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Abstract

Motivated by semiconductor wafer fabrication, we consider a scheduling problem for

a single-server multiclass queue. A single workstation fabricates semiconductor wafers

according to a variety of different processes, where each process consists of multiple stages

of service with a different general service time distribution at each stage. A batch (or

lot) of wafers produced according to a particular process randomly yields chips of many

different product types, and completed chips of each type enter a finished goods inventory

that services exogenous customer demand for that type. The scheduling problem is to

dynamically decide whether the server should be idle or working, and in the latter case, to

decide which stage of which process type to serve next. The objective is to minimize the

long run expected average cost, which includes costs for holding work-in-process inven-

tory (which may differ by process type and service stage) and backordering and holding

finished goods inventory (which may differ by product type). We assume the workstation

must be busy the great majority of the time in order to satisfy customer demand, and

approximate the scheduling problem by a control problem involving Brownian motion.

A scheduling policy is derived by interpreting the exact solution to the Brownian control

problem in terms of the production/inventory system. The proposed dynamic scheduling

policy takes a relatively simple form and appears to be effective in numerical studies.
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1. Introduction and Summary

Our study is motivated by a scheduling problem faced in semiconductor wafer fab-

rication, which consists of the production of wafers that typically contain between 10

and several thousand computer chips. Because the production technology is very com-

plex and not well understood, each completed wafer contains a random number of chips

of varying grades of quality, including some chips that are deemed useless and conse-

quently scrapped. Chips of different grades of quality are classified into different types of

products, where each type has its own market and demand. Since manufacturing cycle

times are very long and prompt customer delivery is required to remain competitive (see

Harrison et al. 1990), many wafer fabrication facilities are forced to operate (at least par-

tially) in the make-to-stock mode of production. That is, the facility produces according

to a forecast of customer demand, and completed chips enter a finished goods inventory,

which in turn services actual customer demand. Also, wafer fabrication facilities often

have only one bottleneck station (the photolithography workstation, see the simulation

studies of Atherton and Dayhoff 1985, Glassey and Recende 1988 and Wein 1988), and

wafers usually visit this station ten to twenty times during processing.

In this paper, we will focus on the bottleneck workstation and consider the schedul-

ing problem faced by a single-station, make-to-stock production facility in a dynamic
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stochastic environment. The facility employs K different processes to produce K types

of products, where each product type has a designated process that is primarily used

to produce it. A process can have multiple stages of service at the workstation, and we

model the workstation as a single-server multiclass feedback queue. The server represents

the photolithography machine and the entities populating the queue will be referred to

as jobs, where each job represents a lot of wafers. A different job class is defined for each

service stage of each process type, and each job class is allowed to have its own general

service time distribution. If there are J job classes, the dynamic scheduling decisions

consist of choosing among J + 1 options at each point in time: either serve a class j job,

j = 1, ..., J, or allow the server to be idle. Preemptive resume scheduling is allowed, but

as will be seen later, our method of analysis is crude enough that the resulting scheduling

policy is independent of the particular assumptions made with regard to preemption. We

assume an ample supply of raw wafers is available for each process type, and a lot of raw

wafers is released to the queueing system whenever the scheduler decides to start working

on a new job. Also, no set-up times or costs are incurred when switching production from

one job class to another. Photolithography operations generally require a new set-up for

each lot of wafers, regardless of product type or stage of service, and thus set-up times

can be incorporated into the processing times.

A partial ordering is assumed to exist among the K product types with respect

to quality. When a job's processing is complete, the wafers in the job are sliced into

individual chips and the product type (that is, quality grade) of each chip is determined.

The product type of each completed chip is random and depends on the process used to

make the chip, but is independent of the product type of other chips in the job and chips

in previously completed jobs. In particular, we assume that a given process can only

produce chips of its corresponding product type and all lower quality types (including

chips that need to be discarded). Completed chips of each product enter a finished goods

inventory that services the exogenous demand for that product. The cumulative demand

for each product (measured in chips) is modelled as an arbitrary point process that

satisfies a functional central limit theorem (for example, a compound Poisson process),
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and all unsatisfied demand is backordered. Note that the entities in the queue (which will

also be referred to as work-in-process, or WIP, inventory) and finished goods inventory

are measured in different units; WIP is measured in lots of wafers and finished goods

inventory is measured in chips.

The scheduler can observe the current queue length (or WIP inventory) of each job

class and finished goods inventory of each product type before making a scheduling

decision, and the objective of the scheduling problem is to minimize the long run expected

average cost, which includes linear costs for holding WIP inventory (which may differ by

job class) and linear costs for backordering and holding finished goods inventory (which

may differ by product type).

This paper is a sequel to Wein (1990), who considers the same production/inventory

scheduling problem, but assumes that all production processes have perfect yield, produce

no by-products and possess only one stage of service. Because this scheduling problem

appeared to be difficult to analyze in its exact form, Wein (1990) employed a Brownian

model developed by Harrison (1988) that approximates, under so-called heavy traffic

conditions, a dynamic scheduling problem for a multiclass queueing system by a dynamic

control problem involving Brownian motion. The heavy traffic condition assumes that the

server must be busy the great majority of the time (for example, 90% of the time) in order

to satisfy customer demand over the long run. Wein (1990) derived a closed form solution

to an equivalent reformulation, called the workload formulation, of the Brownian control

problem and interpreted the solution in terms of the original production/inventory system

in order to develop an effective scheduling policy, and we follow the same procedure here.

As explained in Wein (1990), the rescaling of time and space that occurs in the

approximating procedure prevents us from deriving an explicit detailed scheduling policy

to the actual problem. Thus, we propose a parametric policy and say that a product is

in danger of being backordered if its current finished goods inventory level is less than a

certain critical level. These levels, one for each product type, are not derived from our

analysis, but are instead parameter values chosen by the scheduler. In the simulation
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studies here and in Wein (1990), the best performance for our particular examples was

achieved with critical values less than or equal to the number of chips in two lots of

wafers.

Our analysis leads to the concept of expected effective resource consumption for each

product type. For the lowest quality product (or, more generally, for any product whose

designated process produces no by-products), this quantity is simply the total expected

processing time to produce a completed lot of wafers using the corresponding designated

process divided by the expected number of chips of that product type in a completed

lot. For a higher quality product, the expected effective resource consumption equals

the corresponding ratio for this product minus the expected number of chips of each

lower quality product in a completed lot of wafers (normalized by the expected number

of chips of the higher quality product in a completed lot) times the expected effective

resource consumption for the corresponding lower quality product. Thus, the expected

effective resource consumption for a product type represents the expected amount of

machine time consumed to produce one unit of that product for finished goods inventory,

after accounting for the random production of all other product types. For scheduling

purposes, this quantity plays the role of a product's expected total processing time in

a production system that produces by-products and defective products; it may also be

useful for cost accounting purposes.

The proposed parametric scheduling policy dynamically tracks the weighted inventory

process, which is the sum of a linear combination of the current WIP and finished goods

inventory, where the WIP of each job class is weighted by the expected processing time

already received by jobs of that class and the finished goods inventory of each product is

weighted by its expected effective resource consumption. Thus, the weighted inventory

process represents the machine time that has already been invested in the current WIP

and finished goods inventory. Whenever the weighted inventory process is above a certain

critical level and there are no products in danger of being backordered, the machine sits

idle; otherwise, the machine is kept busy. When the machine is working, our dynamic
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scheduling policy is reminiscent of the so-called c rule (see, for example, Klimov 1974)

that minimizes the weighted average cycle time in a conventional multiclass queue, in

that it employs an index policy for each job class and product type that measures a cost

divided by an expected processing time; in the c rule, Ck is the holding cost for class

k jobs in queue and Puk is the service rate, and the rule gives priority to larger values of

the index Cktlk. In our setting, if there are any products in danger of being backordered,

the scheduler attempts to satisfy the backordered demand for the product that has the

largest ratio of its backorder cost divided by its expected effective resource consumption.

