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Abstract

Within the extensive variational inequality literature, researchers have developed

many algorithms. Depending upon the problem setting, these algorithms ensure the

convergence of (i) the entire sequence of iterates, (ii) a subsequence of the iterates,

or (iii) averages of the iterates. To establish these convergence results, the literature

repeatedly invokes several basic convergence theorems. In this paper, we review these

theorems and a few convergence results they imply, and introduce a new result, called

the orthogonality theorem, for establishing the convergence of several algorithms for

solving a certain class of variational inequalities. Several of the convergence results

impose a condition of strong-f-monotonicity on the problem function. We also provide

a general overview of the properties of strong-f-monotonicity, including some new results

(for example, the relationship between strong-f-monotonicity and convexity).
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1 Introduction

We consider the variational inequality problem

VI(f, K): Find xOpt E K C R f(xoPt)t(x- x° t) > 0, Vx E K (1)

defined over a closed, convex (constraint) set K in Rn. In this formulation

f : K C Rn - R n is a given function and x° Pt denotes an (optimal) solution of the problem.

Variational inequality theory provides a natural framework for unifying the treatment of

equilibrium problems encountered in problem areas as diverse as economics, game theory,

transportation science, and regional science. Variational inequality problems also encom-

pass a wide range of generic problem areas including mathematical optimization problems,

complementarity problems, and fixed point problems.

The literature contains many algorithms for solving variational inequality problems.

The convergence results for these algorithms involve the entire sequence of iterates (e.g.,

[25], [7]), some subsequence of iterates (e.g., [22], [17]), or the sequence of averages of the

iterates (e.g., [26], [19]). The review articles by Harker and Pang [13], and by Florian and

Hearn [9], the Ph.D. thesis of Hammond [11], and the recent book by Nagurney [23] provide

insightful surveys of numerous convergence results and citations to many references in the

literature.

Banach's fixed point theorem has been a standard convergence theorem for establishing

the convergence of algorithms in many problem settings, including variational inequalities.

Two other results, Baillon's Theorem [2] (see [19]), and Opial's Lemma [24] (see [10], [29],

[21]) have also proven to be useful tools for establishing convergence results for variational

inequalities. In this paper, we briefly summarize the use of these convergence conditions and

we introduce a new convergence theorem, the orthogonality theorem. This theorem states

that under certain conditions, whenever the map f at an accumulation point of the sequence

induced by an algorithm is orthogonal to the line segment between that accumulation point

and some variational inequality solution, then every accumulation point of that algorithm

is a variational inequality solution. Moreover, if the algorithm map is nonexpansive around
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a solution for some appropriately defined potential L, then the entire sequence converges to

a solution. As part of our discussion, we establish a relationship between the orthogonality

theorem and Opial's Lemma.

Some recent convergence results (see for example [10], [29], [17], [19], [21]) impose the

condition of strong-f-monotonicity on the problem function f. These results and those in

this paper suggest a natural question, what are the characteristics of strongly-f-monotone

functions? To help answer this question, we provide a general overview of the properties

of strong-f-monotonicity, including some new results (for example, the relationship between

convexity, or monotonicity in the general asymmetric case, and some form of strong-f-

monotonicity).

The remainder of this paper is organized as follows. In Section 2, we provide an overview

of several convergence theorems, some algorithms that use them, and the conditions required

for these algorithms. We also introduce and prove the orthogonality theorem and relate it

to Opial's Lemma. In Section 3, we summarize several properties the strong-f-monotonicity,

and introduce some new properties.

2 The Orthogonality Theorem

Banach's celebrated fixed point theorem is a classical result that has been extensively used

in the literature to establish the convergence of many algorithms, including those for solving

variational inequality problems. The basic condition in this theorem is that the algorithm

map is a contraction. Other convergence theorems, which we summarize below, have also

proven to be important tools to researchers in establishing various convergence results, and

improving on the conditions they need to impose. To state these convergence results, we

will impose several conditions on the underlying problem map f and the algorithm map T.

If G is a given positive definite matrix, then we define IxII- = xtGx.

a. A map T is a contraction map on K, relative to the 11-.IG norm, if,

JIT(x) - T(y)II < cl X-y l!G Vx, y E K, for some contraction constant 0 < c < 1.

The use of this condition usually requires the following condition of strong monotonicty on
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the problem function f:

for some contant b > 0, [f(x) - f(y)]t[x - y] > bllx -y[12 Vx,y E K.

b. Other convergence results involve nonexpansive estimates. A map T is a nonexpansive

map on K, relative to the I11llG norm, if IT(x) - T(Y)lI < lix - yIlj Vx, y E K.

The use of this condition on the algorithm map T usually requires the following condition

of strong-f-monotonicity on the problem function f:

for some contant a > 0, [f(x)- f(y)]t[x- y] > allf(x)- f(y)112 x, y E K.

c. Furthermore, researchers often require the following condition of ordinary monotonicity

on the problem function f:

[f(x)- f(y)] t [x- y] > 0 Vx, y E K.

Contraction, nonexpansiveness, monotonicity and strong monotonicity are standard condi-

tions in the literature. Gabay [10], implicitly introduced the concept of strong-f-monotonicity

and Tseng, [29], using the name co-coercivity, explicitly stated this condition. Magnanti

and Perakis ([17], [19], [27] and [18]) have used the term strong-f-monotonicity for this con-

dition, a choice of terminology that highlights the similarity between this concept and the

terminology strong monotonicity, which has become so popular in the literature.

Researchers have established convergence properties for variational inequality algorithms

using the following basic theorems.

1. Banach's Fixed point Theorem (Banach [14])

Let T be a map, T: K - K, defined on a closed and convex subset K of R n. If T is

a contraction map on K relative to the 11.lIG norm, then for every point y E K, the map

Tk(y), converges to a fixed point of map T.

2. Baillon's Theorem (Baillon [2])

Let T be a map, T: K -I K, defined on a closed, bounded and convex subset K of Rn. If

T is a nonexpansive map on K relative to the llaG norm, then for every point y E K, the

map Sk(y)= y+T(y)+-...Tk (y)Y) +T(y)++T- converges to a fixed point of map T.
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3. Opial's Theorem (Opial [24])

Let T be a map, T: K -- ' K, defined on a closed, and convex subset K of R'. If T

is a nonexpansive map on K relative to the 11.lIG norm, and for every point y E K, T is

asymptotically regular, that is, IITk+1(y)-Tk(y)jl 2 k-, 0, then the map Tk(y) converges

to a fixed point of map T.

4. In [27] and in subsequent publications, we have established the convergence of new ([17],

[20]) and some classical ([19], [20]) algorithms by implicitly using a common proof technique.

The following convergence result, which we call the orthogonality theorem, summarizes this

proof technique.

The Orthogonality Theorem (see also [18])

Consider the variational inequality problem VI(f, K). Let T be a mapping, T: K - ' K,

defined over a closed and convex subset K of Rn. Assume that the problem function f and

the map T satisfy the following conditions,

(a) The orthogonality condition along a subsequence {Tki(y)} C {Tk(y)} for a given point

y E K, i.e.,

f(Tk (y))t(T i(y)- xoPt) )kj-oo 0,

for some variational inequality solution x'° t .

(b) The problem function f is strongly-f-monotone.

I. Then every accumulation point of the subsequence Tki(y) is a variational inequality

solution.

II. Furthermore, if for every variational inequality solution x pt , some real-valued potential

function L(x, x° Pt) satisfies the conditions, IL(x,x°Pt)l > dlx - x°Ptll2 for some constant

d > 0 and L(x ° Pt, xoPt) -= O,

and the map T is nonexpansive relative to L around xOpt , in the sense that

IL(Tk+l(y), x°Pt)l < IL(Tk(y), x°Pt)l,

then the entire sequence {Tk(y)} = 0 is bounded and converges to a variational inequality

solution.

