p could be a transshipment node for that commodity (which is easily seen by
combining the linking constraints for arc (0,p) (or edge {0,p}) with the corresponding flow conservation

constraint). This behavior motivates, in a certain sense, the formulation described in Section 4.
3.2.3 Equivalent and more compact formulations when D is odd

By using an auxiliary augmented network, we have developed formulations for situations when D is
even and D is odd. It is fairly easy to obtain equivalent formulations (in terms of corresponding linear

programming relaxations) involving only variables associated with the original network.

As one such example, let us develop a reduced formulation with an equivalent linear programming

relaxation to the model HopDEMCEF. The equalities x, = Z E for all k € V in the model

ecE (k)
HopDEMCF permit us to eliminate the variables x,, (k € V) from the model. Then, the cardinality

constraint z () =T becomes Y. (yen™i +2) _E,=n, which simplifies even further to

Z ()i = n—2 since ZeeE E, =1. The inequalities zy +E, <x,, for all ik € V (we ignore the term

i

"+ E,," wheni=k)become z;; <)

{ik} ecE(i)\{i,k} Ee :

% for all i,k € V to remove the hop indexed flow variables

" 2k _
Next, we use the equalities ZjeV z; =2z,
associated with the arcs leaving the auxiliary root node (that is, the hop indexed variables with h = 1). The

equalites » z;=1 for all k € V become Zieyzjey z;* =1. Finally, the inequalities

zor SZ E for all ik € V become styz;" SZ E . Note that when i = k, these

ecE(D\{i,k} € ecE(\{i,k} €

inequalities reduce to z2' < Zee £ E, because the model does not contain the variables z;" L,j € V({i#])).

When i # k the previous inequalities have the following intuitive interpretation: if any arc in position 2
emanates from a given node i and belongs in the path to node k, then the central edge should be adjacent to

node i and should differ from the edge {i,k}. Table V depicts these modifications to the model:

15

Table V. Reducing the number of variables and constraints in the model HopDEMCF

Original Model Reduced Model
Z X, =n Z X, =n—2
(i,j)edo Y (i.j)e4 !
zy +E, <x,, foralikeV Zz;." < Z E, forallikeV
" jev ecE()\i k)
zy =1 or all keV.
g,; o s ZZZ;"=1 forallkeV.
ieV jeV

To close this subsection, we note that the linear programming relaxation of the HopDMCF formulation
always has an optimal integer solution for the DMST when D = 2 (as shown in Appendix 2). However,
when D is odd even the strongest of our models, the model HopDEMCF, can have fractional extreme
points. We describe exact formulations for the case D = 3 in Appendix 2. As a direct consequence of the
study of the D = 3 case, in the next subsection we present a set of valid inequalities that permit us to

strengthen the linear programming relaxation of HopDEMCEF.
3.2.4 Valid inequalities when D is odd

The inequalities presented in this section are based on an observation concerning any optimal solution
when D is odd, namely, any node linked to the central edge is always linked to the closest endpoint of the
central edge. For every non-central arc (i,j) € A, let L(i,j) denote a set of potential central edges {i,p} € E
whose endpoint i is not farther to node j than is node p. That is, L(i,j) = {{i,p} € E: p #j and cjj <cp;}. The
previous observation concerning optimal solutions for situations when D is odd indicates that if an optimal

solution contains an arc (i,j) connected to the central edge, then L(i,j) contains the central edge.

We show next how to use information from the sets L(i,j) to derive valid inequalities for situations

when D is odd. These inequalities are based on disaggregated versions of the inequalities

Z 2k < Zeew)\ i Ee (for all i,k € V and i # k) described in the previous subsection. We start by

jev Y

weakening the these inequalities into zijz." < ZEE EoMiE E, for all (i,j) € A and k € V. We can interpret

these weaker inequalities as indicating that if arc (i,j) is in position 2 on the path to node k, then the central
edge should be adjacent to node i and should differ from the edge {ik}. However, by our previous

observation concerning optimal solutions for situations when D is odd, we know that the central edge is

restricted to the set L(i,j)\{i,k}. That is, we can strengthen these inequalities to z;k < zee LM E, forall

(ijJe Aandk e V.

The new set of constraints permit us to obtain two new models for the situations when D is odd. We obtain
one of the new models, denoted HopDEMCF+, by adding the new constraints to the model HopDEMCF.
We obtain the other, denoted HopDEMCF* by replacing the O(n®) constraints

16

i

zjey 22k < Zee o E, (for all i,k € V and i # k) in HopDEMCF by the new set of O(n*|A|) constraints

zi!z_k < Zee LI k}Ee for all (i,j) € A and k € V. Consequently, the original model HopDEMCF differs

from the model HopDEMCF* only concerning the set of constraints relating the hop-indexed variables

z;" with the central edge variables E, . Table VI depicts the differences between the three models:

Table VI. The three directed hop-indexed models for D odd

forall i,keV and i+ k.

forallikeV andi # k
sz < 2 E

i = e

eeL(i,j)Mik}

Model HopDEMCF Model HopDEMCF+ Model HopDEMCF*
< Y E, forallieV < Y E, forallieV < D E, forallieV
ecE(i) ecE(i) ecE(i)
DIEAED I 2 DIEAESIDINS 2
jeV eeE(D\{i,k} jev ecE(I)\{i,k}

2k
z; < z E,
eeLli,)HMirk)

Jor all (i,j)e Aand keV. forall i,j)e Aand keV.

Clearly, the linear programming lower bound given by HopDEMCF+ cannot be worse than the linear
programming lower bound given either by HopDEMCF or HopDEMCF*. Thus, we have the following

result.

Proposition 3.3. v(HopDEMCF+) = v(HopDEMCEF). v(HopDEMCF+1) > v(HopDEMCF*1).

Our computational results show that these inequalities can be strict. In general, neither of the linear
programming models HopDEMCF and HopDEMCF* dominates the other. Our computational results show
that for random cost graphs the new model HopDEMCF* produces a better bound than the original model
HopDEMCEF. The situation is reversed for the instances with Euclidean costs.

Using the new model HopDEMCEF+, we have been able to solve problems that we could not solve using
the HopDEMCF model because its linear programming lower bound was not tight enough. We note,
however, that in some cases, the extra constraints in HopDEMCF+ have contributed to huge solution times
to obtain the integer solution. In some of these cases, the third model, the model HopDEMCF* which
produces a weaker linear programming bound but is more compact than the strongest model, proved to be a

viable alternative for obtaining the optimal integer solution.

We also note that due to the inclusion of the new set of constraints, the linear programming relaxation of
the models HopDEMCF+ and HopDEMCF* always have an optimal integer solution for the DMST when
D = 3 (the Appendix 1 establishes this result). This observation also implies that v(HopDEMCF*}) >

v(HopDEMCFp) when D = 3.

17

4. Enhanced Formulations for the DMST when D is odd

The formulations described in this section are also based on our prior observation that in an optimal
solution to situations when D is odd, any node linked directly to the central edge is always linked to the
closest endpoint of the central edge. In this section we use this property to construct a different model. We
will contract every possible central edge {p,q} into a supernode and replace the two arcs connecting the

nodes p and q to any other node j by the shorter of the arcs (p,j) and (q,j).

This observation permits us to model situations when D is odd as a special version of the D even
problem in an appropriately expanded graph. Let G = (V,E) be the original undirected graph. We define the
expanded graph Gg = (Vg,Eg) as follows:

VE=Vu {{ij}: {ij} € E}
Eg =E U {{{ij}.k}: {ij}e VE\V, k eV\{i,j} and ({k,i}e E or {kj}e E)}.

The set Vg includes all the nodes in V plus a new set of nodes, the “supernodes,” corresponding to
edges in E. The set Eg includes all the edges in E plus a new set of edges linking each supernode to the

neighbors of either of the endnodes of the edge corresponding to the supernode. The number of edges in the

path from the supernode (say {p,q}) to any other node in T is at most (D-1)/2 if and only if the number of
edges in the path from the central edge {p,q} is at most (D-1)/2 in T.