If no products are in danger of being backordered and the machine needs to stay busy,

then the scheduler tries to keep all its excess inventory in one location, either as WIP of

a certain job class or as finished goods inventory of a certain product. In particular, an

index is calculated for each of the J job classes and K products, and the work is kept

in the location that corresponds to the smallest of these J + K indices. The index for

each job class is the WIP holding cost for that class divided by the expected processing

time already received by the class, and the index for each product type is the product's

finished goods holding cost divided by its expected effective resource consumption. Thus,

excess inventory is held in the location that achieves the smallest holding cost per unit

of expected machine time already invested.

A simulation experiment is performed with four numerical examples, and the pro-

posed policy is compared to two policies that keep the workstation busy when the total

(unweighted) finished goods inventory process is below a critical level or when products

are backordered; one policy dynamically awards priority to the class with the smallest

finished goods inventory level and the other policy is more complex and is described in

Section 6. The cost reductions achieved by the proposed policy (relative to the two other

policies) range from 7.3% to 20.3% in the four numerical examples.

Although there is a huge literature on scheduling traditional make-to-order queue-

ing systems, Wein (1990) appears to be the first paper to explicitly analyze a dynamic

scheduling problem for a multiclass make-to-stock queue, and readers are referred there
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for a brief review of the control and scheduling of stochastic production/inventory sys-

tems. Pierskella and Deuermeyer (1978) are among the first to consider the control of a

production/inventory system with by-production, and earlier works on this problem are

sited there. These authors examine a system with two processes, where process A pro-

duces both products in some known deterministic proportion, while process B produces

only one product. They formulate the problem as a dynamic program, derive properties

of the optimal policy, and show that the two-dimensional state space can be divided into

4 regions, where a different control is exerted in each region. Another related paper is

Courcoubetis et al. (1989), who investigate a production system of m machines that can

each produce n product types, but according to different probabilities. If a randomly

arriving demand for a particular product type cannot be satisfied by the current finished

goods inventory, then the scheduler must decide which machine to use in order to sat-

isfy this demand. This machine continues working until the demand is satisfied, and all

other products produced by this machine enter the finished goods inventory. They find

necessary and sufficient conditions for the existence of a scheduling policy that makes

the inventory finitely bounded, and provide such a strategy when these conditions are

satisfied. Bitran and Dasu (1989) and Bitran and Leong (1989) study production plan-

ning problems for a process that randomly yields a variety of different products. Their

models consider only a single production process (and hence no scheduling options exist),

but finished units of one product can be used to satisfy customer demand for a lower

quality product. They consider the joint decisions of choosing a production quantity

and allocating finished goods inventory to customers, and propose several heuristics for

solving the multi-period problems. It should be noted that all of the existing papers

on scheduling production/inventory systems with by-production assume instantaneous

production, whereas we explicitly model the production system as a multiclass feedback

queue.

Although we are motivated by a specific industry, our analysis may also be applied

to other examples of random production, such as fiber optics (the segment length may

be random), ingot cutting in the steel industry (where the size may be random), crystal
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cutting in electronics applications (where the frequency may be random) and blending

problems in the petroleum industry (where random quantities of by-products may be

obtained). The remainder of this paper is organized as follows. The scheduling problem

is formulated in Section 2 and the corresponding Brownian control problem is defined in

Section 3. In Section 4, the latter problem is reformulated in terms of workloads, and

the workload formulation is solved. The solution is interpreted in Section 5 to propose a

scheduling policy, and the policy is tested on two systems in Section 6, a by-production

system with random yield and no job reentry (that is, no feedback), and a reentry system

with perfect yield and no by-production.

2. Problem Formulation

Before stating the problem, we will describe the probabilistic formalisms that will

be adopted in this paper. When we say that X is a K-dimensional (, E) Brownian

motion (readers are referred to Karatzas and Shreve 1988 for a definition), it is assumed

that (, F, Ft,X, P) is given, where (, F) is a measurable space, X = X(w) is a

measurable mapping of Q into C(RK), which is the space of continuous functions on RK,

Ft = a(X(s), s < t) is the filtration generated by X, and P, is a family of probability

measures on £Q such that the process {X(t), t > O} is a Brownian motion with drift ,

covariance matrix E, and initial state x under Pa. Let Ex be the expectation operator

associated with Pa. If Y = {Y(t), t > O} is a process that is Ft-measurable for all t > 0O

then we say that the process Y is nonanticipating with respect to the Brownian motion

X. More generally, we will say that one process Y is nonanticipating with respect to

another process X when Y is adapted to the coarsest filtration with respect to which X

is adapted.

We consider a facility that produces K types of products. Each product type has

its own independent demand process denoted by Dk(t), which is the cumulative amount

of demand for type k products up to time t. We assume that the process Dk satisfies

a functional central limit theorem and has asymptotic rate Ak and variance a. The
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model can actually accommodate dependencies among the various product's demands

(as long as the vector demand process satisfies a functional central limit theorem), but

this issue will not be pursued here. The facility can produce these K product types

according to K different production processes. The K processes will usually be indexed

by j = 1,..., K in order to distinguish them from the K product types, which will be

indexed by k = 1, ..., K. Process j has (j) stages of service at the workstation, and these

service stages are indexed by i = 1, ... , I(j). The entities residing in the queueing system

will be referred to as jobs rather than customers, so as not to confuse them with the actual

customer demand. As in Kelly (1979), we define a different job class for each combination

of process type and stage of completion. There are EjK= I(j) different job classes and

each class is denoted by the pair (j, i), which is its process type and stage of completion.

Thus, customers change class in a deterministic fashion as they proceed through the

system. More generally, we can allow probabilistic routing for each process type, but

the notation required to perform the subsequent analysis would be significantly more

tedious. Each job class (j, i) has its own general service time distribution with mean mji

and variance s, and the service rate is denoted by yji = mj 1. Let {Sji(t),t > O} be the

renewal process corresponding to the service times of class (j, i), so that Sji(t) represents

the number of class (j, i) job completions up to time t if the server were continuously

working on this job class during the interval [0, t]. We also define Mji = , mjl to be

the total expected service time that a class (j, i) job has received from the workstation,

and Mj = iUl mji to be the total expected service time for jobs produced acccording

to process type j.

To complete the specification of the state dynamics, we need to describe how the

processes randomly produce products. We assume that a partial ordering of the product

types exists with respect to quality, and the product types are indexed so that if two

products are comparable, then the one of higher quality is given a larger index. Each

product type has a designated process that is primarily used to produce it; in particular,

process k is primarily used to produce product k, for k = 1,..., K. However, each process

may also produce lower quality products and defective products. Each completed job
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(or lot of wafers) produced according to process j contains Lj items (or chips) that can

potentially be placed in the finished goods inventory, and we assume that each of these

items is a unit of product k with probability Pjk, and is a defective item with probability

j = 1 - = Pjk, independent of all other items in the completed job. We call the

matrix P = (Ljpjk: j, k = 1,... , K) the by-production matrix. Since the product types

are partially ordered, we have pjk = 0 for k > j, and hence the by-production matrix P

is lower triangular with positive diagonal elements.