Proof: I. We intend to show that, under the assumptions of this theorem, that
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limkj- .c f(Tki(y))t(x - Tk3i(y)) exists and limkj-_, f(Tki(y))t(x - Tkj(y)) > 0 Vx E K.

Let xOpt be a variational inequality solution. This definition of x' pt and the strong-f-

monotonicity condition imply that

f (T k i (y))t (Tk (y) - xPt) = [f (Tki (y)) - f (xoPt)]t(Tkj (y) - x °p t ) + f (xopt)t(Tkj (y) - x p t ) >

[f(Tki(y)) -_ f(xop t )]t (Tkj(y) - xoPt) > a f(x t )- f(Tki(y))IT > 0.

The orthogonality condition implies that the left-hand side of these inequalities approaches

zero as kj -- oo. Therefore,

IIf(x ° Pt) - f(Tk(y))j2 -kj- oo 0 and so f(Tki(y)) -kj+oo f(xoPt). (2)

This result, together with the orthogonality condition, implies that

f(Tkj(y))T kkj (y) )kjo f(XoPt)t2oP.

But then, for all x E K,

lim f(TkJ(y))t(x - Tkj(y)) = f(xopt)t(x -_ xot) > 0 (3)
kj -c0

since XOp t is a variational inequality solution.

But (3) implies that every accumulation point x* of the algorithm subsequence {TkI(y)}

is indeed a variational inequality solution since x* E K and

lim f(Tki(y))t(x - Tkj(y)) = f(x*)t(x - x*) > 0 Vx E K.
kj -oo

II. Furthermore, if some potential L(x, x°Pt) satisfies the condition IL(x, xOPt)l > dllx -

x°Pt 2, d > 0, with L(x °Pt, xoPt) = 0 and the map T is nonexpansive relative to L around

every variational inequality solution x ° p t , IL(Tk+l(y), x°t)lI < IL(Tk(y), opt)I, then the

monotone sequence {L(Tk(y), X°Pt)} is convergent for every solution x ° p t. Moreover, the

entire sequence {Tk(y)} is bounded and therefore it has at least one accumulation point.

Nevertheless, we have just shown that every accumulation point x* of the subsequence
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{Tkj(y)} is a variational inequality solution. Therefore, for that solution x* the potential

converges to L(x*, x*) = 0 and therefore,

0 < dllTk(y)- x*112 < IL(Tk(y), x*)l -k-oo 0

which implies that the entire sequence Tk(y) converges to that solution x*. 

Remarks:

1. L(x, xopt) = lix - x° Ptl is an example of a potential that is often used to obtain con-

vergence results. In this case, L(x °oP t , x ° Pt) = x°oPt - °oPt 2 0 and since IL(x,x°Pt)l =

lix - opt 2, d - 1. For this potential function, requiring the map T to be nonexpansive rel-

ative to L around every solution is the same as requiring the map T to be nonexpansive, rel-

ative to the 11.11 norm, around every solution. L(x, xoPt) = K(x°Pt) - K(x)-K'(x)t(x ° Pt- x)

is another example of a potential, which appears in Cohen's auxiliary problem framework

(see remark (b) below and [4] and [21] for more details on this framework).

2. In the symmetric Frank-Wolfe algorithm, if we impose the strong-f-monotonicity condi-

tion on the problem function f, then part (I) of the orthogonality theorem holds, and so

every accumulation point of the algorithm sequence is a solution (see [19] for more details).

If we replace strong-f-monotonicity with strong monotonicity, however, then part (II) of the

theorem also holds, with a potential L(x, x° pt) = F(x)- F(x°Pt), when F is the objective

function of the minimization problem corresponding to the variational inequality problem.

3. The orthogonality theorem seems to suggest a new potential, the potential involved in

the orthogonality condition, that might be used to obtain convergence results for variational

inequality problems. In [20], we have used this potential to establish the convergence of a

descent framework for solving variational inequalities, which includes as special cases the

steepest descent method, the Frank-Wolfe method (symmetric and asymmetric), lineariza-

tion schemes [25], the generalized contracting ellipsoid method [11], and others.

Table I summarizes the use of the four basic convergence theorems we have introduced

for establishing the convergence of various variational inequality algorithms.

Figure I illustrates the orthogonality theorem when the algorithm sequence has two

accumulation points x* and x**, which are both VIP solutions.
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To provide further insight concerning the orthogonality theorem, we now establish a

relationship between the orthogonality condition and the asymptotic regularity condition

in Opial's Lemma. As we show, for variational inequalities, Opial's assumptions imply

those imposed in the orthogonality theorem. The opposite is also true for the general

iterative scheme [7] of Dafermos if we impose some additional assumptions. We will also

show, through a counterexample, that in general the opposite is not true. Therefore, the

orthogonality theorem is more general than Opial's Lemma.

Proposition 2.1:

Let VI(f, K) be a variational inequality problem with a monotone problem function f.

Consider a mapping T: K -- K satisfying the property that every fixed point of this

mapping is a variational inequality solution. Then for every y E K the asymptotic regularity

condition of T, i.e., IITk+l(y) - Tk(y) 12 --- k-o 0,

implies the orthogonality condition along any convergent subsequence {Tkj(y)} C {Tk(y)},

i.e.,

f(Tkj (y))(T kj(y)- xopt) ---kco 0.

Proof: When IITk+1(y)- Tk(y)l 2 k-oo 0 for some y E K, then every accumulation point

x* of the sequence {Tk(y)} is a fixed point of the mapping T and, therefore, by assumption

x* is a variational inequality solution. But since x* solves the variational inequality problem,

the monotonicity of f implies that for any optimal solution x ° Pt , 0 > f(x*)t(x* - x° Pt) > 0,

and, therefore,

for any convergent subsequence {Tkj(y)}, f(Tki(y))t(Tk(y) - x°Pt) -kj-oo 0. [

When is the converse true? We will answer this question for the case of a general

iterative scheme. In fact, we will show that in the case of the general iterative scheme,

under some additional assumptions, the asymptotic regularity condition is equivalent to

the orthogonality condition. The general iterative scheme (see [7]) determines the point

xk+l from the previous iterate k by solving the variational inequality,

find k + l E K satisfying, g(xk+l, xk)t(z- xk+ 1 ) > 0 V E K, (4)
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assuming that g(x, y) is defined so that g(x, x) = pf(x) for some constant p > 0.

Proposition 2.2:

Let Vl(f, K) be a variational inequality problem. Consider the general iterative scheme

(4). Let T: K -- K be a function that maps a point y = xk into a point T(y) = xk+1 that

solves (4). If the problem function f is monotone, xjj x°oPtll is uniformly bounded over

x E K, and some constant C > 0 satisfies the condition IlVyg(x, y)ll < C for all x, y E K,

then the asymptotic regularity condition on the map T implies the orthogonality condition

across the entire sequence. Conversely, if

1. the problem function f is strongly-f-monotone with constant a,

2. the scheme's function g(x, y) is strongly monotone relative to its x component, i.e.,

for some constant b > 0, [g(x1, y) - g(x2, y)]t[xz - x2] bxl - x21J2 , Vx 1, X2 E K, and

3. the constant 0 < p < 4ab (often p = 1, then this condition requires 1 < 4ab),

then the orthogonality condition along some subsequence, implies the asymptotic regularity

along that subsequence.

3'. Replacing 3 with the assumption that the orthogonality condition holds along the

entire sequence {Tk(y)} (with no restrictions on p) also implies the asymptotic regularity

condition.