Based on our experience with the models presented in the previous section, we shall cast our discussion
in terms of only directed models. Thus, we replace each edge e = {ij} € Eg of the undirected expanded
graph by two directed arcs (i,j) each with the same cost as the edge e and obtain a directed expanded graph
Gg = (VE,Ag)- We replace an edge of the form {{ij} k} in the undirected graph by only the single arc
({1,j},k) in the directed graph. We define the arc cost structure in Gg as follows. If an arc in Gg is of the
form (i,j) with i,j € V, then it has the same cost as it has in the original graph G. Otherwise, the arc has the
form ({i,j} k) and we set its cost equal to the minimum of ¢;; and ¢jk- The definition of the new arcs and the
way their costs are defined is typical of graph theory algorithms that shrink several nodes into supernodes
(Edmonds’ minimum cost arborescence algorithm is an example). Using the definition of the arc costs in

Ag, it is easy to transform any feasible tree Tg in G into a feasible tree T in G with the central edge {p,q}.
Furthermore, the definition of the costs in Gg guarantees that T is optimal in G, if and only if T is optimal

in G.

Following our discussion of Section 3, we will augment the expanded graph by adding an additional
node O and zero cost arcs connecting the root node to each supernode. Figure 3 illustrates this

transformation. In this augmented graph, we wish to select a tree Tg containing a single arc emanating from

18

node 0, spanning a single supernode {p,q}, and all the original nodes in V except nodes p and q. The tree

must satisfy the property that the unique path from node 0 to every node contains at most (D-1)/2 + 1 arcs.

C,; = min (c,;,c,)

Added Original
Node 0 Edges Graph

Figure 3 - Augmented Enhanced Network for Situations with D Odd

The resulting model is similar to the problem discussed in Section 3 for situations when D is even.
Indeed, we can write the DMCF and HopDMCF models for situations when D is odd in the context of this
augmented graph with minor modifications of the models when D is even. The variables x and y will now

have indices corresponding to three types of arcs:
(1) the arcs (0,e) fore = {p,q} € E,
(if) the arcs (e,j) for e = {p,q} € E,j € V\{p,q} and ({p,j} € E or {q,j} € E)}.

(iii) the arcs (i,j) for (i,j) € A.

19

Table VII. Modeling a Directed Rooted Restricted Tree in the Augmented Expanded Graph

Directed Restricted Tree Model

minimize z CyX;
(. j)ede

subject to Z x;=n-1

(i,))edg

Zx()e =1

ecE

0 forallikeV;,i+k
k k k
Zyij_(zyji+ Z Yei) = Z X =1 forallikeV;i=k

jev jev ecE\(E(iI)VE(k)) B (k)
PR 0 forallkeV,e ={p,q} € E\E(k)
jey\z{p‘q}yef_y‘” ={ forallkeV,e ={p,q} e E(k)
D k=1 forallkeV

ecE

V5 <x; forall (i,j)e Az, keV
y;ZO for all (i,j)e Ag,keV
x; €{0,1} forall (i,j)e 4.

_xO

e

Based on our observation motivating this formulation, when e = {p,q} the cost c¢j (¢ € E; j € V\{p,q})
is given by cej = min {cp;,cqj}. The first two constraints state that the tree contains n — 1 arcs and that
exactly one arc leaves the auxiliary root node. The conservation flow constraints for the nodes in V state

that when i =k, either (i) Z =0 and node k receives one unit of flow from the root node (note

ecE(k) xoe

that the model does not contain the variables y,l; for all k,j € V) and node k is included in the tree, or (ii)
ZeeE(k) x,, =1 and node k does not receive flow from the root node (we use again the fact that the model

does not contain the variables y,’; for all k,j € V) and thus, it is not included in the tree. When i # k, the

corresponding constraint simply states that node i is a transshipment node for commodity k. The flow
conservation constraints for the nodes e € E state that if e = {k,p} for some p € V, then node e receives one

unit of flow of commodity k if and only if arc (0,e) is in the solution (the model does not contain the
variables y:j forallk,j € V, e € E and e = {k,p} for some p in V). Ife = {p,q} for p,q #k, thennode e is a

transshipment node for commodity k. The remaining constraints are self-explanatory.

To obtain valid formulations when D is odd, we need to combine this model with simple adaptations of
the path models described in the previous section. In this way, we shall obtain an enhanced directed
multicommodity flow model (Enh-DMCF) and an enhanced directed hop indexed flow model (Enh-
HopDMCF). For simplicity we do not formally state the complete models (we refer the reader to the
Appendix 1 which contains a complete description of the model Enh-HopDMCF).

20

It is possible to show that the linear programming relaxation of the enhanced models Enh-DMCF and
Enh-HopDMCF dominate the linear programming relaxation of DEMCF and HopDEMCEF+ respectively.
That is,

Proposition 4.1 v(Enh-DMCFp) > v(DEMCF1). v(Enh-HopDMCF7) > v(HopDEMCF+p).

As demonstrated by our computational results, the inequalities can be strict. The proof of this full result
is quite elaborate and so we omitted from this discussion. Appendix 1 provides a proof of half of the result,
namely that the linear programming relaxation of the model Enh-HopDMCF dominates the linear

programming relaxation of the model HopDEMCEF+.

Our computational results show that the lower bound given by the linear programming relaxation of the
new model Enh-HopDMCF is in general significantly better than the lower bound given by the linear
programming relaxation of the models described in the previous section for situations when D is odd. In
fact, the lower bounds given by this model for situations with D odd are close to the optimal integer value
and nearly of the same quality as the lower bounds given by DMCF when D is even. However, there is an
obvious disadvantage to using the Enh-HopDMCF formulation. Notice that while the original graph G has
n nodes and m edges, the expanded graph Gg contains n + m nodes and O(nm) edges. The number of
variables and constraints in the new model is substantially larger than the number of variables and
constraints in the other models. In fact, our computational results show that either the linear programming
relaxation of the new model is too large to be solved or the CPU times needed to solve its linear
programming relaxation are quite large when compared with the CPU times of the models described in the

previous section.

Besides being a good choice for solving small-sized instances of problems with D odd, we also note that
the study of this new model together with the study of the D = 3 case suggested the inequalities described
in Section 3.2.4. These inequalities have permitted us to solve instances that are not solved by either the
original HopDEMCF model (its linear programming lower bound was not tight enough) or the enhanced
model Enh-HopDMCEF (its linear programming model was too large to be solved or requires too much time

to be solved).

5. Minimum Steiner Trees With Diameter Constraints

In many applications the tree need not connect all the nodes of the network. The set of nodes is
partitioned into two sets, R and S. In telecommunications settings, the elements of the set R usually are
terminals that must be connected to each other and the set S represents switching nodes. The tree is
required to span all nodes in R and might or might not include some of the nodes in S, the so-called Steiner
nodes. The problem defined in this way is the classical Minimum Steiner Tree Problem (see Hwang,

Richards and Winter (1992) and Magnanti and Wolsey (1996)). As mentioned in the introduction, quality

21

of service requirements might suggest a diameter constraint stating that the number of edges in the tree path
between every pair of nodes in R does not exceed a given value D. When R = V, we obtain the DMST
problem discussed in the previous sections. When [R| = 2, the problem becomes a shortest path problem
between two specified nodes with an additional constraint stating that the path cannot contain more than D
edges. This problem is modeled simply as an unconstrained shortest path problem in an appropriate graph
and the solution for this problem provides the underlying idea for creating the hop-indexed models

discussed in Section 3.

It is easy to modify all the models we have presented for the DMST problem for the Steiner version of
the problem: (i) the commodity indices in the formulations range only over the set R instead of the entire
node set V; and (ii) we replace the constraint stating that the number of edges (arcs) in the spanning tree is
equal to [V| — 1 by a constraint stating that the number of edges (arcs) in the tree should be greater or equal

to [R| - 1.

