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1. Introduction

Most of the facility location models, especially private sector ones typically have

the objective of maximizing the profit. When a model assumes given fixed de-

mands to be satisfied, this objective can be presented as that of minimizing the

total cost. In business decision-making environments, however, this decision

criterion is not necessarily the best one. In fact, most of financial decisions are

based not so much on the absolute value of the profit as on the efficiency of

investment. For example, when we select the most desirable investment among

several possible alternatives, the main concern is the value of each investment.

Therefore, when we consider a business opportunity which involves facility lo-

cation, we might need to figure out the efficiency of investment for doing that
project.

The efficiency of investment is frequently measured by the ratio of the total

revenue to the total cost, which is referred to as return on investment(ROI). If

we stick to the assumption that demands are given fixed and must be satisfied,

an ROI maximizing model is the same as a profit maximizing model. However,

for a more realistic general setting in which demands are influenced by a deci-

sion maker's pricing policy as in Erlenkotter[1] and Hansen and Thisse[3], the

optimal decisions for the two criteria do not coincide.

In this paper, we consider how the optimal decision can be made if the cri-

terion of maximizing ROI is used in place of that of maximizing the profit for

the above-mentioned general setting of a simple plant location problem(SPLP).

We also require that the optimal decision guarantee the minimum required net

profit. This is because if we simply maximize ROI, the optimal decision some-

times yields extraordinarily small profit under the circumstances of diminishing

marginal return.

The ROI model for the SPLP has a fractional objective function, and thus

it is more difficult to solve the model than a profit maximizing version. The for-

mer one usually requires solving iteratively the latter ones. Here we show that
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if we use the inherent structure of the proposed ROI model, we can obtain sig-

nificant computational reduction when successively solving a profit maximizing

model. In Section 2, we formulate an ROI model for a general pricing-location

version of the SPLP. The structural properties of the model and their algorith-

mic implications are discussed in Section 3. Section 4 provides an illustrative

example for demonstrating the procedure developed in Section 3. Finally, some

concluding remarks are given in the last section.

2. Model Formulation

To formulate the proposed model, we use the following notation: I = {1, .. , m}

is the set of potential sites for facilities; J = {1,... , n} is the set of customers;

sij is the amount supplied to customer j from facility i; Sj is the total amount

supplied to customer j, i.e., EieI sij = Sj; Rj(Sj) is the total revenue accrued to

customer j from the supplied amount Sj; t7r(> 0) is the minimum required profit

level; y = 1 if facility i is established and 0 otherwise; tij is the nonnegative

variable production and transportation cost per unit of customer j's demand

supplied from facility i; fi is the positive fixed cost for establishing facility i;

and M is the sufficiently large number. We assume that the revenue functions

Rj(.) are concave, differentiable, and bounded above with Rj(O) = 0. Those

revenue functions are closely related with the demand functions and a pricing

policy. For more details, refer to [1,3,4].

The ROI model of the SPLP we consider can be formulated as the following

fractional nonlinear mixed 0-1 integer programming problem:
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ZR = min TCTR

s.t. TR- TC > 7ro

zSij = Sji,
iEI

Esij < Myi,
jEJ

sij > 1,

y = 0 or 1,

jEJ

i E I, EJ

iE I,I E J

TC = E Etijsij + Efiy
iEI jEJ iEI

TR = R j(Sj).
jEJ

Consider the following problem:

(P(A)) z(A) = min TC - ATR

s.t. (2), (3), (4), (5), and (6).

As is usual in the fractional programming problem, z(A) is nonincreasing for

A > 0 and the following relation exists between the two problems.

Lemma 1 z(A*) = O if and only if A* = ZR.

Since we assume ro to be positive, such A* always exists between 0 and 1 as

far as the problem has a feasible solution. From now on, we assume that there

exists a feasible solution for the problem. Even if not, the forthcoming proposed

solution procedure could check the problem feasibility at an early stage of its

solution process without any extra efforts.

3

(1)

(2)

(3)

(4)

(5)

(6)

where



3. Solution Method

In this section, we develop a procedure to derive A* with z(A*) = 0. We first

present the outline of our solution method, and show some structural prop-

erties of (P(A)) and its relaxation, and the algorithmic implications of those

properties.

3.1. Outline of the solution method

The main steps of our procedure follow a usual scheme adopted in fractional

programming. The outline of our solution procedure is as follows:

Initialization. Set t = 0 and A° = 1.