Proof: " " Set Tk(y) = xk and Tk+l(y) = xk+ l . If T is asymptotically regular, then

IIxk - xk+lll -- k-.o 0. The fact that g(x,x) = pf(x), f is monotone, and x p t E K is a

variational inequality solution implies that

o < g(xk+l, xk)t(xopt - xk+1 ) < [g(xk+l, xk) - g(xk+l, k+l)]t [xopt _ k+l] <

(an application of the mean value and Cauchy's inequality imply that)

11xk _ k+ll llVy k+l -Y)ll:llXPt - xk+ 1 1i < CIIxk _- k+11. 11X0pt - kll k-oo .

Therefore, g(xk+l, xk)t(xoPt - xk+1) k-*koo 0 and

[g(xk+l, k) - g(xk+l :xk+l)]t[xoPt - xk+1] O--k- 0.
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So pf(xk+l)t(xoPt - Xk+l) = [g(Xk+l , Xk+l)t[ot - k+1] =

[g(x k +l, k )]t[x Pt - xk+l] - [g(xk+l, xk) - g(xk+l, xk+l)]t[xopt - k+l] -k--*oo 

Therefore, the orthogonality condition holds, i.e., f(xk)t(Pt - xk) -- k-. 0.

" =" Conversely, (a) assume that the orthogonality condition holds along some subse-

quence, i.e., f(xk)t(xOPt - x k j ) -- kj-oo 0. Then the general iterative scheme and the fact

that xkj E K imply that

0 < g(xkj+l, xk)t(xkj _kk+l) g(k+l, xkj) _ g(xkj, xkj)]t(xkj _ kj+l)+

g(xkji ,Xk)t(xkj _ Xki+l) <

(the strong monotonicity of g(x, y) relative to x, and the fact that g(x, x) = pf(x) implies

that)

_bilxkj+l _ kj 11 + pf(xkj)t(xki - xkj+l) = -bllxkj+l - xkij 12+

pf(xk)t(xk3 -_ Xopt) + pf(xk)t(xopt - xk+ 1 ) <

(the definition of a VIP solution xop t implies that)

-bllxkj+l _ k 112 + pf(xki)t(xkj xot)+

p[f(xki) - f(O°Pt)]t(x°Pt - xki+1) = -blxk+l _ xk 112 + pf(xki)t(xki _ xoPt)+

p[f(xki) - f(x°Pt)]t(o°Pt - xki) + p[f(xk) - f(xopt)]t(xk - ki+ 1 ) <

(strong-f-monotonicity implies that)

-blxkJ+1-xkJ I 2+pf (kj)t(xkij- xoPt)-ap f(xki )-f(x °ot)ll2+p[f (kj) f(xoPt)]t(x k3 +l) <

(by expanding Ilf(xk) - f(x ° pt ) + 12 (xk -xk+1)112 and rearranging terms we obtain)

[-b + P ]llxk+l - xkj 112 + pf(Xkj)t(xkl _- opt).
4a

If 0 < p < 4ab, then 0 < [b - ]x k j+ l _ xkj 112 < pf(xkj)t(xkj _- opt).

Therefore, the orthogonality condition along the subsequence xk3 implies the asymptotic
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regularity along that subsequence.

(b) Assume that there are no restrictions on p and the orthogonality condition holds along

the entire sequence, i.e., f(zk)t(zopt - xk) ---- k-oo 0. The same argument that led us to (2)

in part (I) of the orthogonality theorem implies that f(xk) -- k-oo f(xo°Pt). Furthermore,

as in part (a), we find that

0 < -bz k+l1 - k I12+pf(xk)t(Xk_xoPt)+p[f(xk)_f(xk+l)]t(xoPtXk+l)+pf(xk+l)t(xoPt-Xk+1)

Therefore

bll k+l -kl1 2 < pf(Zk)t(xk _Xopt) pf(xk+)t(X+l +l _xoPt)+p[f(xk) _f(xk+l)]t (xoPt -xk+1).

Cauchy's inequality implies that

blxk+ l - xk1 2 < pf(xk)t(xk _ x°Pt) - pf(xk+l)t(xk+l _ xopt)+

PIIf(xk) - f(xk+l)ll.llxoPt _ Xk+lll _k- c 0.

Therefore, asymptotic regularity holds: lIxk+l - xkll -- k-, 0. Notice that part (b) holds

regardless of the choice of p. 

Remarks:

1. Several classical methods for solving the variational inequality problem, which are

special cases of the general iterative scheme, satisfy the strong monotonicity condition

on the scheme's function g if we impose some conditions on the underlying data.

(a) Linear approximation methods ([25]) with g(x, y) = f(y) + A(y)t(x - y).

In this case the matrix A(y) should be uniformly positive definite for all y and the

problem function f strongly-f-monotone.

The following examples are special cases of this class of algorithms.

The Linearized Jacobi method, with A(y) = diag(Vf (y)), which should have positive

elements.

The Projection method with A(y) = G, a positive definite matrix.

Newton's method with A(y) = Vf(y), a uniformly positive definite matrix.
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The Quasi-Newton method with A(y) = approx(Vf(y)), which we require to be a

uniformly positive definite matrix.

The Linearized Gauss-Seidel method with A(y) = L(y) + D(y), or A(y) = U(y)+ D(y)

(L(y) and U(y) are the lower and upper diagonal parts of the matrix Vf(y)). A(y)

should be a uniformly positive definite matrix.

(b) For Cohen's auxiliary problem framework ([4], [21]) with g(x, y) = pf(y) +

G(x) - G(y). In this case, the problem function f should be strongly-f-monotone and

the function G should be strongly monotone (in fact, Cohen assumes that G(y) =

K'(y), that is a gradient matrix for a strongly convex funcion K).

2. As shown by the following example, the orthogonality theorem is more general than

Opial's lemma. Consider the symmetric Frank-Wolfe algorithm (for more details on

the Frank-Wolfe algorithm see, for example, [22] and [11]) with problem iterates xk:

At each step k = 1, 2, ..., solve the linear program yk = argminxEKf(xk-1)tx and then

solve the following 1-dimensional variational inequality problem, i.e., find xk E [yk; xk-l]

satisfying f(xk)t(x - xk) > 0, Vx E [yk; xk-1].

As we have shown in [19], the orthogonality theorem implies that this algorithm con-

verges to a VIP solution along a subsequence. As shown by the following example,

for this algorithm the orthogonality condition need not always satisfy the asymptotic

regularity condition.

Example: Let KI {x = (xl,x 2) E R2 0 < xl < 1, 0 < 2 < 1} be the feasible

set

(x--,1) if 0<xi< 

and let f(x) = (0,1) if < X < 3 be the problem function f.

X1 -, 1) if < X1 < 1
It is easy to see that f is a Lipschitz continuous and a strongly-f-monotone function

(but not strict or strongly monotone) with a symmetric Jacobian matrix. The VIP

solutions of this problem are all the points op t = (Pt, 0) with < xp < 3. If we

start the algorithm at the point x° = (0, ), then

step k=1 solves at yl = (1, 0) and x1 = (7, 61)
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Step k=2 solves at y2 = (0, 0) and 2 = 13(, ) Starting at the point x0 = (0, ),

(or any point (0, z) with z < ) the algorithm induces two subsequences, {x2t - 1 )0 o

and {x 21)=0 with two accumulation points x* = (, 0) and x** = (,0) that are both

VIP solutions. The asymptotic regularity condition and hence Opial's Lemma does

not hold since lXk - xk+1 11-k-. 1. It is easy to check, the orthogonality condition

holds for both subsequences so in this example the orthogonality theorem applies, but

not Opial's lemma. Figure I illustrates this example.

3. Table I illustrates the use of various convergence conditions for solving variational in-

equalities. As indicated in this table, the use of the orthogonality theorem establishes

the convergence of several algorithms, whose convergence has not been established us-

ing Opial's Lemma. These algorithms include the general geometric framework [17],

the Frank-Wolfe algorithm [19], and a descent framework [20].