Because of modification (i), when |R| is small our models would be small and so more easily solvable.
Computational results presented in Section 8 for the diameter Steiner tree problem with [R| = [V|/2 and R =

[V|/4 confirm that these Steiner instances are easier to solve than the corresponding spanning tree versions.

6. Computational Experience

6.1 Problem Instances

To understand what might be achievable with the models discussed in this paper, we have generated
several problem instances with up to 100 nodes and 1000 edges. We have considered two groups of
instances: random cost instances and Euclidean instances. For each value of n (number of nodes) and m
(number of edges) we have generated different random and Euclidean instances. We have used a uniform
distribution in the interval [1,100] to obtain the cost of each edge included in each random cost instance. To
obtain the Euclidean instances, we have i) randomly generated the coordinates of n nodes in a 100 by 100
square grid, ii) selected the cost of each candidate edge (i,j) as the integer part of the Euclidean distance
between the two nodes i and j, and iii) defined the edge set E associated with each instance by choosing the
m least cost edges of the corresponding complete graph. The directed models will contain twice as many
arcs as the undirected models. For each instance, we have tried several values of the diameter parameter

ranging from 4 to 8.

Several of the generated instances are infeasible for small values of the parameter D. Thus, for some
instances, we have omitted the results for D = 4 and 5. The problems are infeasible because of the way we
have selected the edges for each instance. To address this concern, we have conducted a few preliminary
results with Euclidean instances generated in a different manner. First, we select the edges of the minimum

star solution. Then, we select the m — (n-1) least cost edges of the corresponding complete graph minus the

22

minimum star edges. Our results have shown that these instances are much easier to solve than the ones
tested in this paper. We believe these problems are easier to solve because the minimum star solution might
give some relevant information concerning the optimal integer solution for D greater than 2. We noticed,
for instance, that when D is even, the root of the minimum star is the root of the optimal integer solution of

many of the instances tested.

We performed all tests in a Pentium II, 450 Mhz computer. We used the CPLEX 7.0 package to solve

the linear programming models and to obtain the optimal integer values.
6.2 Situation When D is Even

Table VIII and IX summarize our results for the random and Euclidean instances with n = 20 and 30
and D even, i.e., D =4, 6 and 8. The first column specifies the number of nodes, edges and required nodes.
We choose the set R arbitrarily. The second column specifies the value of D. The next four columns depict
the gaps given by the optimal linear programming bound of the models MCF, UMCF, DMCF and
HopDMCEF. These columns indicate the value [(OPT — LB)/OPT1*100 (OPT is the value of the optimal
solution and LB is the value of the lower bound given by the optimal linear programming solution of the
model indicated at the top of the column). The last column indicates the optimal value. We have restricted
the results corresponding to MCF and UMCF to the n = 20 instances and have truncated the lower bounds
to the first decimal digit. We specify two values beneath the reported lower bound. The first value is the
CPU time needed to solve the linear programming relaxation. To assess the quality of the lower bounds,
using branch-and-bound we have tried to obtain the optimal solution or an upper bound value on the
optimum. The second value, when given, is the additional CPU time needed to obtain the optimal value.

CPU times are given in seconds.

Our results show that the multi-source/multi-destination model MCF is not able to solve instances with
20 nodes. Single sourcing allows us to solve many such problems. The reported CPU times indicate that we
can solve these instances, though with some difficulty, using the undirected model UMCF. On the other
hand, the directed model DMCF solves these instances rather easily, but requires huge CPU times to solve

the n = 30 instances. The hop-indexed model is able to quickly solve the n = 20 and 30 instances.

23

IVLIELR] [D MCF UMCF DMCF HopDMCF | Optimum
20,100,10 | 4 30.0 382 9.7 0.0 138
(25 + 41782) (2 +953) (2 +108) (1+0)
20,100,10 | 6 29.1 385 25 0.0 119
(16 +24100) | (2 +2098) (4 +60) (2 +0)
20,100,10 | 8 29.0 393 21 0.0 115
(8 +9397) (2 +2663) (2 +195) (8+1)
20,100,20 | 4 224 25.7 138 0.0 233
(375+7) (14 + 2530) (17 + 1134) 4+ 0)
20,100,20 | 6 15.3 16.8 125 1.0 178
(68 +?) (6 + 38594) (11 + 4400) (11 +35)
20,100,20 | 8 48 53 40 0.0 154
(33+7) (4 + 12628) (6 + 499) (10 + 0)
30,200,15 | 4 124 0.0 159
(29 + 1409) (2+0)
30,200,15 | 6 7.7 0.0 108
(12 + 1371) (5 +0)
30,200,15 | 8 0.0 0.0 96
(4+0) (5+0)
30,200,30 | 4 114 0.0 234
(182 + 7373) (6 +0)
30,200,30 | 6 95 0.0 157
(69 + 18135) Q2+1)
30,200,30 | 8 1.1 0.0 135
(284 537) (17+1)

Table VIII — Results for the RANDOM instances with n = 20, 30 and even values of D. The
specification ? indicates that we did not attempt to solve the integer program.

We also tested the formulation using the modified Miller-Tucker-Zemlin (MTZ) constraints given in
Achuthan, Caccetta, Caccetta and Geelen (1994) for the spanning instances with 20 and 30 nodes. This
formulation uses a small number of variables and constraints when compared to the other formulations.
Thus, we were able to obtain the corresponding linear programming bounds very quickly. On the other
hand, these lower bounds are rather weak and for most of the cases tested, we have obtained huge search
trees when attempting to obtain the optimal integer solution. In fact, we could not solve any of the
Euclidean 30 node instances due to memory storage limitations. Moreover, the best lower bound obtained
at the moment we ran out of memory were still far from the optimal solution (as an example, for the
Euclidean instance with D = 8 the best lower bound was equal to 410 after nearly 40,000 seconds of
computation). It is interesting to note that for all the cases tested the MTZ lower bounds are worse than the
trivial lower bounds given by the cost of the unconstrained spanning tree. Consider, for instance, the
previous Euclidean example with n=30 and D = 8. The MTZ linear programming bound is equal to 340.4

while the minimum spanning tree bound is equal to 396.

24

[VLIELR| | D MCF UMCF DMCF HopDMCF Optimum
20,100,10 | 4 12.2 224 0.8 0.0 235
(44 +38150) 3+532) 2+2D (0+0)
20,100,10 | 6 16.2 26.1 0.0 0.0 217
(26 +176423) (2+3778) (1+0) (1+0)
20,100,160 | 8 221 314 2.1 0.0 217
(8 + 86209) _(2+2224) (1+0) 4+0)
20,100,20 | 4 2.8 7.6 1.3 0.0 369
(684 +7) (20 + 2790) (16 + 186) (1+ 0)
20,100,20 | 6 22 6.1 1.0 0.2 322
(216 +7) (9 +2864) (15 +241) (6+19)
20,100,20 | 8 25 5.4 0.7 0.0 308
O7+7 (6 +11907) (10 + 887) 9+0)
30,200,15 | 4 35 0.4 338
25 +771) B+4
30,200,15 | 6 2.7 0.1 289
(12 +882) (10+3)
30,200,15 | 8 0.5 0.0 274
(13 +80) (32+0)
30,200,30 | 4 5.5 1.7 599
(258 +22179) (20 +1026)
30,200,30 | 6 32 0.8 482
(298 +23639) | (156 + 10899)
30,200,30 | 8 34 0.8 437
(94 +21717) (319 + 8569)

Table IX - Results for the EUCLIDEAN instances with n = 20, 30 and even values of D. The

specification ? indicates that we did not attempt to solve the integer program.