At time t, the state of the system is described by Qji(t),j = 1, ... , K and i = 1,..., I(j),
which is the number of class (j, i) jobs in queue or in service, and Zk(t), k = 1, ... , K, which

is the number of units of product k in the finished goods inventory. The vector processes

Q = (Qji) and Z = (Zk) will be referred to as the WIP process and inventory process,

respectively. The system cost consists of linear WIP holding, inventory backordering and

inventory holding costs, where cji represents the WIP holding cost for class (j, i) jobs, bk

represents the backorder cost for product k units, and hk is the finished goods holding

cost for product k units. It will be assumed that bk > hk > 0 for k = 1, ... , K, and for

future use we define the convex finished goods inventory cost function gk, k = 1,..., K,

by

gk(){ -bkx if < 0 (2.1)
hkx ifx > 0.

In order to employ the approximating Brownian procedure, we express the scheduling

decisions in terms of cumulative allocation processes, {Tji(t),t > 0}, for j = 1,...,K and

i = 1, ... , I(j), where Tji(t) is the total amount of time that the workstation has devoted

to class (j, i) jobs up to time t. We assume an adequate supply of raw materials (that

is, raw wafers) is available whenever the scheduler decides to begin processing a new

job. Since raw material inventory is not included in our model, Qjl(t) is never larger

than one for all processes j = 1, ... ,K. Because of the rescaling that takes place in the

Brownian approximation (see (3.10)), no holding costs will be incurred for classes (j, 1),

j = 1, ..., K, and thus Qjl(t), j = 1,... , K, can be omitted from the problem formulation.
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Define

Aj(t) = Sjl(j)(Tjl(j)(t)) for j = 1,.. ., K, (2.2)

so that Aj(t) represents the total number of jobs (or lots of wafers) completed according

to process j during the interval [0, t]. Furthermore, for each process j, define a doubly-

indexed sequence of independent and identically distributed random variables qm,,, n=

1,2,... and m = 1,.. ., Lj. Each qj, is equal to k with probability Pjk, k = 0, 1,..., K.

Let X(.) be an indicator function defined by

X( = ) 1 ifx=y (2.3)
O if x y.

If we assume that Z(O) = Q(0) = T(O) = 0, then the state equations of the system are

Qji(t) = Sj,i1(Tj,i_l(t)) - Si(Tji(t)) for j = 1,..., K, i = 2,..., I(j) and t > 0, (2.4)

and
K Aj(t) Lj

Zk(t) = £ £ X(qm = k) - Dk(t) fork = 1,..., K and t > 0. (2.5)
j=l n=l m=l1

We assume that the allocation process T is nonanticipating with respect to the WIP

process Q and the inventory process Z, which implies that the scheduler cannot observe

actual demands, service times and process realizations before they occur. The allocation

process must also be continuous and nondecreasing in time. Furthermore, if we define

the cumulative idleness process I(t) to be the cumulative amount of time the server is

idle in [0, t], then

K l(j)

I(t) = t - , Tji(t) for t > 0, (2.6)
j=l i=1

which must also be nondecreasing.

Thus, the scheduling problem is:

1 T K ) K
min limsup E[] E C cjiQji(t) + I gk(Zk(t))] (2.7)

Tji T--oo 3j=1 i=2 k=1
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subject to Qji(t) = Sji-1 (Tji-1(t)) -Sj(Tji(t))

for j = 1,...,K, i = 2,...,l(j) and t > 0,
K Aj(t) Lj

Zk(t) = Z Z > X(qJm = k) - Dk(t)
j=1 n=l m=l

for k = 1,...,K and t > O0
K (j)

I(t) = t - E Tji(t) for t > 0,
j=1 i=1

Q(t) > 0 for t > ,

I is nondecreasing for t > 0,

T is continuous and nondecreasing in t, and

T is nonanticipating with respect to Q and Z.

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

3. The Limiting Control Problem

In this section, we follow the approach taken in Sections 3 through 5 of Harrison

(1988) to develop a Brownian approximation to the control problem (2.7)-(2.14). Only

the basics of the approximation are provided, and readers are referred to Harrison (1988)

for a more detailed presentation and justification. Let /3k, k = 1, ... , K, denote the rate

at which jobs of class (k, 1(k)), which corresponds to the last stage of process k, are

completed per unit of time over the long run. Then the vector / = (Pk) must satisfy

A = PTo (3.1)

in order for the average customer demand for all products to be satisfied exactly over the

long run, where A = (Ak) is the vector of exogenous demand rates for each product type.

Since P is a lower triangular matrix with positive diagonal elements, the flow balance

equations (3.1) uniquely determine a vector /. However, for the system to be stable, we

need to assume that

?k > 0 for k = 1,...,K. (3.2)
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If any components of / are negative, then in order to keep up with the long run

average demand of some high quality product type, the system will inevitably overproduce

at least one lower quality product type, and the finished goods inventory of the lower

quality product will grow infinitely large. Fortunately, production facilities often have

more possible production processes than product types, in which case a subset of the

production processes should be employed so that (3.2) is satisfied and system instability

is avoided. Condition (3.2) is similar to the necessary and sufficient conditions for stability

derived in Theorem 2.1 of Courcoubetis et al. (1989).

By equation (3.1), the proportion of time over the long run that the workstation must

work on class (j, i) jobs is pji = /3jmji. Thus, the traffic intensity of the system, that is,

the long run average workstation utilization, is p = E=i z~=l Pji. For j = 1, ... , K and

i = 1, ... ,l (j), let oaji = pji/p, and define the centered allocation and service processes,

respectively, by

Yji(t) = jt - Tji(t) for t > 0 (3.3)

and
7jii(t) = Sji(t) - Pjit for t > 0. (3.4)

To simplify the formulas for the WIP process Q and the inventory process Z, we define

Xji(t ) = ?ji-(Tj,i-l(t))- ji(Tji(t)) for t > 0 (3.5)

and

K Aj(t) Lj K

Xk(t) = E E E ((qm = k) - pjk) + E Ljpjkyj(j)(Tjl(J)(t))
j=1 n=l1 m=1 j=1

-Dk(t) + Akt + Ak (1 - p)t for t > 0. (3.6)
P

Then it follows from (2.4)-(2.6) and (3.3)-(3.6) that

Qi(t) = Xj,(t) + yjiYji(t) - j,i-Yji-xl(t)

for j = 1,., K, i = 2,..., I(j) and t > 0, (3.7)
K

Zk(t) = Xk(t) - Ljpjkj,(j)Yj(j(t) for k = 1,... .,K and t > 0, (3.8)
j=1
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and
K (i)

I(t) =E E Yj(t) for t > 0. (3.9)
j=1 i=l

As in Harrison (1988), the key to the approximation is to replace the allocation

process Tji(t) in (3.5)-(3.6) by its nominal allocation process pjit. Readers are referred to

Sections 5 and 11 of Harrison (1988) for an informal defense of this substitution. After

this replacement, we assume that the production/inventory system is under heavy traffic

conditions, which require the existence of a larger integer n that approximately equals

(1 _p)-2 . A representive example is to choose n = 100 if the traffic intensity p = 0.9. The

system parameter n is used to rescale the processes, but the rescaled processes will retain

the same notation as the original processes in order to reduce the notational burden. For

t > 0, let

Q 3 ,(nt)
Qji(t) = i (3.10)