3 On the strong-f-monotonicity condition

As shown in the previous section, and particularly as summarized in Table I, the strong-f-

monotonicity condition plays an important role as an underlying condition for establishing

the convergence of several algorithms. For example, as we have seen, the orthogonality

theorem requires that a problem map f that is strongly-f-monotone.

In this section we provide a general overview of several properties for characterizing

strong-f-monotonicity. We begin by reviewing several properties that Magnanti and Perakis

([17], [19], [18], [27]) and Marcotte and Zhu ([21]) have independently established.

3.1 Some known results

Proposition 3.1: ([17])

The problem function f is strongly-f-monotone if and only if its generalized inverse f- 1 is

strongly monotone in f(K).

This result is an immediate consequence of the definition of strong-f-monotonicity and

the generalized inverse.
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Table II summarizes five types of monotonicity and their differential conditions (see

[17], [19] for more details). Whenever the problem function f satisfies any one of these

differential conditions, then f also satisfies the corresponding monotonicity conditions.

Proposition 3.2: ([17])

For affine functions f (i.e., f(x) = Mx-c, for some matrix M and vector c), the differential

form of strong-f-monotonicity holds if we can

find a constant a > 0 so that Mt - aMtM is a positive semidefinite matrix.

(Note that constant functions f(x) = c for all x satisfy this condition.)

Remark: One of the principal attractions of strongly-f-monotone functions is the fact that

the class of variational inequalities with strongly-f-monotone functions contains all linear

programs, (when the feasible set K is a polyhedron, f(x) = c). Recall that linear programs

do not always have optimal solutions (since the defining polyhedron might be unbounded),

and so variational inequalities with strongly-f-monotone functions need not have a solution.

Proposition 3.3: ([17], [19])

The following statements are true,

(i) Any strongly-f-monotone function is monotone.

(ii) Suppose f is one-to-one (i.e., invertible) and so by Proposition 3.1, strong-f-monotonicity

of f is equivalent to strong monotonicity of the regular inverse f- 1 .

Then if fi(x) fi(y) for some i = 1, ..., n, whenever x y (i.e., at least one component fi

of f is invertible), then strong-f-monotonicity implies strict monotonicity.

(iii) The strong-f-monotonicity of f with constant a implies the Lipschitz continuity of f

with constant (see also [30]).

(iv) If f is Lipschitz continuous, then strong monotonicity implies strong-f-monotonicity.

Therefore, the class of strongly-f-monotone functions is a class of Lipschitz continuous func-

tions that lies between the classes of monotone functions and strongly monotone functions.

Figure II also summarizes some of the basic properties of strong-f-monotonicity (see also

[17], [19]).
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Proposition 3.4: ([21])

Consider the variational inequality problem VI(f, It). If af - I is a Lipschitz continuous

function over K for a constant < 1, then f is a strongly-f-monotone function on K for the

constant a. Conversely, if f is strongly-f-monotone on K for a constant > - on K then

af - I is also Lipschitz continuous for the constant 1.

The following proposition states a related result.

Proposition 3.5: ([191)

The matrix Mt[I - M] is positive semidefinite for a > 0 if and only if the operator norm

III - aMIj < 1.

M is a general matrix. Note that if f(z) = Mx - b, then the results in Proposition 3.4

and 3.5 are the same because the positive semidefinite condition in Proposition 3.5 is the

differential form for strong-f-monotonicity. In general, if M = Vf, then [I - aVf(z) ll 1

is a Lipshitz continuity condition of the differential of Ix - af(x), but evaluated at a given

point x = z of the map Vf(x) (that is, for the fixed matrix I - aVf(z)).

In establishing convergence of the general iterative scheme (see (4)) and several of its

variations and specializations, researchers (see [7] and [25]) have invoked a norm condition

[g'-1/2(x,x)gy(x,x)gl1/ 2 (x,x) < 1 Vx E K. (5)

As shown by the following proposition, these results provide another setting illustrating the

importance of strong-f-monotonicity. In fact, as shown by the following result, the norm

condition (5) is equivalent to a weak version of the differential form of strong-f-monotonicity

of Table II (with x = y).

Proposition 3.6: ([19])

Consider the general iterative scheme and assume that g(x, x) is a positive definite and

symmetric matrix. Then the following results are valid.

1. If the differential form of the strong-f-monotonicity condition holds for a constant

a > 0 and if p > 0 is some constant satisfying the condition p < 2gmina for g9mi =

infeK [min eigenvalue g(x, x)], then the norm condition holds in a less than or equal to

form (that is, expression (5) with < form instead of <).
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2. Conversely, if the norm condition (5) holds in a less than or equal to form, then for some

constant 0 < a < 29 , where gmax = sUPXEK [max eigenvalue gx(x, x)],

the matrix Vf(x)t - aVf(x)tVf(x) is positive semidefinite for all x E K.

Proposition 3.6 also holds for the differential form of strict strong-f-monotonicity. Then

the norm condition holds as a strict inequality.

In the prior discussion, p > 0. Often p = 1. Then the strong-f-monotonicity constant a

should satisfy a > 1 for part (1) and 0 < a < 1 for part (2).- 2gmin 
2

nax

In some situations, for example the well-known traffic equilibrium problem, it is more

efficient to work with a transformed set of variables.

Proposition 3.7: ([19], [18], [21])

In the setting of the traffic equilibrium problem [5], let n be the total number of links in

the network and N the total number of paths. Then if the link cost function is strongly-f-

monotone for a constant a, then so is the path cost function for the constant a' = -a

In general, the sum of strongly-f-monotone functions is also strongly-f-monotone. More-

over, affine transformations preserve strong-f-monotonicity.

Proposition 3.8: ([21])

If the problem function f is strongly-f-monotone for a constant a and A is an n x m matrix,

then the function AtfA + c is also strongly-f-monotone with the constant .

As a last result in this subsection, we note that if a function satisfies the weak differential

form of strong-f-monotonicity, i.e., for all w E R n and x1 E K, some constant a > 0 satisfies

the condition,

wtVf(xl)w > awtVf(xi)tVf(xi)w,

then wtVf(xl)w = 0 for any x1 and w implies that wtVf(xi)tVf(xl)w = 0 and Vf(xl)w =

0. Luo and Tseng [16] have studied a class of matrices B = Vf(xi) that satisfy this property.

Definition 1 (Luo and Tseng [16]) A matrix B is positive semidefinite plus (p.s.d. plus)

if it is positive semidefinite and

if xtBx = 0 implies that Bx = 0.
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Luo and Tseng [16] have shown that the class of p.s.d. plus matrices B is equivalent

to the class of matrices that can be decomposed into the product B = PtP1 P for some

P1 positive definite matrix and some (possibly nonsquare) matrix P. Note that every

symmetric, positive semidefinite matrix B is p.s.d. plus, since in this case B = HtH for

some matrix H and so xtBx = 0 implies xtHtHx = 0, which implies that Hzx = 0 and

therefore Bx = 0.

3.2 Symmetry, Positive Semidefinite Plus, Uniform Positive Semidefinite

Plus, and Positive Semidefiniteness of the Squared Jacobian Matrix

Having reviewed some known properties of strongly-f-monotone functions, we now consider

a few new results, some that extend prior results from the literature.

Consider the symmetric case in which f = VF for some twice differentiable function

F, and so VF(x) is symmetric for all x E K. In this case, since strong-f-monotonicity

implies monotonicity, Vf(x) is positive semidefinite for all x E K (see Table II), and so

strong-f-monotonicity implies that F is a convex function.

Is the converse true? That is, does convexity imply strong-f-monotonicity and, if not, how

far from convexity need we stray to ensure that the function f is strongly-f-monotone?

The following results give a partial answer to this questions. We begin by giving two

examples. The first example shows that convexity of F does not imply that f is strongly-

f-monotone and the second example shows that even when F is convex over a compact set,

it might still not be strongly-f-monotone.