Table X specifies the gaps given by the linear programming bound of the hop-indexed model
HopDMCF for the instances with n = 40, 60, 80 and 100. As before, the first column of this new table

indicates the number of nodes, number of edges and number of required nodes of the corresponding

instance. The next three columns refer to the random instances and the remaining three columns refer to the

Euclidean instances. Each group of three columns specifies the gaps for D = 4, 6 and 8 respectively. Each

entry is similar to the entries in the previous tables. That is, the value on top center of any cell is the gap

multiplied by 100 and the value on the right-hand corner is the optimal integer value. The values on the

bottom of a cell indicate, respectively, the CPU times for obtaining the linear programming solution and the

optimal integer solution. As noted before, and as indicated by the designation INF, the corresponding

problem may be infeasible in some cases.

25

Random Euclidean
[VLIE],IR} 4 6 8 4 6 8
40,400,20 1.6 165 27 106 0.0 90 0.0 392 0.7 326 0.0 303
(16 + 10) (74 + 398) 49+ 1) (17+1) (84 + 243) 167+ 1)
40,400,40 0.0 309 0.0 189 0.0 161 0.04 672 0.6 555 0.5 507
(86 + 1) (445 + 2) (277 +3) (135 +34) | (1801 +35054) | (4865 + 46166)
60,600,15 0.0 115 2.8 70 0.0 52 0.0 326 1.6 292 0.0 268
9+1) (65 + 448) (41 +2) (8+1) (164 + 1012) (181 + 1)
60,600,30 0.9 255 1.6 120 0.0 95 0.0 707 0.3 505 0.3 464
(64 + 161) (434 + 4967 (262 + 4) (33+2) (819 + 19131 (3055 +13023)
60,600,60 0.7 326 1.3 175 0.0 127 0.1 1180 0.5 837
(340 + 11943) | (12037+1) | (1567+129) | (260 +1282) | (12397 +¢) m)
80,800,10 0.0 62 0.0 36 0.0 34 0.0 277 0.0 220 0.0 214
@+1) (27 +0) (13+1) G+1) (50 + 1) (207 + 1)
80,800,20 0.0 140 0.0 82 0.0 71 0.0 567 0.8 417 0.7 377
(299 +2) (27+0) 473 +3) 6+1) (639 +3749) | (2284 + 12139)
80,800,40 3.8 249 0.0 125 0.0 104 0.0 939 1.3 627 0.0 552
(145 + 4486) (925 + 4) (2068 + 5) (28 + 3) (3652+ 115866) | (9504 +6)
80,800,80 5.7 424
(1082 + 105273) m) m) m) m) m)
100,1000,12 2.7 55 0.0 40 0.0 40 00 55 0.5 466 0.0 427
(5 +10) (43 +2) (168 +2) @+1 (181 +219) (489 +2)
100,1000,25 2.7 123 0.0 75 0.0 67 0.0 894 0.4 679 0.5 630
(33 + 60) (401 +3) (920 +5) (10+2) (612 +6542) | (1647 + 17531)
100,1000,50 2.1 274 1.3 153 0.0 127
(341 + 15853) | (10304 +99319) | (9987 + 10) INF m) m)

Table X — Results for the RANDOM and EUCLIDEAN instances for the model HopDMCF with n > 40
and even values of D. The specification t) indicates that we did not obtain the optimal solution after 2 days
of CPU time (the value shown on the right-hand top is an upper bound). The designation m) indicates that
we could not solve the problem due to memory requirements.

The results show that the HopDMCF model maintains the behavior already shown for the smaller
instances, namely that its linear programming bound is quite good. The CPU times required to obtain the
optimal linear programming solution increase with the diameter parameter value for the Euclidean
instances and, in certain cases, are huge. Notice, however, that the largest model being solved (the
HopDMCF model with n = 80, m = 800, [R| = 80 and D = 4) contains about 250,000 integer variables (but
far fewer constraints, 130,000). The results also show that the CPU times needed for obtaining the optimal
integer solutions of the Euclidean instances are, in general, much higher than the CPU times needed for

solving the random instances.
6.3 Situation When D is Odd

For the instances with D odd we have restricted our computational experiments to the models DEMCEF,
HopDEMCF, HopDEMCF+, HopDEMCF* and Enh-HopDMCEF (the results for D even suggest that the
traditional MCF model and the undirected models are not worth comparing with the previous four models).
Tables XI and XII have the same format as Tables VIII and IX and contain the results for the random and
Euclidean instances with n = 20 and 30 and D odd, that is, D = 5 and 7. Tables XI and XII also empirically
compare the linear programming relaxations of the HopDEMCF, HopDEMCF+, HopDEMCF* and Enh-

26

HopDMCF models. We have indicated the “best” model by designating in bold the CPU times

corresponding to the model that most quickly produces the optimal integer solution.

VLE,R| | D | DEMCF | HopDEMCF | HopDEMCF+ | HopDEMCF* | Enh-HopMCF | Optimum
20,100,10 | 5 6.9 0.0 0.0 0.0 0.0 120
(1 + 145) (0 +0) (0+0) (0 +0) (11+1)
20,100,10 | 7 9.7 5.1 0.0 2.7 0.0 116
(1+33) (1 +41) (1+0) (1+33) (70 + 1)
20,100,20 | 5 223 8.5 24 41 0.0 205
(8 + 4190) (2+132) (4 + 84) 2 +57) @9+1)
20,100,20 | 7 122 6.7 15 43 1.5 165
(5+1241) | (44+272) (8 +47) (3 +215) (442 + 310)
30,200,15 | 5 19.4 92 37 4.7 0.0 132
8+7) 2+ 95) (5 + 115) (3 +104) (157 + 4)
30,200,15 | 7 37 25 0.0 0.0 0.0 98
6+7) (3+3) (6+0) 3+1) (880 + 4)
30,200,30 | 5 204 6.6 0.0 2.8 0.0 195
43+7 (7 +1211) ©+1) (5 +245) (462+7)
30,200,30 | 7 7.8 44 0.0 0.5 0.0 144
(25 +7) (16 +957) (29 + 107) (19 +207) (4228 +7)

Table XI — Results for RANDOM instances when n = 20, 30 and D is odd. The specification ? indicates
that we did not attempt to solve the integer program..

IVLEE,JR[| D | DEMCF | HopDEMCF | HopDEMCF+ | HopDEMCF* | Enh-HopMCF | Optimum
20,100,10 | 5 8.8 6.8 0.0 49 0.0 225
(1+71) (0 + 40) 2+0) (11+1) (10+0)
20,100,10 | 7 6.3 5.5 1.7 73 0.0 217
(1+92) (1 + 60) (9 +314) (2 +417) (142+1)
20,100,20 | 5 8.7 46 22 49 0.0 347
(12+3855) | (3+179) (7 +238) (2+287) @1+1)
20,100,20 | 7 6.1 37 I 32 0.0 316
(6 + 1219) (6 + 958) (14 + 414) (4 + 541) (395 +1)
30,200,15 | 5 122 6.7 24 118 0.0 309
(19 +7) (4 + 1004) (24 + 806) (4 + 1156) (95 +3)
30,200,15 | 7 76 5.1 2.1 94 0.0 278
(10+7) (25 + 964) (78 + 1238) (9 +1914) (6976 + 3)
30,200,30 | 5 1.2 5.8 42 10.2 0.1 534
(104+7) | (22+8257) | (61+17947) | (7+31496 (195 + 6)
30,200,30 | 7 9.8 5.7 38 6.0 12 463
(44+7 | (47+102013) | (140+62216) | (32+77941) | (31168 +24129)

Table XII — Results for EUCLIDEAN instances when n = 20, 30 and D is odd. The specification ?

indicates that we did not attempt to solve the integer program.

The results show that the model HopDEMCEF is not as successful in solving DMST instances when D is

odd as is the HopDMCF model for solving DMST instances when D is even. As a consequence, we have
used valid inequalities for the D odd case (see Section 3.2.4) and have derived the Enh-HopDMCF

formulation with all the edges shrunk into nodes. Our results show that from a theoretical perspective, the

linear programming relaxation of this enhanced model is quite good. In fact, for most of the Euclidean

instances tested, this model proved to be the best choice for obtaining the optimal integer solution.