Zk(t)= Zk(nt) (3.11)

zYji(t) = i ) (3.12)JS'

I(t) = I(nt) (3.13)

Xji(t) = Xji(nt) (3.14)

and

Xk(t)= Xk(nt) (3.15)

The approximating Brownian control problem is obtained by letting the parameter n tend

to infinity. The processes Q, Z, Y, and I now represent limiting scaled processes, although

they will still be referred to simply as the WIP, inventory, allocation and cumulative

idleness processes, respectively. A straightforward application of weak convergence results

(see Billingsley 1968) reveals that the limiting processes Xji and Xk are Brownian motion

processes. Define v = y,2A and vk = Ak2a2, so that vi and k represent the squared

coefficients of variation corresponding to the service process of class (j, i) and the demand
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process of product k, respectively. Then the drift and variance of the Brownian motion

processes Xii and Xk are given by

E[Xj] = 0 for j = 1,...,K and i = 2,..., I(j), (3.16)

= j(vji- 1 + Vii )

= Ak V( - p)

K

for j = 1,...,K and i = 2,..., I(j),

for k= 1,...,K,

Var[Xk] = AkVk +ZE /jLjpjk(1
j=1

- Pjk + Ljpjkvjl(j)) for k = 1,..., K,

and their covariances are given by

CoV [Xji, Xj,]

Cov[Xji, Xkl]

Cov[Xji, Xk]

Cov[Xk, X l]

0 

= 0ifj k,

{ 

if I= i+l,

otherwise,

if i = (j),

otherwise,

K

= Z3jLjpjkpjl(Ljvjl(j) - 1)
j=1

for k, I= 1,.

We are now in a position to state the limiting control problem, which is to choose a

RCLL (right continuous with left limits) process Y = (Yji) to

1 T K l(i)
minimize lim sup E[ E

Tsbeoo X j=l i=2

subject to Qji(t) = Xji(t) + jiY

K

CjiQji(t) + E gk(Zk(t))]
k=l

(3.24)

for j = 1,...,K, i = 2,..., l(j) and t > 0,
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Var[Xj]

E[xk]

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.25)

.. K and k: f 1.

ii(t) - 1'j'i-IYj'i-1(0



K

Zk(t) = Xk(t) - E Ljpjkyju(j))Yj,() (t)
j=1

for k = 1,..., K and t > 0, (3.26)
J l(j)

I(t)= E E Yji(t) for t > 0, (3.27)
j=1 i=1

Q(t) > 0 for t > 0, (3.28)

I is nondecreasing for t > 0, and (3.29)

Y is nonanticipating with respect to Xji and Xk

for j = 1,... ,K, i = 2,...,l(j) and k = 1,...,K. (3.30)

4. The Workload Formulation and Its Solution

The limiting control problem (3.24)-(3.30) has an equivalent alternative formulation in

which the control process Y = (Yji) is not explicitly exposed and only a one-dimensional

Brownian motion process is involved. Recall that Mji is the total expected service time

that a class (j, i) job has received, and Mj is the total expected service time for process

j jobs. Denote the K-vector (Mj) by M, and define the K-vector M* = (Mk*) by

M* = P-1M. (4.1)

As will be discussed in the next section, Mk* represents the expected effective resource

consumption (machine time consumed) for producing one unit of type k product accord-

ing to process k. In order to have a practically meaningful solution to the workload

formulation, we assume that

Mk > 0 for k = 1,..., K. (4.2)

We will discuss the implications of this assumption in the next section, and provide a set

of conditions under which this assumption is satisfied.
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Define the one-dimensional Brownian motion B by

K K 1(j)

B(t) = E MkXk(t) + E E MjiXji(t) for t > 0. (4.3)
k=1 j=1 i=2

By (3.16)-(3.23), the drift of B is vri(1 - p) > 0 and the variance of B is

K K
o2= Z Mk {AkVk + Z f Ljpj (1 -jk + LjpJkVjl(j))}

k=l j=1

K K K

+ E E E MkZM*IjLjpjkpjl(Ljvj,() - 1)
k= 1=1 j=l

K K

-E E 2MZkMj(j)Ljpikivjl(j)
k=l j=1

K ()

+ E{Mj]i j(vj,i _1 + vji) - 2MjiMj,i_l3jvj,i_l}. (4.4)
j=l i=2

The workload formulation of the limiting control problem (3.24)-(3.30) is to choose

RCLL processes Q = (Qjii), Z = (Zk) and I to

1 T K
minimize lim sup -E[7 cQ 3jiQ(t) + Agk(Zk(t))] (4.5)

T-oo T j=l i=2 k=1

K l(i) K

subject to >E E MjiQji(t) + E Mk*Zk(t) = B(t) - I(t) for t > 0, (4.6)
k=1 i=2 k=1

Q(t) > 0 for t > 0, (4.7)

I(t) is nondecreasing in t, and (4.8)

Q, Z and I are nonanticipating with respect to Xji and Xk. (4.9)

Proposition 1. Every feasible policy Y for the limiting control problem (3.24)-(3.30)

yields a corresponding feasible policy (Q, Z, I) for the workload formulation (4.5)-(4.9),

and every feasible policy (Q, Z, I) for the workload formulation (4.5)-(4.9) yields a cor-

responding feasible policy Y for the limiting control problem (3.24)-(3.30). Furthermore,

the long run average expected costs of the corresponding policies are the same.
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Proof. Let Y be a feasible policy for the limiting control problem, and define Q, Z and I

by

Qji(t) = Xji(t) + pjiYj,(t) -jiljil(t)

for j = 1,..., K,i = 2,...,I(j) and t > 0,
K

Zk(t) = Xk(t) - E LjPjkjl(j)Yj(j)(t)
j= r

for k = 1,...,K and t > 0,

(4.10)

(4.11)

and
J (j)

I(t) = E EYji(t) for t > 0.
j=l i=l

By the definition of the workload formulation, we see

for the workload formulation. Since the processes Q

policies, the costs are also the same.

Conversely, let (Q, Z, I) be a feasible policy for the

Y to be the unique solution to the following system of

(4.12)

that (Q, Z, I) is a feasible policy

and Z are the same for the two

workload formulation, and define

linear equations for each t > 0:

Qji(t) = Xji(t) + ,ujiYj(t) - j,i_lYj,i_l(t) for j = 1,..., K and i = 2,..., I(j), (4.13)

and
K

Zk(t) = Xk(t) - E Ljpjkj,(j)Yj(j)(t) for k = 1,... , K.
j=l

Since the matrix P is invertible, a unique solution Yjl(j),j = 1,..., K, exists to equation

(4.14). For each j = 1,..., K, the solution Yj,l(j) can be substituted into (4.13) and these

l(j) -1 equations can be solved sequentially from i = I(j) to i = 2, where the it h equation

yields the unique solution Yj,i-l. Thus, we have verified equations (3.25)-(3.26), (3.28)

and (3.30). Substituting the right sides of (4.13) and (4.14) into (4.6) gives

J (j)

(t) = E E Yi(t).
j=l i=1

(4.15)

This and (4.8) establish (3.27) and (3.29). The cost is again the same because the derived

solution to the limiting control problem has the same processes Q and Z. I
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The workload formulation is solved in two steps. First, the optimal control processes

Q and Z are derived in terms of the control process I using a convex program, and then

the optimal control process I is found. Define the one-dimensional weighted inventory

process W by

W(t) = B(t) - I(t) for t > 0. (4.16)

By (4.6), process W is a weighted sum of the components of the WIP process Q and the

inventory process Z. For any given cumulative idleness process I, we can find a pathwise

optimal WIP process Q and inventory process Z by solving the following convex program

at every time moment t > 0:

K (j) K

min Z ciQi(t) + E gk(Zk(t))
Q(t),Z(t) j=1 i=2 k=1

subject to
K l(i) K

E MjiQji(t) + E MkZk(t) = W(t)
k=1 i=2 k=1

Qji(t) > 0 for j = 1,...,K and i = 2, ... , l(j).