Example 2: Consider the variational inequality with the feasible noncompact set

K = {x = (x 1 ,x 2 ) E R 2 x1 > 0, x2 > 0} and the problem function f(x) = (xl2, 1).

f(x) = VF(x) with F(x) = x- + x2 , which is a convex function over K. In this case, f is

not strongly-f-monotone on K since for y = (yi, Y2) and x = (x 1 , x 2 ), with x1 = yi + 2, no

constant a > 0 satisfies the condition

[f(x) - f(y)]t[x - y] = 2[2yl + 4] > allf(x) - f(y)112 = [2y1 + 4]2, for all y E K.

Example 3: Consider the variational inequality with the feasible set
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K = {x = (xl, 2) E R 2 : xl c 1, 2 < 1, xl -

f(x) = ( (2 - 1)(1 - 2)). VJ

positive semidefinite matrix over K. F(x) =

X1
Hessian matrix is V 2 F(x) = Vf (x) =

1 - X2

For the points x = (1, 1) and y = ( 1) Vf(x)

} and problem function

1 - x2
is a symmetric,

1- x1

is convex in K, since its

1[ 1 
I 

Then for all w = (w1,w 2 ) E R2, wtVf(x)tw = w2 and wtvf(x)tvf(y)w = (wl + wlw2)

which implies that no constant a > 0 satisfies the condition wtf(x)tw > awtVf(x)tVf(y)w

for all w = (w1, w 2 ) E R2 ,

since for w1 ) 0 and w2 = 1, wtVf(+x)tw - f + ' c.w'Vf(x)tw 2 2wl

Before continuing, we might note a relationship between the convexity of F and the

weak differential form of strong-f-monotonicity.

Proposition 3.9: ([18])

Suppose that F : K C Rn - R is a continuous function and the maximum eigenvalue of the

Hessian matrix V 2F(x) = Vf(x) is bounded for all x E K, i.e., if di(x) is the ith eigenvalue

of V 2F(x), then supXEK[max{i=l,...,n}d(x)] < d for some positive constant d. Then F is

convex if and only if for all x E K and for all w E R n , wtVf(x)w > awtVf(x)tVf(x)w for

some constant a > 0.

Proof: " = " Assume that the Hessian matrix V 2 F(x) = Vf(x) is positive semidefinite

for all x E K. Recall from linear algebra that any symmetric, positive semidefinite matrix

M 0 0 has an orthogonal representation, i.e., M = PtDP, for some orthogonal matrix

P (whose columns are the orthonormal eigenvectors of M). In this representation, D

is the diagonal matrix whose elements are the eigenvalues of M (which are nonnegative

in the positive semidefinite case). When applied to a symmetric Jacobian matrix, this

result implies the existence of an orthogonal matrix P(x) (the operator norm IIP(x)ll = 1)

satisfying Vf(x) = P(x)tD(x)P(x). Then wtVf(x)w = wtP(x)tD(x)P(x)w and

wtVf(x)tVf(x)w = wtP(x)tD(x)tP(x)P(x)tD(x)P(x)w = wtP(x)tD(x)2P(x)w.
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D(x) is a diagonal matrix with diagonal elements di(x). Requiring

wtVf(x)w > awtVf(x)tVf(x)w for some constant a > 0 is equivalent to requiring

E dj(x)(P(x)w)? > a di(· )2 (P()w).
i i

If for all i and x E K, di(x) = 0 then this inequality is true for any a > 0.

If for at least one i and x E K, di(x) O, then since supxeK[maxidi(x)] < d and the matrix

Vf(x) is positive semidefinite, setting a = d gives di(x) > adi(x)2 for all i and x E K,

which implies the inequality.

" =" The converse is easy to see. When the differential form of strong-f-monotonicity

holds for all xl = x2 = x, then the Jacobian matrix is positive semidefinite and therefore

the function F is convex. 3

Remark:

Propositions 3.5 and 3.9 show that on a compact set, F is convex (and so the maximum

eigenvalue of Vf(x) is bounded over K) if and only if III - aVf(x)ll < 1 for all x E K. In

terms of the general iterative scheme (4) (see [7], [25]), if gx(x, x) is positive definite for all

x E K, Proposition 3.6 and this result imply that

on a compact set, F is convex if and only if Jlg-1/ 2 (x, x)gy(x, x)g1/2(x, x) I <1 Vx E K,

i.e., the less than or equal form of the norm condition holds. This observation shows that

the less than or equal form of the norm condition (on a compact set) that researchers have

invoked previously in the literature together with symmetry of Vf(x) implies convexity.

Therefore, we can view the norm condition when applied to asymmetric problems as a form

of generalization of convexity.

Although Proposition 3.9 shows a connection between convexity and strong-f-monotonicity,

it does not show that convexity implies strong-f-monotonicity since it requires x1 = x2 = x

in the differential condition.

As our previous examples show, we need to impose additional structure on f or on K to

ensure that the convexity of F implies strong-f-monotonicity. Furthermore, we might want

to ask,
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what happens in the general asymmetric case?"

First, we make the following observation.

Lemma 3.1: Every p.s.d. plus matrix M(x) can be rewritten as

0 0 0

M(x) = P(x)t 0 P(x) P(x), for some ni(x)x n1 (x), positive definite matrix Po(x)

and some square matrix P(x). Conversely, any matrix M(x) that is of this form is also

p.s.d. plus.

Proof: " =::" Luo and Tseng [16] have shown that it suffices to show that whenever

wtM(x)w = 0, then M(x)w = 0.

0

Suppose M(x) can be written as M(x)= P(x)t

- O

0 0

Po(x) O P(x). Then

0 0 

O O O O O O v

wtM(x)w = wtP(x)t 0 Po(x) 0 P(x)w = [t, Yzt] 0 Po(x) 0 Y = ytPo(:)y =

0 0 0 0 0 0 z

0, with P(x)w = y and y a vector that has the same dimension as Po(x). But since

Po(x) is a positive definite matrix, y = 0 and therefore

p(x)t Po(x)y = P() ) )w = M(0) 0. Therefore, M(x) is also

a p.s.d. plus matrix.

" =" Conversely, if an n x n matrix M(x) is p.s.d. plus, then for some ni(x) x ni(x),

positive definite matrix Po(x) we can rewrite M(x) = Pt(x)tPo(x)PI(x), with P"(x) an

n x n matrix. Then setting P(x)t = [P'(x)t, P"(x)t,P"'(x)t] for any matrices P'(x)

and P"'(x), with appropriate dimensions, we can conclude that M(x) can be rewritten
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0 0 0

as P(x) o0 Po(x) o P(x). G

O O O
We next address the following question:

"what is the analog of Proposition 3.9 for the general asymmetric case?"

"how asymmetric can the Jacobian matrix be?"

Proposition 3.10:

The positive semidefiniteness of the Jacobian matrix of the problem function f and of the

squared Jacobian matrix implies the weak differential form of the strong-f-monotonicity

condition, which in turn implies the positive semidefiniteness of the Jacobian matrix of the

problem function f, i.e., ordinary monotonicity.

Proof: First, we make the following observations about a general asymmetric matrix M.

wtMw = wtM+t w and, when M 2 is positive semidefinite,

M+Mt 2 t M+Mt M+Mt
2 w1 =w( 2 2 )

t M 2 + (M 2 )t + MtM + MMt l IIMWI 2

4 4

Therefore, the positive semidefiniteness of the Jacobian matrix, the previous observations,

and Remark (i) following Proposition 3.9, applied to the symmetric matrix Vf(x) t+Vf(x)

imply that for some constant a > 0, and for all x, and w,

wtVf(x)w = wt Vf(x) + Vf(x) all v f() a ) 2 Ž-wtVf(x)tVf(X)W,
2 2 2 -4

which is the weak differential form of the strong-f-monotonicity condition.