Unfortunately, because the enhanced model contains so many variables and constraints, it may become

27

impractical computationally for larger problem instances. For instance, we encountered computer storage

limitations when attempting to solve several instances with this formulation with n = 40 and m = 400.

The HopDEMCF+ model with the addition of n*|A| inequalities implied by the enhanced formulation
provides a compromise. Our results for the n = 20 and 30 instances show the importance of the
HopDEMCF+ model when solving some of the instances with odd values of D. In most of the cases, the
formulation reduced the gap given by the original HopDEMCF model by more than half. For the random
cases, the HopDEMCF+ produces zero gaps in several cases and proved to be a sound alternative to the
enhanced model. Unfortunately, the results are not as good for the Euclidean cases. These instances proved
to be more difficult to solve. It is interesting to note that the “alternate” hop-indexed model HopDEMCF*
is also worth using for the random cases. For the Euclidean cases, the linear programming bounds are quite
bad. In fact, in a few situations, it produces a lower bound that is worse than the one obtained by the model

DEMCF.

The next two tables, Tables XIII and XIV, present results for situations when D is odd for larger
instances. We do not report results from the weak DEMCF model and the huge enhanced model Enh-
HopDMCEF (as we have mentioned before, we have tried unsuccessfully, to solve some of these instances).
For the Euclidean instances, we do also not show the results from the model HopDEMCF* as the results of

Table X indicate that this model behaves rather poorly for this class of instances.

The results demonstrate the relevance of the models developed in Section 3.2.4. The HopDEMCF+ and
HopDEMCF*models (this one in the context of the Random instances), have helped to solve instances that
we have not been able to solve with the original hop-indexed model HopDEMCF. Unfortunately, with
these improvements, our best models for the situations when D is odd are not of the same quality level as

our models for the situations when D is even.

As before, we have indicated the “best” model by designating in bold the CPU times corresponding to
the model that most quickly produces the optimal integer solution. We note that the CPU times needed for
obtaining the optimal integer solution depend strongly on the behavior of the integer programming
package, namely in how it obtains a good upper bound. In several cases, the linear programming bound
given by the model HopDEMCEF+ is at least as good as the best lower bound obtained by the original model
HopDEMCEF after 1 day of computations of the branch-and-bound code. However, in a few of these cases,
the strengthened HopDEMCEF+ requires a reasonable amount of time to obtain the optimal integer solution
because it finds a good upper bound rather late in the optimization process. One example of this is the
instance with n = [R| = 60, D = 7 and 300 edges. After 10,000 seconds of computation of the branch-and-
bound method using the HopDEMCF+ model, the best lower bound was already within one unit of the
optimal integer solution. Unfortunately, the computations yielded an upper bound corresponding to the

optimal value rather late in the optimization method yielding about 90,000 seconds of CPU time.

28

[VI,|E],IR] HopDEMCF HopDEMCF+ HopDEMCF* Optimum
40,400,20 7.5 2.5 6.5 128
(14 +737) (22 + 890) (10 + 372)
40,400,20 9.4 2.9 6.0 101
(39 + 1381) (99 + 749) (29 +233)
40,400,40 9.1 5.6 7.5 253
(56 +13529) (104 + 23645) (40 + 8642)
40,200,40 1.0 0.0 0.0 171
(114 +209) (174 + 4) (69 +4)
60,600,15 16.1 6.0 9.4 88
(7 +667) (13 + 640) 9 +477)
60,600,15 9.0 1.6 7.7 61
(34 + 769) (139 + 183) (25 +715)
60,600,30 85 35 7.0 160
(33 + 12240) (62 +3318) (30 + 6425)
60,600,30 7.7 2.1 6.4 109
(150 +5313) (395 + 7093) (90 + 5897)
60,600,60 14.8 10.0 13.5 257 u)
(142 + 1) (280 + t)) (96 + 1)
60,600,60 7.2 2.9 6.0 150
(686 + 61113) (1795 + 1)) (551 + 85466)
80,800,10 16.9 9.7 14.5 46
(5 + 188) (6 + 234) (5+184)
80,800,10 14.7 0.0 5.8 34
(15 +294) (89 +2) (18 + 1011)
80,800,20 9.4 4.8 8.6 111
(17+2252) (33 +2405) (19 + 2455)
80,800,20 8.0 38 85 78
(164 + 4408) (253 + 3049) (114 + 8836)
80,800,40 12.3 7.8 12.2 186
(74+ 50355) (124 + 103318) (58 + 19673)
80,800,40 3.6 0.0 2.8 114
(418 + 25887) (1306 + 10) (362 + 120191)
100,1000,12 5.1 0.0 0.0 45
(7 +483) (7+3) (8+9)
100,1000,12 42 0.0 2.5 40
(30 + 1038) (59 + 4) (38 +773)
100,1000,25 7.9 1.2 7.4 97
(40 + 7179) (67 + 152) (23 + 1675)
100,1000,25 6.3 1.4 33 71
(145 +7074) (577 +2217) (110 +2530)

Table XIII - Results for Random instances when n > 40 and D is odd. The designation t) indicates that
we did not obtain the optimal solution after 2 days of CPU time. The designation u) indicates that the
value shown on the right-hand column is an upper bound since none of the three models was able to
solve the corresponding problem.

29

[VLIELIR] HopDEMCF HopDEMCF+ Optimum
40,400,20 6.3 3.6 362
(32 +3921) (71 +7815)
40,400,20 4.4 2.1 317
(136 + 7962) (1052 + 27565)
40,400,40 4.1 24 612
(185 +52493) (641 + 81911)
40,400,40 4.8 33 527 u)
(1021 + 1)) (3770 + 1))
60,600,15 6.4 3.1 307
(36 +3386) (76 +5720)
60,600,15 6.6 43 280
(193 + 50002) (1004 + 46240)
60,600,30 7.7 5.0 585
(142 + 98422) (697 + 1)
60,600,30 59 43 481 u)
(992 + 1)) (5443 +1)
80,800,10 16.9 9.7 46
(5 +188) (6 + 234)
80,800,10 14.7 0.0 34
(15 + 294) (89+2)
80,800,20 9.4 4.8 111
(17+2252) (33 + 2405)
80,800,20 8.0 38 78
(164 + 4408) (253 +3049)

Table XIV — Results for Euclidean instances when n > 40 and D is odd. The designation a) indicates
that we did not obtain the optimal solution after 2 days of CPU time. The designation u) indicates that
the value shown on the right-hand column is an upper bound since none of the three models was able to
solve the corresponding problem.

6.4 Summary and Conclusions

Our computational results lead to the following conclusions:

(D

@
€)

“4)

Using the models presented in the paper, we have been able to solve Steiner instances containing
up to 100 nodes and 1000 edges (with [R| < (1/2)|V| and D < 8) and spanning tree instances with
up to 60 nodes and 600 edges and with D < 8.

Euclidean problems appear to be more difficult than random instances.

For situations when D is even, the linear programming relaxation of the model HopDMCF

produces gaps of less than one percent for almost all problem instances.
Situations when D is odd appear to be more difficult than those when D is even.

(4a) The linear programming gaps for the models range from a few percent to as much as 17

percent, with gaps of 5 to 8 percent being typical.

(4b) For these instances, the models HopDEMCF, HopDEMCF+ and HopDEMCF* compete for

generating solutions most quickly.

30

7. Conclusions

We have introduced single source models for the diameter constrained minimum spanning tree and
Steiner tree problems. A traditional model introduces a commodity and imposes a hop constraint for each
pair of required nodes. By simultaneously selecting a central node or a central edge and using it as source

for the commodities in a multicommodity flow model, our models contain only n commodities.

Our best model, which introduces a directed version of the model with hop constraints, has been able to
solve a small sized instance in less then one second that the traditional model has not been able to solve
after one week of computation. We have presented computational results for spanning tree and Steiner tree
instances with up to 100 nodes and 1000 edges and have been able to solve a model with slightly more than
250,000 integer variables and 250,000 constraints. To the best of our knowledge, our results provide the

first computational experience in solving the diameter-constrained Steiner tree problem.