(4.17)

(4.18)

(4.19)

Let Z +(t) and Z (t) represent the positive and negative parts of Zk(t) for k = 1, .. ., K.

Then the convex program (4.17)-(4.19) is equivalent to the following linear program:

min
Q(t),z+ (t),Z-(t)

subject to

K (j) K K

E E cjiQji(t)+ hAZk (t)+ bkZk (t)
j=l i=2 k=l k=l1

K l(j) K K

E MjiQji(t)+ M ZZ+(t)- E MZ-Z(t) = W(t)
k=l i=2 k=l k=l1

Qji(t) > 0 for j = 1,..., K and i= 2,..., I(j),

Z+(t) > 0 and Zk-(t) > 0 for k = 1,... K.

(4.20)

(4.21)

(4.22)

(4.23)

Notice that the form of the cost function gk in (2.1) guarantees that

Z+(t)Z;k(t) = 0 for k = 1,..., K, (4.24)

as required.
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Analysis of (4.20)-(4.23) yields a closed formed solution to (4.17)-(4.19).

the solution, we define

mji hkh = mi{Mi' M- ' j, k = 1,...,K and i=2,...,l(j)}
bk

b = min{f: k =1,...,K}, and

f( ) | hx if x > 0,

-bx if x<0.

Then the optimal solution (Qi(t),Zk(t)) to (4.17)-(4.19) is

=| if h = and W(

0 otherwise,
Q;i(t)

Z*(t)

W(t)

W(t)

MO

(t) > 0,

if h = * and W(t) > 0,

if b= 7fr and W(t) < 0,

otherwise,

To describe

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

where it is understood that when more than one variable can be nonzero at a given time

t (due to a tie in the index values in (4.25)-(4.26)), only one of them is assigned a nonzero

value and the others are set to zero. Accordingly, the optimal objective function value

in (4.17) is f(W(t)).

Thus, in order to solve the workload formulation of the limiting control problem,

we only need to solve the following one-dimensional singular Brownian control problem:

choose a RCLL process I to

minimize lim supE[J f(W(t))dt] (4.30)
T-oo T o

subject to W(t) = B(t) - I(t) for t > 0 (4.31)

I is nondecreasing in t and nonanticipating with respect to B.(4.32)