Furthermore, the weak differential form of the strong-f-monotonicity condition, i.e.,

there is a > 0 satisfying the condition, wtVf(x)w > awtVf(x)tVf(x)w for all x w,

implies the positive semidefiniteness of the Jacobian matrix. 

Hammond and Magnanti [12] originally introduced the condition of positive definiteness

of the squared Jacobian matrix while establishing the convergence of the steepest descent
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method for variational inequalities. This condition implies that the Jacobian matrix cannot

be "very" asymmetric. In fact, the squared Jacobian matrix is positive definite when the

angle between Vf(x)w and Vf(x)tw is less than 90 degrees for all w E R ' .

Proposition 3.11:

The converse of the statements in Proposition 3.10 are not valid.

Proof: To establish this result, we will provide counterexamples.

Example 4: The weak differential form of strong-f-monotonicity does not imply that the

square of the Jacobian matrix is positive semidefinite.

Consider the function f(x) = Mx with the Jacobian matrix M = c b
-b c

and let 0 < c < b. Then M 2 = [ 2 - b2 2cb
-2cb c2 - b2

is a negative definite matrix, which means that Al 2 is not positive semidefinite. Nevertheless

the function f(x) = Mx is strongly-f-monotone (and therefore the weak differential form of

strong-f-monotonicity) with a strong-f-monotonicity constant a = > 0 since

wt M w = cwI12 = c (b2 + 2) w112 = all IMw11 2 .
b2 + C2

Example 5: The differential form of monotonicity does not imply the weak differential

form of strong-f-monotonicity.

Consider the function f(x) = Mx with the Jacobian matrix M = and b 0.
b 

-ab2 b
M is a positive semidefinite matrix. Mt - aMtM = -ab2 and since b 0,

-b -ab2

there is no value of the constant a > 0 for which Mt - aMtM is a positive semidefinite

matrix, since when b 0, for all values of a > O, Mt - aMtM is negative definite. There-

fore, f(x) = Mx is not a strongly-f-monotone function (which in this case coincides with

the weak differential form of strong-f-monotonicity). 

To this point, in the symmetric case we have shown the relationship between convexity
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(monotonicity of f) and the weak differential form of strong-f-monotonicity and for the

general case, we have shown that the weak differential form of strong-f-monotonicity of

the squared Jacobian matrix (and the positive semidefiniteness of the Jacobian) imply the

monotonicity condition. To carry this analysis further, we now consider the relationship

between the weak differential form of strong-f-monotonicity and the p.s.d. plus conditions.

In stating the following result, we assume that Vf(x) is a p.s.d. plus matrix and therefore

O O O

from Lemma 3.1 it can be rewritten as Vf(x) = P(x)t 0 P(x) 0 P(x). We let Q(x)

O O O
be a submatrix of P(x)tP(x) defined as follows: let I be an identity matrix with the

0 0 0 0 0 0

same dimension as Po(x); then 0 Q(x) 0 = P(x) 0 I P(x)t , so Q(x) =

0 0 0 0 0 0

A(x) B(z) C(x)

D(x)D(x)t + E(x)E(x)t + F(x)F(x)t when P(x) = D(x) E(x) F(x)

G(x) H(x) J(x)
Proposition 3.12:

Suppose that the matrix Vf(x) is p.s.d. plus for all x E K, then the weak differential form of

the strong-f-monotonicity condition holds whenever the maximum eigenvalue of the matrix

Po + PO()t O Q + Po[(z)t B(x) [x 2 22 1 P ,QW oW1 2 I

is bounded over the feasible set K by a constant d.

Conversely, if the weak differential form of the strong-f-monotonicity condition holds,

then the matrix Vf(x) is a p.s.d. plus.

Proof: Suppose Vf(x) is a p.s.d. plus matrix. Then,

0

wtVf(x) = wP(X)t O

o

0

Po(x)

0

0 0

0 P(x)w= wtP(X)t O

O 0
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0
Po (x)+Po ()t

2

0

0

0 P(x)w =



[vt, yt, Zt ]

0 0 0 v

o Po(x)+Po(z)t o Y 

0 0 0 Lz

with P(z)w = y and y a vector with the same dimension as Po(x). Then since Po(x)

is positive definite

Po(x) + Po(x)t Po() + Po(x)t] [Po() + Po(x)t 1
wfxw 2 ] 2 2

0

Furthermore, wtVf(x)tVf(x)w = tP(x)t 0

0

po(x)t

0

0

0 P(x)P(x)t

0 F 0

0

0

0

Po(x)

0

0

0 P(x)w =

0

[0, ytPo(x)t, O]P(x)P(z)t Po(x)y = ytPo(x)tQ(x)Po()y =

t [Po() + Po(X) 1 Po( +Po( (X)tp Po() + Po()t [ Po() + Po()t 7 2 2 2 y2[ 2 2 2 ] ) P o(~) ° ]
2 

[
_ .

P
.

]
2 

y

Therefore, if b = [P(x)+o()t ] 2, then wtVf(x)w = btb and

wtVf (x)tV f(x)w = bt[Po(x)+P°(x)t]-) po(x)tQ(x)Po(x)[P(z)+2Po(x)t ]- 1 b.

Since the maximum eigenvalue of B(x) is bounded over the feasible set K by a constant d,

then •bt < d and so for a = we have wtVf(x)w > awtVf(x)tVf(x)w for all w E Rn

and x E K.

Conversely, if for some constant a > 0, wtVf(x)w > awtVf(x)tVf(x)w for all x E K

and w E R n then, as we have already observed previously, Vf(x) is a p.s.d. matrix and

therefore p.s.d. plus. 

Remark: In the symmetric case, the matrix

B(x) = ()+P)-2Po()tQ()po()[PO()+PO(i- i]-2 becomes B(x) = ([Po(x)]2 )tQ(x)[Po(x)].
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Furthermore, B(x) = D(x) since Po(x) = D(x) is a diagonal matrix whose diagonal ele-

ments are the positive eigenvalues di(x) of Vf(x) and Q(x) = I. Therefore, requiring the

maximum eigenvalue of B(x) to be bounded over the feasible set K coincides with the as-

sumption of Proposition 3.9, i.e., supxeK[maxidi(x)] < d. So Proposition 3.12 is a natural

generalization of Proposition 3.9.

Corollary 3.1: ([21])

Suppose a variational inequality problem is affine with f(x) = Mx - c. Then the matrix

M is p.s.d. plus if and only if its problem function f is strongly-f-monotone.

The proof of this result follows directly from Proposition 3.12 since in the affine case the

weak differential form of strong-f-monotonicity coincides with the regular differential form

of strong-f-monotonicity.

Proposition 3.9 shows the relationship between convexity and the weak differential form

of strong-f-monotonicity. For the asymmetric case, the analog of convexity is monotonicity.

Therefore, we might wish to address the following question. What is the relationship between

monotonicity and strong-f-monotonicity for the general asymmetric case?

Example 4 in the proof of Proposition 3.11 shows that monotonicity does not imply strong-

f-monotonicity. What additional conditions do we need to impose on the feasible set K and

the problem function f other than compactness to ensure that monotonicity implies strong-

f-monotonicity? Example 3 suggests that even in the symmetric case compactness and

convexity are not enough. We need to impose additional assumptions. For this development,

we use the following definition which applies to general asymmetric matrices.

Definition 2 : A matrix M(x) is uniformly positive semidefinite plus (uniformly p.s.d.

plus) if for every point x E K, we can express M(x) as M(x) = pt 0 Po(x) P,

O O O
with P independent of x. Po(x) is a positive definite or zero matrix of fixed dimension

n1 x n, and is always in the same location in the bracketed matrix.