We have also shown that the linear programming relaxation of the best models discussed in this paper

always produce an integer optimal solution for two easily solved cases of the DMST.

Our progress in improving the algorithmic performance of solution methods for this class of problems
rests upon several modeling ideas: exploiting underlying graph structure, using multicommodity flow
models for network design problems, directing network design models, introducing extended (in this case
hop-indexed) formulations, and using polyhedral methods (valid inequalities). As in other application
contexts reported in the literature, our experience illustrates the value of embracing a multi-faceted

modeling approach for solving (mixed) of integer programming models.
Acknowledgments

We are grateful to the referees for their suggestions leading to a substantially improved presentation of
the results of this paper. We are particularly grateful to the referees whose comments have led us to cast our

models using the auxiliary network.
References

Abdalla, A., Deo, N., and Fraceschini, R., "Parallel Heuristics for the Diameter-Constrained Minimum

Spanning Tree Problem,” Congressus Numeratium, (1999)

Achuthan, N. R., Caccetta, L., Caccetta, P., and Geelen, J. F. (1992), “Algorithms for the Minimum Weight
Spanning Tree with Bounded Diameter Problem,” in Optimization Techniques and Applications, Vol. 1,
(Edited by P. H. Phua, et al.), World Scientific, pp 297-304..

31

Achuthan, N. R., Caccetta, L., Caccetta, P., and Geelen, J. F. (1994), “Computational Methods for the
Diameter Restricted Minimum Weight Spanning Tree Problem,” Australasian Journal of Combinatorics,

Vol. 10, pp 51-71.

Balakrishnan, A., and Altinkemer, K. (1992), “Using a Hop-Constrained Model to Generate Alternative
Communication Network Design,” ORSA Journal on Computing, Vol. 4, pp. 192 - 205.

Balakrishnan, A., Magnanti, T., and Wong, R. (1989), “A Dual Ascent Procedure for Large-Scale
Uncapacitated Network Design,” Operations Research, Vol. 37, pp. 714-740.

Balakrishnan, A., Magnanti, T., and Mirchandani, P. (1994), “Modelling and Heuristic Worst-Case
Performance Analysis of the Two-Level Network Design Problem,” Management Science, Vol. 40, pp.
846-867.

Camerini, P., Galbiati, G., and Maffioli, F. (1980), “Complexity of Spanning Tree Problems: Part 1,”
European Journal of Operational Research, Vol. 5, pp. 346-352.

Chopra, S., and Rao, M. (1994), “The Steiner Tree Problem I: Formulations, Compositions and Extensions

of Facets,” Mathematical Programming, Vol. 64, pp. 209-229.

Garey, M., and Johnson D. (1979), “Computers and Intractability: a Guide to the Theory of Np-

Completeness,” Freeman, San Francisco.

Goemans, M. (1994), “The Steiner Tree Polytope and Related Polyhedra,” Mathematical Programming,
Vol. 63, pp. 157-182.

Goemans, M., and Myung, Y. (1993), “A Catalog of Steiner Tree Formulations,” Networks, Vol. 23, pp.
19-28.

Gouveia, L. (1995), “Using the Miller-Tucker-Zemlin Constraints to Formulate Minimal Spanning Trees
with Hop Constraints,” Computers and Operations Research, 22, pp. 959-970.

Gouveia, L. (1996), “Multicommodity Flow Models for Spanning Trees with Hop Constraints,” European
Journal of Operational Research, Vol. 95, pp. 178-190.

Gouveia, L. (1998), “Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning
and Steiner Trees with Hop Constraints,” INFORMS Journal on Computing, Vol. 10, pp. 180-188.

Handler, G. Y. (1973), “Minimax Location of a Facility in an Undirected Tree Graph”, Transportation
Science, Vol. 7, pp. 287-293.

32

Hwang, F., Richards, D., and Winter, P. (1992), “The Steiner Tree Problem,” North Holland, Amsterdam.

Magnanti, T. and Raghavan, S. (1999) Strong Formulations for Network Design Problems with
Connectivity Requirements, Working paper OR 332-99, Operations Research Center, MIT, April 1999.

Magnanti, T. and Wolsey, L. (1996), “Optimal Trees” in “Network Models,” Handbooks in Operations
Research and Management Science, Vol. 7, pp. 503-615.

Magnanti, T. and Wong, R. (1984), “Network Design and Transportation Planning: Models and
Algorithms.,” Transportation Science, Vol. 18, pp. 1 - 55.

Martin, R. (1986), “A Sharp Polynomial Size Linear Programming Formulation of the Minimum Spanning
Tree Problem,” Working Paper, University of Chicago

Wong, R.T. (1984), “A Dual Ascent Approach for Steiner Tree Problems on a Directed Graph,”
Mathematical Programming, Vol. 28, pp. 271-287.

Woolston, K. and Albin, S. (1988), “The Design of Centralized Networks with Reliability and Availability
Constraints,” Computers and Operations Research, Vol. 15, pp. 207-217.

33

Appendix 1 - Comparing the Enhanced and Original Models

In this Appendix we show that the linear programming relaxation of the enhanced model Enh-
HopDMCF dominates the linear programming relaxation of the model HopDEMCF+ described in Section
3.2.4. To make the proof easier to understand, in Tables XV and XVI we rewrite the models HopDEMCF+
and Enh-HopDMCF (we consider the reduced model HopDEMCF described in Section 3.2.3 augmented

with the valid inequalities described in Section 3.2.4).

Table XV. The Model HopDEMCF+

minimize Z C;x; + ZceEe

(i,j))ed eck
subject to Z x;=n-2
(i:)ed
> E, =1
eekE
Dy k=1 forall keV
ieV jeV
Dzt =2 =0 forall i,keV,h=2,.,[(D-1)/2]
jev jev
Z z&‘kb"l)’””"‘ =1 forallkeV
Jjev
> oz <x for all (i,j)e A,keV
h=2,. . H
ZZ;"S Z E, forallijkeV and i = k
jev ec E@D\[i,k}
i< Z E, forallieV
ecE(i)

z;" < ZeeL(i,j)\{i.k)Ee forall i,j)e Aand k eV

z;* €{0,1} forall (i,j)e A,h=2,.,[(D-1)/2]+LkeV
zi € {0,1} forallkeV,h=2,.,[(D-1)/2]+1

x; € {O,l} for all (i,j) €A

E e {0,1} forall ec E.

As in our discussion of the reduced model in Section 3.2.3, this model does not contain variables

associated with arcs leaving the auxiliary root node.

To simplify the relationship between the Enh-HopDMCF formulation and the formulation
HopDEMCF+, we shall define the variables of the enhanced model in the context of the original graph G =
(V,A). As mentioned in Section 4, the enhanced formulation uses the following sets of arc design
variables. Variables x;. (¢ = {p,q} € E) indicate whether the tree contains the arc (0,e). Variables x,; (e =
{p.a} € E;j € V\{p,q}) indicate whether the tree contains the arc (e,j). Variables x;; ((i,j) € A) indicate

whether the tree contains the arc (i,j) and node i is not an endnode of the root edge.