This problem is solved in Wein (1990), and the optimal solution is

I*(t) = sup [B(s) - c*]+ for t > 0,
O<s<t

(4.33)
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where
a2 b

~~~~~~c In(l + _). S(4.34)

Thus, in the idealized Brownian limit, the weighted inventory process W* is a reflected, or

regulated, Brownian motion (RBM) on the halfline (-oo, c*], and the cumulative idleness

process I* acts as a reflecting barrier at c*.

Furthermore, by (8.6) in Wein (1990), the objective function value of the workload

formulation under the policy (Q*, Z*, I*) is simply hc*, where h is defined in (4.25).

Hence, by the rescaling in (3.10)-(3.11), V/xhc* is the predicted expected cost under the

optimal policy. This closed form expression allows one to carry out performance analysis

of the production/inventory system. For example, the relative cost reduction achieved

by various process improvements (such as reducing the variability in the demand process

and the processing times, increasing the processing rate, and introducing processes with

different by-production probabilities) can be quickly assessed.

5. Interpreting The Solution

Recall that the Brownian model scales both time and the magnitude of the various

stochastic processes. For example, if the server utilization p equals 0.9 and the system

parameter n is chosen to be 100, and time is measured in units of hours, then by (3.11),

Zk(t) would be the number of tens of class k jobs in inventory at time 100t hours.

Although this scaling is too crude to give rise to an explicit scheduling policy for the

original production/inventory system, we can still use the insights from the solution

(Q*, Z*, I*) to the workload formulation to develop an effective scheduling policy. After

providing a rather literal interpretation of the solution, we will take into account the heavy

traffic scaling and propose a refined solution that attempts to overcome the shortcomings

of the Brownian model.

We begin by providing a recursive formula for calculating the vector M* defined in

(4.1). This formula allows us to easily interpret the components of M*.
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Proposition 2. The components of M* = (Mk*) can be calculated recursively from

k = 1 to K by

M = ml (5.1)

and
k-1

M k _ LpkM for k = 2,...,K. (5.2)
Lkkk 1=1 Pkk

Proof. Recall that the by-production matrix P is lower triangular and possesses positive

diagonal elements. Thus, the first equation in (4.1) is

MlLlpll = M 1 , (5.3)

which is equivalent to (5.1). Suppose (5.2) is true up to k - 1 (it holds for k = 1 where

the empty sum is zero). Then the k-th equation in (4.1) is

k

ELkpkIM = Mk, (5.4)
1=1

which can be rewritten as (5.2). *

Recall that each product type has a designated process that is primarily used to pro-

duce it, but each process can also produce lower quality products and defective products.

Since lower quality products are given smaller indices, it follows that process 1 can only

produce units of product 1 and defective units. Each job (or lot of wafers) completed

according to process 1 requires M 1 time units of total processing on average and yields

on average Llpll units (or chips) of product 1. Thus, Ml/(Lpll) = Ml is the expected

amount of time required for the workstation to produce one unit of product 1, and we

say that Ml is the expected effective resource consumption for producing one unit of

product 1 according to process 1. If M* is the expected effective resouce consumption

for producing one unit of product 1 according to process I for I = 1,..., k - 1, then the

expected effective resource consumption for producing one unit of product k according

to process k can be interpreted as follows. Since process k is designated to produce

product k, Mk/(Lkpkk) is the expected amount of server time utilized to produce one

unit of product k. However, for each unit of product k produced according to process k,
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the workstation on average also produces Pk/Pkk units of product 1, for I = 1,..., k - 1.

Since Ml' is the effective amount of server time used to produce one unit of product I

according to process 1, for I = 1, ... , k - 1, the expected effective resource consumption

for producing one unit of product k according to process k is given by Mk* in (5.2). In

essence, each product is rewarded (by receiving a smaller value of Mk*) for the lower

quality products by-produced by its corresponding process. Although Mk* can actually

be associated with product k or process k, we will often refer to this quantity as product

k's expected effective resource consumption.

Recall that assumption (4.2) requires each product to have a positive expected ef-

fective resource consumption. Thus, the nominal expected amount of resource con-

sumed by a particular process to produce one unit of its corresponding product (which is

Mk/(Lkpkk) for process k = 1, ... , K) must be larger than the expected effective amount of

resource imbedded in the average by-production of this process. The following conditions

are sufficient for assumption (4.2).

Proposition 3. If

L > for < k < l < K (5.5)
Mk Ml

and

Pk < Plj for 1 < j < < k < K and Pkl > O,pl > 0, (5.6)
Pkl pl1

then assumption (4.2) holds.

Proof. By (5.1), it follows that M' > 0. Setting k = 1 and 1 = 2 in (5.5) yields M2 > 0.

Suppose M > 0 for j = 1,..., k - 1, and let I be the largest index less than k for which

Pkl > 0. Then

M* = Mk Pk M _ Pk M
Lkpkk Pkk j=1 Pkk

_Mk _ Ml Pkl M (Pk- pj)
_k MI + ' P-- +-ZPkj), -(5.7)

Lkpkk Lipl, Pkk i=1 Pkk pll

which is positive by (5.5)-(5.6). 
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Condition (5.5) implies that for each k = 1, ..., K, process k produces product k at

a faster average rate than the other K - 1 processes. One would expect this restriction

to hold since process k is designated to produce product k. To interpret condition (5.6),

notice that Pkj/Pkl (Pj/Ptt, respectively) is the expected number of product j units

produced divided by the expected number of product units produced when employing

process k (process 1, respectively). Since product j is of lower quality than product 1,

which in turn is of lower quality than product k, condition (5.6) says that a higher quality

process produces relatively less lower quality products.

The state of the system in the workload formulation is the weighted inventory process

W, which, by equations (4.6) and (4.16), is the sum of a linear combination of the WIP

and finished goods inventory. The weight for class (j, i) WIP is Mj;, the total expected

service time already received by a class (j, i) job, and the weight for type k product's

finished goods inventory is Mk*, the expected effective resource consumption for producing

one unit of product k. Thus, W(t) represents the machine time that is invested in the

current WIP and finished goods inventory. Notice that backordered units can lead to a

negative value of the weighted inventory process.

As discussed in Section 1, the scheduling decisions in the production/inventory system

are to dynamically decide (1) whether to have the workstation idle or working, and (2) if

the workstation is to be working, which job class should be served. The idle/busy policy

is represented by the scaled cumulative idleness process I in the workload formulation,

and the solution in (4.33) implies that I* increases only when the weighted inventory

process W reaches c*. Let w(t) be the actual (unscaled) weighted inventory process for

the original production/inventory system. By (4.34) and the rescaling in (3.10)-(3.11),

the workstation will be idle only when w(t) > vAc*, or when

a2
w(t) > 2(1 -) ln(1 + (5.8)

and will be kept busy otherwise. However, another feature of the solution affects the

idle/work policy. The solution Z* in (4.29) dictates that no products should be backo-

23

�_



rdered when W(t) is nonnegative. Taking this and the fact that c* > 0 into consideration,

the proposed idle/busy policy permits the workstation to be idle when w(t) > /ic* and

no products are backordered, and keeps the workstation busy otherwise.

The priority sequencing decisions can be interpreted in terms of the WIP process Q*

in (4.28) and the finished goods inventory process Z* in (4.29). This solution implies that

at most one component of the total inventory (WIP and finished goods) process is non-

zero at any point in time in the limiting Brownian model. In particular, if the weighted

inventory W(t) is negative, then no WIP or finished goods inventory is held, and backo-

rders are all of the product type possessing the minimum ratio of bk/Mk*. This product

type is relatively inexpensive to backorder and consumes a relatively large amount of

effective machine time per unit produced. Thus, if W(t) is negative, the backorders of

this product type must receive lowest priority among the set of backordered products;

that is, this product's backorders should only be satisfied if this product type is the only

product that is backordered at time t. Under heavy traffic conditions, it does not matter

which of the other backordered products are satisfied; the scaled number of backorders

of the other product types under such a priority scheme will be negligible in comparison

to the scaled number of backorders of the product type possessing the minimum ratio

of bk/M*. This phenomenon of the normalized inventory (or queue length) processes of

high priority customers vanishing in the heavy traffic limit has been observed in previous

work; see, for example, Whitt (1971). Although some ambiguity remains in specifying

the product type whose backordered demand should be satisfied, the ratio bk/Mk* offers

a natural ranking of the products when they are backordered. In particular, if any prod-

ucts are backordered, we should first attempt to satisfy the backordered demand for the

product possessing the largest ratio of bk/Mk. This product type is relatively expensive

to backorder and consumes a relatively small amount of effective machine time per unit

produced.

Thus far, we have only identified the product whose backordered demand we would

like to satisfy, whereas the scheduling decision must specify the job class to be served.
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Choosing a job class to serve in order to satisfy backorders for a particular product, say