Remark: As our nomenclature shows every uniformly p.s.d. plus matrix M(x) is also

p.s.d. plus.
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Before continuing, we state a preliminary result about uniformly p.s.d. plus matrices. We

first set some notation. In the representation of a p.s.d. plus matrix as specified in Definition

0 0 0 A B C

2, suppose we partition P compatibly with 0 Po(x) 0 as P D E F 

0 0 0 G H I

Proposition 3.13:

Suppose Vf(x) is a uniformly p.s.d. plus matrix. Then f is strongly-f-monotone whenever,

for the values of x1 for which the matrix Po(xl) is positive definite, the maximum eigenvalue

of the matrix B(xl, x 2)tB(xl, x2) is bounded over the feasible set K by some constant d2,

with

_ P(Xi) + Po(xl)t PO( + Po(t I
B(xi, x 2 )= [ 2 ]-2P0 (1 ) QPo(x2 )[ 2 1 2.

Proof: First, we observe that if x1 E IK and Po(xl) = 0, then Vf(x1) = 0 and, therefore,

for all a > 0 and x2 E K, awtVf(xl)tVf(x 2)w < wtvf(xl)tw, which is the differential

form of strong-f-monotonicity. Now suppose that xl E K and Po(xl) is positive definite.

The uniform p.s.d. plus property implies that

w f(x)tf(x2) tPt O O t O O O 
WtVf(zl)tVf(2)W = WtPt O Po(Xl)t 0 ppt O P0(x2) 0 Pw.

O O O O O O.

Then

wtVf(xl)tVf(x 2)w = tpt

0

[Vt yt, zt] Po(x )tD

O

0

Po(x )t D

0

0

Po(x )tE

0

0

Po(xl)tE

0

0

Po(xl)tF

0

0 O DtPo(x2) 0

Po(xl)tF O0 EtPo(x2 ) 0 Pw=

O O FtPo(x2 ) 0

0 D tPo(x 2) 0 v

O EtPo(x 2 ) 0 Y

O FtPo(x2) 0 z

with Pw = y , and y a

z

vector with the same dimension as Po(xi), i = 1, 2. Let
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Q = EEt + DD t+ FFt.

Therefore, since Po(xl)+2Po(x1) is a positive definite and symmetric matrix,

wtVf(xl)tVf(x2)w = ytPo(xl)tQPo(x2)y =

_[P__________2 ____________ ) + Po(xl)t] [Po(xl) + Po(xl)tPo(x1) + Po(xl)t][P(xl) + PO(X)t ti)2
Y" 2 ] - Po (l) QPo(X2)[ P 2- I ]

Y 2 2 2 2

If b = [P°(xl)+P°(xl)t ]] y then w t Vf(xl) t w = btb and

Po(x1) + Po(x1)t Po(xi) + Po(xi)t 1
wt7f(xl)tVf(x 2 )w = bt[ ]2 PO ( lX)tQPo PO( ]b 

2 2

btB(xl,x2 )b < btbllB(xl,x 2)11 < dbtb = dwtVf(xl)tw,

since the maximum eigenvalue of B(xl, x2 )tB(xl,x2 ) is bounded over the feasible set K

by a constant d2 . This inequality shows that for all x1 , x2 E K and w E R n the constant

a = mind{, 1} > 0 satisfies the condition,

awtVf(xl)tVf(x 2 )w _< wtVf(xl)tw,

which is the differential form of strong-f-monotonicity (see Table II). Therefore, f is strongly-

f-monotone. l

Remarks:

(1) In Proposition 3.12 we have shown that when Vf(x) is uniform p.s.d. plus the weak

differential form of strong-f-monotonicity holds, that is for some constant a > 0 and for all

w E R n and x E K,

WtVf(xl)w > awtVf(xi)tVf(xi)w. (6)

The proof of Proposition 3.13 permits us to show that when Vf(x) is uniform p.s.d. plus

and K is compact, the weak form and usual differential form of strong-f-monotonicity are

equivalent. To establish this result, we note that the steps of Proposition 3.13 and the fact

that the matrix [Po(xl)tQPo(xl)] is positive definite and symmetric imply the following

result. Let B(x 1 , x 2) be defined as in Proposition 3.13 and let d2 be the maximum eigenvalue

of B(xl,x 2 )tB(xl, x2 ) over the compact set K.

wtVf(xl)tf(x2 ))w = ytpo(Xl)tQpo(x2)y =
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yt[po(xl)tQp0(x)] [Po0(xl)tQP0(xl)]- Po(Xl)t QPo(x2)[P (l)t QP0(xl)]2 [Po (Xl)tQP0(xI)] y =

btB(xi, x2 )b < IIB(xi, x 2)llbtb < dbtb =

ytPo(xl)tQPo(xl)y = wtVf(xl)tVf(xl)

with b = [Po(xl)tQPo(xl)]2 . Therefore, wtVf(xl)t-Vf(x 2)w < dwtVf(xj)tVf(xl)w,

which implies that the weak and usual form of strong-f-monotonicity are equivalent.

(2) Proposition 3.6 and remark (1) imply that if Vf(x) is uniformly p.s.d. plus and K

is compact, then for the general iterative scheme (4) (see [7], [25]), the differential form of

strong-f-monotonicity is equivalent to the norm condition in a less than or equal form, i.e.,

g-1/22 (X, X)gy(x, X)g-1/2Ilgx (x x)gy , ( gz (x, x)II < 1 Vx E K.

Definition 3 : (Sun [28]) A matrix M(x) satisfies the Hessian similarity property over the

set K if (i) M(x) is a positive semidefinite matrix for all x E K, and (ii) for all w E Rn

and y, z E K and for some constant r > 1, M(x) satisfies the condition

rwtM(z)w > wtM(y)w > -tM(z)w.
r

Matrices that do not depend on x, i.e., M = M(x) for all x, and positive definite matrices

on compact sets K satisfy this property. In the later case, we can choose r as the ratio of

the maximum eigenvalue of M(x) over K divided by the minimum eigenvalue of M(x) over

K.

Sun [28] has established the following result.

Lemma 3.2:

If a matrix is positive semidefinite and symmetric and satisfies the Hessian similarity prop-

erty then it also satisfies the uniform p.s.d. plus property.

Corollary 3.2:

If for a variational inequality problem, Vf(x) is a symmetric, positive definite matrix and

the set K is compact (i.e., strictly convex minimization problems on compact sets), then

Vf(x) satisfies the uniform p.s.d. plus property and the problem function f is strongly-f-

monotone.
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Proof: When Vf(x) is a symmetric, positive definite matrix and the set K is compact,

Vf(x) satisfies the Hessian similarity condition. Lemma 3.2 implies the uniform p.s.d. plus

property. Therefore, Proposition 3.13 implies that f is a strongly-f-monotone problem func-

tion. O

Corollary 3.3:

If the Jacobian matrix Vf(x) of a variational inequality problem is symmetric and positive

semidefinite and satisfies the Hessian similarity condition and the set K is compact, then

the problem function f is strongly-f-monotone.

Proof: By Lemma 3.2, the Jacobian matrix Vf(x) satisfies the uniform p.s.d. plus condition

and so the result follows from Proposition 3.13.

The following result provides a generalization of Proposition 3.13.

Proposition 3.14:

Suppose that Vf(x) can be written as

Vf(x) = pt

Pi(x) ... O ... O

. .. 

o ... o ... P 0 (x)

the matrices Pi(x) for i = 1,2,...,m are either positive definite or zero and for all i =

1, 2, ..., m and they have the same dimension n x n for all x, moreover ppt = I. Let

Bi(Xl, X2 ) [P(xl) Pi(xl)t (x2)[Pi(xl) Pi(Xl) ]_
(x, 2)2= -Pi(x1)tQPi(X2)[ 22 2

then f is a strongly-f-monotone function, whenever, for i = 1, ... , m and for the values of

x1 for which the matrix Pi(xl) is positive definite, the matrix Bi(xl, 2)tBi(xl, x2 ) has

maximum eigenvalue that is bounded over the feasible set K by a constant d2.
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0 ... 0 ... 0

Proof: We will first define the matrix Di(x) = pt ... Pi(x) ... 0

0 ... 0 ... 0

P.