34

Table XVI. The Model Enh-HopDMCF

minimize Z Cyxy; + Z CoeXoe T Z Z ChiXy
(e ek jeV ecEVE())
subject to Z x; + Zer + Z Z x;=n-1
(i,/)ed ecE jeV e ENE())
Z X, =1
ecE
Zz})t:l forallkeV
eckE
22t 4zl =z foralle = {p,q}eE,keV
JjeV\p.q}
Szft= >z forallikeV
jev ec E\(E (i)W E(k))
St -z =0 forallikeV,h=3,.,[(D-1)/2]
Jjev jev
22520—1)/2]+1,k + Z Z£(gD-1)/2]+1,k =1 for alkeV
jev ecE(k)
Zk = gk for all keV,ee E(k), h=2,..,[(D-1)/2]
z;." <x; for all (i,j) e AdkeV
h=3,. H
zezj"Sxej forall e={p,qte E,k,jeV\{p,q}
zj* € {0,1} for all (i,j)e A,h=3,.,[(D-1)/2]+LkeV
zot € {0,1} forallee EkeV
2z €{0,1} for all e={p,q} € E, j.k eV \{p,q}
2% e {0,13} for all ec E(k),k eV, h=2,..,[(D-1)/2]+1
zi € {0,1} forall keV,h=3,.,[(D-1)/2]+1
X, € {0,1} foralle={p,q} € E
xeje{o’l} for alle:{paq}EE’jEV\{psq}
x,; €{0,1} Sor all (i, j)e A.

As before, we have eliminated the flow variables y from this model. Given the structure of the
augmented graph, the model contains three types of hop-indexed variables ((i) variables zij}fk with h > 3
have the same interpretation as before: they specify whether arc (i,j) is the h”™ arc in the path from the root

node to node k, (ii) variables Zezjk (e = {p,q} € E;jk € V\{p,q}) indicating whether arc (e,j) is the second

arc in the path to node k and (iii) variables Z(l)’z, (e = {p,q} € E; k € V\{p,q}) indicating whether arc (0,e) is
the first arc in the path to node k or to a edge e € E(k). The model also contains two types of “loop”

variables: (i) variables z;‘f (e € E(k) and h = 2,... H) with zero cost to model situations when the path from
the root node to node e contains fewer than H arcs (that is, z’¥ =1 for some e € E(k) and h <H) and (ii)

variables z,f,f (k € V and h = 3,.. ,H) with zero cost to model situations when the path from the root node

to node k contains fewer than H arcs (that is, zjf =1 for some h<H).

35

As noted before, the enhanced model for situations with D odd is a version of the D even model in a
special graph. Thus, it is natural that it shares some of the properties of the D even models presented in
Section 3.2.1. In particular, any feasible solution of the corresponding linear programming relaxation

satisfies the linking constraints for arcs emanating from the auxiliary root node as equalities. That is,

zit =x,, foralle € E and k € V and so we can substitute for the variables z,¢ in terms of the variables

X,, in the formulation. After making these substitutions, we can remove the constraints in the third set

because they become equal to the second set. The constraints Zjey\ - zif + z2 =x,, foralle € Eand k

€ V (we have substituted for the z variable on the righthand side of the original constraint using the

corresponding x variable) are easier to understand if we consider the two mutual exclusive cases, € € E(k)
or ¢ € E\E(k). When e € E(k), the variables zfj" are not defined and so z2* =x,,. When e € E\E(k), the

2k

: 2%
variables z.; are not defined and so ZFV\ iy %o

:‘ZOe'

We can relate the edge shrinking effect used for defining the supernodes in the enhanced network with
the sets L(i,j). However, we need to consider carefully the situations when cjj = cp; for three different nodes
i, j and p. When shrinking the edge {i,p}, we need to specify the arc of the original network that
corresponds to arc ({i,p},j) of the expanded network. For simplicity, we may break ties by choosing arc (i)
as the original arc if and only if i <p. This choice reflects a slightly altered definition of the sets L(i,j) as
the set of potential root edges {i,p} € E whose endpoint i is closer to node j than is node p. That is, L(i,j) =
{{ip} € E: p#j and (cjj < cp;j or (cjj = cpj and i < p))}. The last condition in the definition of L(i,)
guarantees that an edge does not belong to two different sets L(i,j) and L(p,j) with i # p. That is, if ¢jj = cp;

(i <p), then {i,p} belongs to L(i,j) but not to L(p,j).

For simplicity, we let (x1,z1,E1) denote a solution in the model HopDEMCEF and by (x2,2z2) a solution
in the enhanced model Enh-HopDMCEF. Table XVII depicts the relationships between variables of these

two solutions.

36

Table XVII. Relating the Variables in the Enhanced Model and Original Model

Original Enhanced
El, = x2, ecE
xl;, = x2;+ Z x2, (i,He4d
ecL(i,j)

2% _ 2k ..
21t = Z 72, (i,j)e A,keV

ecL(i,))\E(k)

Mo _ hk . _
2 =z (G, HeAkeV ,h=3,. H
zl,zdiC = Z 222‘ keV

ecE(k)
2y =Y 2%zl keV,h=3,.,H.
ecE(k)

The first equality follows from the fact that a feasible solution for any of the models defined in the
original graph contains the edge e as a central edge if and only if a feasible solution for the enhanced
models contains the edge (0,e). The second equality follows from the fact that a feasible solution for the
original model contains an arc (0,j) if and only if a feasible solution for the enhanced model contains one of
the arcs (0,e) for e € E(j). The third equality follows from the fact that a feasible solution for the original
models contains an arc (i,j) if and only if a feasible solution for the enhanced models contains the arc (i,])
or one of the arcs (e,j) with e € L(ij). The relations for hop-indexed variables are based on similar
arguments. We note, however, that the layout of the enhanced graph permits us to distinguish between hop-
index variables for h = 2 and h > 3 in the model defined in the original graph. When establishing the
relationships for these variables with h =2, we need to consider the commodity index k and remove edges
incident to k from the range of variation of the index e (when j # k). The last two relations follow from the
fact that a solution in the original network contains a loop for node k in position h if and only if the
corresponding solution in the enhanced network contains a loop for a node e € E(k) in the same position or

a loop for node k in the same position (the last alternative only holds for h > 3).
Proposition 8.1 v(Enh-HopDMCEFy) > v(HopDEMCF1).

Proof: Starting with a feasible solution (x2,z2) for Enh-HopDMCFj, let (x1,z1,E1) be the solution

obtained by using the relations in Table XVII. We will show that the solution (x1,z1,E1) is feasible for
HopEMCEFT..

Constraints zee ¢ Ee =1_in ES: The relation E1, = x2,, for all e € E (from Table XVII) shows that

(x2,22) satisfies the constraint zee £%20. =1 in Enh-HopDMCF], if and only if (x1,z1,E1) satisfies the

constraint " El, =10f HopDEMCF+.

37

Cardinality constraints Z(s % =n=2:By adding x1, = x2, +2 verin 2e (from Table XVII) for all

(i,j) € A, we obtain Z iea™li = Z Gpea® ZjeVZeeE\ 5y P2 (the index in the last term follows

from the fact that we obtain the edge set E\E(j) when we consider the union of the sets L(i,j) for all i and a
fixed j). By adding El,=x2,, for all ¢ € E to the result to the previous equality we obtain

ZEEE El, + Z(i’j)“ xl; = ZeeExzoe Z(ed® ZjeVZeeE\E(}) Using vk El, =1 in
HopDEMCF+;, we can conclude that (x2,22) satisfies the cardinality constraint

Zeegxzw + Z(MW . ZMZ&E\EU) -1 in Enh-HopDMCEF if and only if (x1,z1,E1) satisfies the

cardinality constraint). xl, =n-2 of HopDEMCF+r..

(i,/)ed

Constraints) eVZ,eV z2¥ =1 forall k e V: By adding z17f =) z2,¢ (from Table XVII) for

ecL(i,)\E(k)

all i and j and the same k, we obtain z}eyzld z]eVZeeE\(E(j)uE(lc)) 2* | Since the model Enh-

HopDMCF, does not contain the variables zzﬁj" with e e E(k), we know that

ZeEEZI,E 22 = zjeyzed\(g 222 and the previous equality becomes
zjeVZieyzlék = Zes Ezje y zzﬁj" . Consider, now, the flow conservation constraint
Zee EZ/EVZZZk +2 ceb o % —1 from Enh-HopDMCF], for the same k. Combining the two previous
equalities, we obtain stVZieV zl,-zjk +ZEEE @0Z * =1 for the same k. Since Z 5 ? 22 =71 (from

Table XVII), Zieyzjg y zlfj" =1for the same k. Thus, the solution (x1,z1,E1l) satisfies the constraints

Z e Zjev 213’C =1 for allk € V of HopDEMCF+..