product j, is a straightforward task for a system that does not have both job reentry

(that is, processes with multiple stages) and by-production. In a system with no by-

production (that is, the by-production matrix is diagonal and only defective products

can be by-produced), priority should be awarded to the latest stage of process j that has

a positive WIP inventory level. If no WIP exists for process j, then a new job should be

started according to process j. In a system where each process contains only one stage,

then the number of job classes equals the number of products, and no WIP inventory

is held. In this case, (5.5) implies that each product is most rapidly produced by its

designated process, and so a new job of process j should be started.

Although a system with by-production and job reentry does not seem to possess an

unambiguous sequencing policy for satisfying the backorders of a particular product,

intuitively we would like to work on the job class that turns out this type of product

in the largest quantity and in the shortest expected time. If the goal is to satisfy the

backorders for product j, our proposed policy assigns the index Ljpjk/(Mj - Mji) to

class (j, i), where the denominator equals the expected remaining processing time for

class (j, i) jobs, and, among the classes that have i = 1 or have positive WIP inventory,

serves the job class with the largest index.

If the weighted inventory W(t) is positive in the Brownian model, then the solution

(4.28)-(4.29) dictates that no items are backordered, and positive inventory is held in only

one location, either as finished goods inventory of one product type or as WIP inventory

of one job class. More specifically, we assign the index hk/Mk* to the finished goods

inventory of product type k, and the index cjilMji to the WIP inventory of class (j, i).

Although the WIP and finished goods inventories are measured in different units, these

indices measure the holding cost per unit of expected machine time already invested.

The inventory should be held in the location that has the minimum index; that is, in the

place that achieves the smallest holding cost per unit of expected machine time already

invested.
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Thus, when no items are backordered and W(t) is less than Vi/c*, the scheduler

should build up inventory in the minimum index location. If this location is class (j, i) of

WIP inventory, then priority should be given to any existing WIP inventory of process

j, beginning with stage i - 1 and ending with stage 1. If no WIP inventory currently

exists for these job classes, then a new job should be started according to process j.

If the minimum index location is product type k of finished goods inventory, then the

scheduler should clear the existing WIP inventory of process k, awarding higher priority

to later stages. If no process k WIP exists, then the scheduler should begin a new job

according to process k.

Notice that the scheduling policy described above insures that the WIP inventory of

each job class (except possibly for the class that achieves the minimum value of cjilMji)

in the actual production/inventory system is either zero or one at each point in time.

When W(t) is positive and no items are backordered, it is not obvious whether the

scheduler should clear the existing WIP inventory of all classes before building inventory

in the minimum index location, or, as suggested, to immediately build up inventory in

the minimum index location, and hold the existing WIP inventory until it is required to

satisfy backordered products. Both options were tested in the simulation experiments of

the next section (although the numerical results are not reported here), and we found

that the policy that holds the existing WIP inventory (as originally suggested) slightly

outperformed (no more than 2% reduction in average cost) the policy that clears the

existing WIP inventory. Since the amount of WIP inventory that can be held is quite

limited, the small relative cost difference between the two options is not surprising.

The interpretation of the solution to the workload formulation has thus far considered

a product to be backordered only when its inventory level is negative, and as a result, the

policy does not anticipate product backorders. As noted earlier, this lack of anticipation

is due to the rescaling that occurs in the Brownian approximation in both time and the

inventory levels. If p = 0.9 and n = 100, the solution Zk(t) = 0 in (4.29) only implies

that the number of tens of product k units in finished goods inventory is zero. Although
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a small, positive number of unscaled product k units in inventory is consistent with this

solution, the Brownian model is unable to distinguish at this finer level of detail. The

policy may be more effective if it anticipates potential backorders in order to prevent

actual backorders. To this end, we say that product k is in danger of being backordered

at time t if the unscaled inventory Zk(t) < k, and we alter the proposed policy by

replacing the event product k is backordered with the event product k is in danger of

being backordered. The value of the parameter ek is at the scheduler's discretion, and

can be obtained via simulation (as we do in our simulation examples) or by experience.

Roughly speaking, k should be the minimum inventory level that prevents too many

backordered products. In the simulation experiments performed in the next section and

in Wein (1990), we found that the most effective choice of Ek was somewhere between

zero and 2Lk.

To summarize, our proposed scheduling policy is a parametric policy, where the pa-

rameters Ek, k = 1,... , K, are chosen by the scheduler to define when a product is in

danger of being backordered. The workstation is idle only when the weighted inven-

tory w(t) > v/j-c* and no products are in danger of being backordered; otherwise, the

workstation is busy. When the workstation is working, an indexing scheme is used to

prioritize job classes. If any products are currently in danger of being backordered, the

index of job class (j, i), j = 1,... , K, i = 1,..., (j), is equal to Ljpjk/(Mj - Mj), where

k = max{bj/M]: type j product is currently in danger of being backordered}, and the

larger the index, the higher the priority. The scheduler then serves the highest priority

job class that has i = 1 (since raw materials are always available) or positive WIP inven-

tory. When the workstation is busy and no products are in danger of being backordered,

the index cji/Mji is calculated for each job class (j, i), and the index hk/MZ is calculated

for each product type k. If job class (j, i) achieves the smallest value of all these indices,

then the scheduler awards priority in the order (j, i-i1), (j, i -2), ... , (j, 2) to the first class

that has WIP inventory, and serves a class (j, 1) job if none of these classes have WIP

inventory. Similarly, if the minimum index is achieved by product k, then the scheduler

serves the latest stage of process k for which WIP is available, and serves class (k, 1) if
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process k has no current WIP inventory.

Finally, we note that the policy described above reduces to the proposed policy in

Wein (1990) when there is no by-production or job reentry, yield is perfect, and lot sizes

are one. We also refer to that paper for a discussion of the similarities and differences of

the proposed policy to the classic c rule used to minimize waiting costs in single server

queues, to the heavy traffic limit of traditional single server queues, and to results from

traditional multi-product inventory theory.

6. Examples

In this section, a simulation experiment is performed with two numerical examples,

each composed of three product types and three production processes. In the first exam-

ple, we consider a production/inventory system with by-production and random yield,

but with no job reentry. The second example has perfect yield and no by-products,

but processes can have multiple stages of service. Two different cases, corresponding to

different holding and backordering costs, are tested for each example.

Since the problem considered in this paper has not been previously addressed in the

literature, there are no obvious benchmark policies to test for purposes of comparison.

However, in addition to the proposed policy, which is denoted by BROWNIAN in Tables

I and II below, we tested two state-dependent heuristic policies that are representative

of procedures that might reasonably be used in practice. Both heuristic policies keep the

workstation busy when the total (unweighted) finished goods inventory is below a critical

level or when products are backordered. The most effective value for this critical level

is obtained by employing a one-dimensional search with simulation. The first heuristic

policy, denoted by MINIMUM, identifies the product type with the lowest current finished

goods inventory level, and gives priority to the latest stage of the corresponding process

type that possesses a positive level of WIP. If there is no WIP of this process type,

then the scheduler initiates production of a new job according to this process type. The

second heuristic policy is denoted by c/RUN-OUT because it employs a variation of the
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c/s rule to satisfy backordered products, and uses the shortest run-out time philosophy

when no products are backordered. In particular, among the subset of products that

are currently backordered, the policy considers the type with the maximum index of

bk/(Mk/pkk), and then gives priority to the latest stage of the corresponding process

type that has a positive WIP inventory, or starts a new job according to this process if

there is no existing WIP of this process. If there are no backordered products, then the

policy determines the product type that has the minimum value of Zk(t)/Ak, where Ak

is the average demand rate for product k; this quantity represents the expected run-out

time of the present finished goods inventory of product k if production for this product

is halted. The scheduler serves the latest stage of the corresponding process that has