Then Vf(x) = E 1 Di(x). Observe that since ppt = I, Di(xl)Dj(x2 ) = 0 for i # j.

Therefore, Proposition 3.13 permits us to conclude that

m

awtVf(xl)tVf(x 2 )w = awt Z (Di(xl)tDj(x2))w =
i,j=1

m m m

awt Zj(Di(xl )tDi(x 2))w = a [wtDi(xjl)tDi(x2)w] < E w t Di(xl )tw = wtV f(xl )tw
i=l i=l i=

for a = 1/d and d = max{i=l,...,m}di.

Corollary 3.4:

If the Jacobian matrix Vf(x) of a variational inequality problem is a diagonal positive

semidefinite matrix and the set K is compact, the problem function f is strongly-f-monotone.

Proof: The proof of this result follows directly from Proposition 3.14, since the diago-

nal positive semidefinite matrix Vf(x) is the sum of uniform p.s.d. plus matrices, with

Pi(x) as 1 x 1 matrices that are zero or positive definite (zero or positive scalars in this

case), and with P = I.

Remarks:

(i) In Proposition 3.14 we could have made a more general "orthogonality" assumption

that Di(xl)Dj(x2 ) = 0 for i j and Vx 1 , x2 , which is the central observation in its proof.

Then Corollary 3.1, 3.2, 3.3 and 3.4 would become special cases of Proposition 3.14.

(ii) The condition on Vf(x) in Proposition 3.14 require that each matrix Pi(x) has fixed

dimensions and occupies a fixed location in the block diagonal matrix of the Pi(x)s. Can

these conditions be relaxed in any sense? Doing so would permit us to define a broader

class for which a p.s.d. plus type of condition would imply strong-f-monotonicity.
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Finally, we note that strong-f-monotonicity is related to the condition of firmly nonex-

pansiveness (used, for example, by Lions and Mercier [15], Bertsekas and Eckstein [8]).

Definition 4 : A mapping T: K - K is firmly nonexpansive (or pseudocontractive) over

the set K if

IlT(x) - T(y)1 2 < Ilx - y112 - [x-T(x)] - [y - T(y)1112 Vx, y E K

Expanding II[x - T(x)] - [y - T(y)]112 as llx - y 2 + T(x) - T(y)112 - 2[T(x) - T(y)]t [x - y]

and rearranging shows that,

Proposition 3.15:

If a problem function f is strongly-f-monotone for a constant a > 1, then it is firmly

nonexpansive. Conversely, if a problem function f is firmly nonexpansive, then it is strongly-

f-monotone for the constant a = 1.

Remark:

To conclude this discussion, we note that most of the results in this paper, including

the orthogonality theorem, can be easily extended to a more general form of a variational

inequality,

find x pt E K f(xoPt)t(x - xzpt) + F(x) - F(xoPt) > O, Vx E K,

with f : K - Rn a continuous function, F : K -,- R a continuous and convex function, and

K a closed and convex subset of Rn .
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TABLES

Table I. Convergence approaches

Notes:

In this table, G' denotes the symmetric part of the matrix G involved in the projection

method, i.e., G' = (G + Gt). The constants involved are g = min(eigenvalue of G), a is

the strong-f-monotonicity constant, L is the Lipschitz continuity constant,

a = infx,yeK (min(eigenvalue g,(x, y))) > O, b is the constant involved in the strong con-

vexity of the function K. Finally, the map M is the monotone part of the function G, that

is involved in the modified auxiliary problem framework (see [21] for more details).
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What Theorems Which Algorithms What Conditions

Banach Projection [25], [7], [5], [3] strong monot., 0 < p < 2a/L
2
g

Banach Relaxation [1], [6] suPyEkK 119y(-, Y)11 Aa, O < A <1

Banach Original Steepest Descent [12] Df(x) p.d., Df(x)
2

p.d.

Banach Cohen's Aux. Probl. Fram. [4] . strong monot., 0 < p < 2ab/L
2

Banach Forw. and backw. step alg. [10] strong monot., 0 < p < 2a/g

Baillon Averages of Steepest Descent [12] Df(x) p.d., Df(x)
2

p.s.d.

Baillon Averages of Short Step Steepest Descent [20] strong-f-monot., 0 < p < 2a

Baillon Averages of Constr. Short Step Steepest Descent [20] strong-f-monot., 0 < p < 2a

Baillon Averages of Projection [19] strong-f-monot., 0 < p < 2a/g

Baillon Averages of Relaxation [19] suPx.,EK Ilgy(z, y)11 l 

Opial Forw.-backw. oper. splitting alg. [10] strong-f-monot., 0 < p < 2a/g

Opial Projection [10] strong-f-monot., 0 < p < 2a/g

Opial Cohen's Aux. Probl. Framew. [21] strong-f-monot., 0 < p < 2ab

Opial Short Step Steepest Descent [20] strong-f-monot., 0 < p < 2a

Opial Constr. Short Step Steepest Descent [20] strong-f-monot., 0 < p < 2a/g

Opial Asymmetric Projection [29] G asym., p.d.,

G-1/2[f(G'-l /2 y) - (G - G)GI-1/2 ]

strong-f-mon., cnst. > 1/2

Opial Modified Aux. Probl. Framew. [21] f - M strong mon., K' strong mon., some p

Orthogonality Short Step Steepest Descent [20] strong-f-monot., 0 < p < 2a

Orthogonality Constr. Short Step Steepest Descent [20] strong-f-monot., 0 < p < 2a/g

Orthogonality Projection [19] strong-f-monot., 0 < p < 2a/g

Orthogonality Accum. pts. of Sym. Frank-Wolfe [19] strong-f-monot., symmetry, tK V, comp., conv.

Orthogonality Accum. pts. of Affine Asym. Frank-Wolfe [20] affine, strong monot., near-square-symmetry

Orthogonality Accum. pts. of Affine descent Fram. [20] affine, strong monot., near-square-symmetry

Orthogonality Accum. pts. of Geometric Framework [17] strong-f-monot., K 6, convex, compact

Orthogonality Cohen's Aux. Probl. Framew. strong-f-monot., 0 < p < 2ab

Orthogonality Asymmetric Projection G asym., p.d.,

G-1/2 [f(G',-1/2 y) _ (G - G')G
'- 1 / 2

y

strong-f-mon, cnst. > 1/2

Orthogonality Modified Aux. Probl. Framew. f - M strong mon., K' strong mon., some p



Table II. Several types of monotonicity
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Type of monotonicity imposed upon f Definition' Differential condition'

monotone on K f(=)- (y)l( - y) > 0 Vf(x) p.s.d.+

strongly-f-monotone on K 3a > 0, [f(x) - f()]( - y) > II f(=) - f(y) 112 3a > 0, [Vf(x)t - aVf(x)t/f(y) p.s.d.+

strictly strongly-f-monotone on K"'* 3a > , [f(x) - f(y)](; - y) > f(x) - f(y) 11
2 3a > 0, [Vf(x)t - Vf(:)t7f(y)] p.d.++

strictly monotone on K" [f(3) - (Y)](:: - y) > 0 V f(=) p.d.++

strongly monotone on KI¢* 3a > , f(x) - f()]( -_ Y) _ o [I -- Y 112 Vf(:) uniformly p.d.
+

Definition holds for all , y E K or all _E IK + p.s.d. means positive semidefnite

* Condition holds for r y ++ p.d. means positive deiaite

*"* Condition holds for f(z) :# f(y)
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Figure 1: The orthogonality theorem.
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FIGURE II.

<--Differential Forms

*Implies differential form of strongly-f-monotone

Relationships between different types of monotonicity
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