Hop-indexed flow conservation constraints (h > 3): Consider the equality obtained by adding the

constraints 22’“'l * = Zf for all e € E(k) (from Enh-HopDMCF]) and fixed values of k and h > 3 together
with Z 2 =3 72} =0 for a given i and the same values of k and h > 3 (also from Enh-
HopDMCF]). By combining this equality with the sets of equalities from Table XVII, zl,’-}’c = 22,’}" for all
(ij), k and h > 3 and zl’,ikk = ZeeE(k) +22kk for all k € V and h > 3, we obtain the constraint
ZjeV 1 —Zjey z1% =0 for the same i, k and h > 3 in HopDEMCF+L. Thus, the solution (x1,21,E1)

satisfies the hop-indexed flow conservation constraints for h > 3.

38

Hop-indexed ~ flow conservation constraints (h = 2): By adding the equalities

hk

zlék = Zeel_ GNE (k)zzﬁj‘ (from Table XVII) for all i, a fixed j and a fixed k to z1}f = zes £y P 2ee (also
from Table XVII) for the same k and h = 2, we obtain
Zfevﬂ;’k +z1i,’(r = ZeE £\ E(j)uE(k))zzil'k +ZeeE(k)22§f (the index in the first term of the right-hand side

follows from the fact that we obtain the edge set E\(E(j)UE(k)) when we consider the union of the sets

L(i,))\E(k) for all i and a fixed j). By combining this equality with the flow conservation constraints

DI = A E(j)uE(k))szjk for the same j and k (from the model Enh-HopDMCFy) and with

% —z22* for all e e EKk) (also from the model Enh-HopDMCF[) we obtain

ce T ““ee

z2

3k 3% _ 2% 2%k . . . Bk _ o hk
ZieV 225 +ZesE(k)Zzee _ZieVZIij +z13; for the same j and k. Finally, by using z1;" =z2;" (from

Table XVII) for adequate pairs (i,j), the same k and h = 3 together with to zlz,f = Z 2222‘ +22',;kk for

ecE(k)

the same k and h = 3, we obtain ZieV zli-f :ZieVm;-k for the same j and k of the original model
HopDEMCF+1.. Thus, the solution (x1,z1,E1) satisfies the hop-indexed flow conservation constraints for h

=2 of HopDEMCF+y..

Hop-indexed flow conservation constraints (h = ((D-1)/2) + 1): By using zl,}.}k = 22,’-}" for all (i,j), k and

h = ((D-1)/2) + 1 together with zl',:k{‘ = Z z2M +22’,zkk for the same k and h we can show that (x2,z2)

ecE(k)

satisfies the constraint) z2% +)] . 228 =1 forallk €V and h = ((D-1)/2) + 1 in Enh-HopDMCF,
if and only if (x1,z1,E1) satisfies the constraint Zjey zlﬁ‘.'; =1 forallk € Vand h = ((D-1)/2) + 1 in

HopDEMCF+..

Constraints linking the z with the x variables: Fix a triple (i,j,k). By adding constraints zzij" < x2,; (from

Enh-HopDMCFp) for all e € L(i,j\E(k) to the constraint Z e zzf}" <x2; (also from Enh-

,,,,, [(D-1)/2]+1

HopDMCF) for the same triple (i,j,k), we obtain the inequality

2k hk . . .
z > ik < 2
ceLi e 220 T 2unes, -y 225 S 2eeriijneu ¥ 2o T X2 By using the following relations from

Table XVII, x1; = x2, +Z x2,; for the same (i), zlfj" = Z 222 for the same (i,j) and the

eelL(i,j) ecL(i,))\E(k)

same k and z1) =z2;" for the same (i,j), k and h > 3, we see that the previous inequality implies the

~~~~~

solution (x1,z1,E1) satisfies the constraints Zh:z,_.,,Hle}'}k <xl; for all (ij) € A and k € V of

HopDEMCF+..

39



. 2k . C g . . . .
Constraints sty z; < Zeé R for all i,k € V linking the z with the E variables: Consider the

e

modified linking constraints Zjey 22X +222% = x2,, for all e and k from Enh-HopDMCFY.. Let us replace

the “=" sign by a “<” sign (note that after this modification, we are still obtaining a valid inequality for

Enh-HopDMCF7 ). By adding these constraints for all e € E(i)\{i,k} for a fixed i # k, we obtain the
inequality » - k}zjsy 2 <y iy ¥20e for the same i and k (note that variables 22 are not

defined when e € E\E(k)). By wusing £l ,=x2,, for all e € E()\{ik}, we obtain

2% . 2k 2%
F < 1n < ;
ZeeE(i)\{i,k)ZjeV 22, _ZeeE(i)\(z’,k} El, . Since ZeeL(i,j)\E(k)ZjeV 22; = ZeeE(i)\{i,k)ZjeV 22, and

ZM <y e k}ZjEszjjk (the first inequality results from the fact that L(i,j)\E(k) < E(i)\{i,k) for

i

alliandj and the second results by adding z17f =) z2;¢ (from Table XVII) for all j and a fixed

eeL(i,j)\E(k)

i and again noting that L(i,j)\E(k) < E(i)\{i,k)), we obtain Z},Ey zlfj" < Z E1, for the same i and k

ecE(D\{ik} ¢

with i # k. Thus, the solution (x1,z1,E1) satisfies the constraints Zjey zlg." < Z El, forallik e V

ecE(i)\{i,k}

(with i # k) of HopDEMCF+..

When i =k, we add the constraints Z _z2% +222% < x2,, for all e € E(k) and, by noting that variables
jev < ee e

2k

z2fare not defined when e e E(k), we obtain ZeeE(k) =

SZeeE(k)xzoe for the same k.

Considering E1, = x2,, (from Table XVII) for all e € E(k) and zli,"‘ = z 222‘,{‘ (also from Table

ecE(k)

XVII) for the same k, we obtain zl,zc,f < Z El, and thus, the solution (x1,z1,El) satisfies the

ecE(k)

constraints zl,zc,’cC < Z E1, for all k € V of HopDEMCF+].. [Note: Once more, we can derive these

ecE(k)

inequalities as equalities — see Section 3.2.3 — if we start with Zjey 22l + 222 =x2,,].

Constraints z;" < Z E, for all (ij) € A and k € V linking the z with the E variables: We

esL(i,j)\E(k) ¢

consider a weaker version of the inequalities ZKV 223 +22% < x2,,, namely the inequalities z2}f < x2,,

for all e = {p,q} and j # p,q. Using El, =x2,, (from Table XVII) for all e, we obtain zzzj" <El,. By

adding these inequalities for all e € L(i,j)\E(k) and a fixed i € V, using zlz" =y z2;f (from

ecL(i, j))\E(k)

Table XVII) for the same triple (i,j,k), we obtain zlz_" < z E1, for the same triple (i,j,k). Thus, the

eeL(i, \E(k)

solution (x1,z1,E1) satisfies the constraints zlj,’c SZ El, for all (i,j) € A and k € V of

ecL(i, )NE(k)

HopDEMCEF+y..

40



Variable bound inequalities: It is easy to show that the solution (x1,z1,E1) satisfies the variable bound

inequalities in HopDEMCFT, because the solution (x2,z2) satisfies the variable bound inequalities in Enh-

HopDMCFT] ..

We have shown that the solution (x1,z1,E1) obtained from (x2,z2) by using expressions in Table XVII
is feasible for HopEMCF].. We note that the definition of the costs guarantees that the two solutions have

the same cost and, thus, the optimal linear programming value of a model defined in the original graph

cannot exceed the optimal linear programming value of the corresponding model defined in the expanded

graph, thus establishing the validity of Proposition 8.1. .

41