WIP inventory, and starts a new job of this process if the process has no current WIP

inventory.

For each policy tested in each cost structure of example 1 (respectively, example 2),

200 (respectively, 100) independent runs were carried out. Each run consisted of 11,000

time units, of which the first 1,000 time units were discarded to reduce the initialization

bias. The average cost of the remaining 10,000 time units was observed for each run, and

the mean and 95% confidence interval of the average costs for these runs are displayed

in Tables I and II for the two respective examples.

6.1 A By-Production System With Random Yield and No Reentry

The first system is depicted in Figure 1, where product 1 is the lowest quality product

and product 3 is the highest quality product. The by-production probabilities Pkj are

shown in the figure, and each job contains a total of Lk =10 units that can potentially

be placed in the finished goods inventory. The service times for the three processes are

exponential with means M = (1,2,3). By (5.1)-(5.2), the expected effective resource

consumption vector is M* = (0.3,0.2,0.35). The customer demand for each product is

an independent Poisson process, and the demand rates are A = (1.85,.85,.50). By (3.1),

over the long run the workstation must complete jobs at the rates = (.30,.15,.10)

according to the three processes, and thus pl = P2 = p3 = 0.3 and the traffic intensity
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Figure 1. A By-Production System With Random Yield and No Reentry.

p = 0.9. Since this system has no job reentry, WIP does not need to be carried and the

objective is to minimize the cost of backordering and holding finished goods inventory.

We consider two cost structures: the backorder and finished goods holding cost are given

by b = (2, 2, 2) and h = (1,1, 1) for case 1, and b = (6, 5,11) and h = (3, 2, 3.3) for case 2.

Thus, product 2 (respectively, class 3) achieves the maximum value of the index bk/M

for case 1 (respectively, case 2), and product 3 achieves the minimum value of the index

hk/Mk* in both cases.

Recall that the MINIMUM and ct/RUN-OUT scheduling policies keep the server

busy whenever the total finished goods inventory EK1 Zk(t) is less than some value,

which we denote by c. The value of c, which can be found in Table I, was determined

by making two independent runs of 11,000 time units (discarding the first 1000 time

units) at various values and searching for the integer value of c that resulted in the

lowest average cost. Under the BROWNIAN policy, the server is kept idle whenever the

weighted inventory process w(t) > v/c* and Zk(t) > k for k = 1,2,3. The quantity

vnc* in (5.8) equals 11.8 and 12.2 for the two cases. The search procedure described
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above was also used to determine the values of = (el, 62, 63), and the resulting values

were e = (12, 5, 0) for case 1 and e = (20, 5, 0) for case 2. Thus, the maximum value of Ek,

which is in units of finished goods inventory, is equivalent to two units of WIP inventory.

In order to test the accuracy of the derived value x/inc* in the BROWNIAN policy,

the same search procedure (except the interval between tested values was 0.5 instead of

1.0) was used to find the best value of c such that w(t) > c. The resulting values of c

were 13 for case 1 and 13.5 for case 2, which are slightly larger than the corresponding

values of Vnc*. We performed 200 simulation runs of the BROWNIAN policy with these

critical values of c substituted for \/ c* (the values of e used with Vn/c* were also the

most cost effective here), and the resulting costs were 42.5(±1.06) and 132(±4.29) for

the two cases, which are larger than the corresponding costs under the derived values.

Hence the derived values are quite accurate at determining the most cost effective cut-off

point for the busy/idle decision.

Table I. Simulation Results for Example 1.

CASE POLICY COST

1 BROWNIAN 41.8(±1.16)

1 MINIMUM (c = 45) 45.1(±1.37)

1 c#/RUN-OUT (c = 55) 47.6(±0.94)

2 BROWNIAN 129(±3.27)

2 MINIMUM (c = 45) 142(+5.14)

2 c#/RUN-OUT (c = 60) 142(±4.08)

Referring to Table I, we see that the BROWNIAN policy outperforms the MINIMUM

and cp/RUN-OUT policies in both cases, with cost reductions ranging between 7.3% and

12.2%. Although the 95% confidence intervals of these costs are too large to confidently
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quote percentage cost reductions, the confidence intervals of the cost differences between

policies are small enough to make these percentage cost reductions meaningful.

The expected cost under the BROWNIAN policy predicted by this analysis is G/ c*h,

which equals 33.7 in case 1 and 115.0 in case 2. Thus, the Brownian model significantly

underestimates (by 19.4% and 10.9%, respectively) the true cost. It appears that the

heavy traffic analysis is quite accurate at predicting performance at the aggregate level

characterized by the weighted inventory process, but is not as accurate at the more

refined level of predicting the individual inventory levels Qji and Zk that are consistent

with this weighted inventory process via (4.18). In particular, the idealized solution in

(4.27)-(4.28), where backordering and holding costs are only incurred by one product

type, cannot be realized by the actual production/inventory system.

6.2 A Reentry System With Perfect Yield

The second system is illustrated in Figure 2, where process 2 jobs reenter the work-

station once and process 3 jobs reenter the workstation twice. The service times for

Finished Goods
WORKSTATION Inventory Demand

Process 1

Process 2

Process 3

Product 3

~' 1 =3' 0 D1 (t)

Product 2
D2 (t)

Product 1

All< 31.0 D3 (t)

Figure 2. A Reentry System With Perfect Yield.
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each of the six job classes are exponentially distributed with mean one, and each job again

contains ten potential units for the finished goods inventory. Therefore, the expected

effective resource consumption vector is M* = (0.1,0.2,0.3). The customer demand

processes are Poisson with rates A = (3.0,1.5, 1.0), and hence Pll = 1/3, P21 = P22 = 1/6,

P31 = P32 = P33 = 1/9, and the traffic intensity p = 0.9. We again considered two

cost structures; for both cases, the WIP holding cost is ten for all job classes, and the

backorder and finished goods holding costs are b = (2,2,2) and h = (1,1,1) for case

1, and b = (3,8,6) and h = (2, 1,4) for case 2. Since each job contains ten units of

potential products, in both cases the WIP holding cost for every job class is no greater

than the finished goods inventory holding cost for the corresponding product type. This

cost structure forces the BROWNIAN policy to build up the finished goods inventory of

a particular product type (rather than the WIP inventory of a particular job class) when

the workstation is working and no products are in danger of being backordered.

Table II. Simulation Results for Example 2.

CASE POLICY COST

1 BROWNIAN 31.2(±0.89)

1 cu/RUN-OUT (c = 33) 34.2(±0.81)

1 MINIMUM (c = 30) 35.1(±1.21)

2 BROWNIAN 71.6(±1.84)

2 cy/RUN-OUT (c = 35) 88.5(:2.54)

2 MINIMUM (c = 33) 89.8(+3.43)

The parameters for the BROWNIAN policy are e = (6, 6, 0) for case 1 and e = (3, 0, 3)

for case 2. The derived values for / c* are 7.1 and 10.4 for the two respective cases. The

best values of this critical quantity found by the search procedure were 5.5 and 8.0, which

had corresponding costs of 31.8(±.90) and 76.5(±2.24). These costs are higher than the

corresponding costs in Table II, and thus the derived values are again very reliable.
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On the other hand, the predicted expected cost under the BROWNIAN policy is 23.7

and 52.0 for the two cases, which corresponds to underestimates of 25.2% and 27.6%,

respectively. Table II shows that the BROWNIAN policy outperforms the other two

policies, with cost reductions ranging between 8.8% and 20.3%. Also, neither benchmark

policy appears to dominate the other in the simulation experiments.

Acknowledgements

This research is partially supported by a grant from the Leaders for Manufacturing

Program at MIT, an IBM/University Manufacturing Systems Research Grant, a grant

from Texas Instruments, and National Science Foundation Grant Award No. DDM-

9057297.

References

Atherton, R. W., and J. E. Dayhoff, (1985). Introduction to Fab Graph Structures. ECS

Abstracts.

Billingsley, P., (1968). Convergence of Probability Measures, John Wiley and Sons, New

York.

Bitran, G .R. and S. Dasu, (1989). Ordering Policies in an Environment of Stochastic

Yields and Substitutable Demands, MIT Sloan School Working Paper # 3019-89-MS.

Bitran, G. R. and T. Leong, (1989). Deterministic Approximations to co-production

Problems with Service Constraints, MIT Sloan School Working Paper # 3071-89-MS.

Courcoubetis, C., P. Konstantopoulos, J. Walrand, and R. R. Weber, (1989). Stabilizing

an Uncertain Production System, Queueing System 5, 37-54.

Deuermeyer, B. L. and W. Pierskalla, (1978). A By-Production Production System with

an Alternative, Management Science 24, 1373-1383.

34



Glassey, R. C. and M. G. C. Resende, (1988). Closed-Loop Release Control for VLSI

Circuit Manufacturing, IEEE Trans. on Semiconductor Manufacturing 1, 36-46.

Harrison, J. M., (1988). Brownian Models of Queueing Networks with Heterogeneous

Customer Populations, in Fleming and Lions (eds.), Stochastic Differential Systems,

Stochastic Control Theory and Applications, IMA Volume 10, Springer-Verlag, New York,

147-186.

Harrison, J. M., C. A. Holloway, and J. M. Patell, (1990). Measuring Delivery Perfor-

mance: A Case Study from the Semiconductor Industry, Chapter 11 in Measures for

Manufacturing Excellence, Robert S. Kaplan, Ed., Harvard Business School Press.

Kelly, F. P., (1979). Reversibility and Stochastic Networks, John Wiley and Sons, New

York.

Klimov, G. P., (1974). Time Sharing Service Systems I, Th. Prob. Appl. 19, 532-551.

Wein, L. M., (1988). Scheduling Semiconductor Wafer Fabrication, IEEE Trans. on

Semiconductor Manufacturing 1, 115-130.

Wein, L. M., (1990). Dynamic Scheduling of a Multiclass Make-To-Stock Queue, MIT

Sloan School Working Paper # 3113-90-MS.

Whitt, W., (1971). Weak Convergence Theorems for Priority Queues: Preemptive-

Resume Discipline. J. Appl. Prob. 8, 74-94.

35