Iterative Step. Solve (P(At)). Set yt as the optimal y-vector of (P(A t)).

Termination. If z(At) = 0, stop. Otherwise, increase t by 1, calculate At at

which the value of z(At) with y-vector fixed at yt-l becomes zero, and go

to the next iterative step.

Note that z(A) is nonincreasing and A* exists between 0 and 1. If the problem

is feasible, z(A °) < -ro. As already mentioned, even if the original problem

is infeasible, we could check it at the very first iterative step of our solution

process. The process of calculating the succeeding At is simple and easy, which

will be clarified later on.
Our basic strategy for solving (P(At)) is to use a Lagrangean relaxation of

(P(A)) which dualizes constraint (2). Let u be the corresponding Lagrangean

multiplier, then the relaxed problem for the given u is as follows:

(LRA(u)) z R(u)=min ur + (u + 1){TC- TR}

s.t. (3), (4), (5), and (6).
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And to obtain a good lower bound, we need to solve the following Lagrangean

dual problem:

(LDx) ZD(A) = max zLR(u).
u>O

(P(A)) is quite similar to Erlenkotter's quasi-public model[l]. He also used

a Lagrangean relaxation by dualizing constraint (2) for his problem. We can

simply take his method for solving (P(A)). However, although his algorithm

works well, it still requires fairly large computation since (P(A)) itself is a very

difficult problem. In fact, in order to solve it, we must solve a number of SPLP's

to obtain an optimal Lagrangean multiplier, and sometimes carry out even a

branch and bound process when a duality gap exists. Moreover, we need to

solve (P(A)) for a succession of A values. Thus a cleverer scheme is strongly

desired to make the problem more amenable.

3.2. Structural analysis

Here we probe for the special structure of the problem to exploit when solving

(P(A)) for a succession of A values. Consider the following problem which plays

the role of a basic module in our solution procedure.

(Pl(k)) Zl(k) = min TC- kTR (7)

s.t. (3), (4), (5), and (6).

This problem is the same as (P(A)) without constraint (2). Moreover, to solve

(LRA(u)) is just to solve (Pi(k)) with k = .+ 

As is shown in [1], (P 1(k)) can be easily transformed to the following equiv-

alent SPLP:
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min E E [tijD;k - kRj(Dk )] qj + fifyi
iEI jEJ iEI

s.t. Eqij < 1,
iEI

qij < Yi,

qij > O0

Yi = 0 or 1,

where parameters D/k are determined as follows:

Dik = 0,
dRj(Dk)/dSj = tj/k,

if dRj(O)/dSj < tij/k,
otherwise.

For more details about the transformation procedure, refer to [1]. The advan-

tage of this transformation is in that we can solve it easily using an existing

code for the SPLP such as Erlenkotter's DUALOC [2].
Now we shall derive the two main theorems on which our solution method is

based. For that we first need the following lemma. Let x denote a vector which

consists of two kinds of elements, sij and yi, and also let SL(x) = r + TC - TR.

Then the following holds.

Lemma 2 For any kl and k 2 such that 0 < k1 < l < k2 < 1, let x1 and x 2 be

optimal solutions of Pl(kl) and Pl(k2), respectively. Then SL(xl) > SL(x 2).

Proof. Suppose that SL(xi) < SL(x 2). From the optimality assumption of xl

and x 2,

k 1 {TR(x 2) - TR(Xl)}

k 2 {TR(x 2) - TR(xl)}

< TC(x2 ) - TC(xi),

> TC(x 2) - TC(xl).

And from the assumption that SL(X1 ) < SL(x 2),

TR(x 2 ) - TR(xl) < TC(x 2 )- TC(xl).
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First, if TR(x 2)- TR(xi) > 0, then k2 > 1 from (9) and (10), and this fact

contradicts the assumption of the lemma. Second, if TR(x2)- TR(xi) = 0,

then (8), (9), and (10) are not consistent. Finally, if TR(x 2)- TR(xi) < 0,

then k 2 < k1 from (8) and (9), which also contradicts the assumption of the

lemma. El

Likewise we have the following corollary.

Corollary 1 For any Al and A2 such that 0 < A1 < A2 < 1, let xl and x 2 be

optimal solutions of P(A1) and P(A2), respectively. Then SL(xi) > SL(x 2).

Proof. Note that the feasible region of (Pl(k)) has not been referred to when

proving Lemma 2. So the proof of Lemma 2 is still effective for this corollary.
EO

We are now in a position to state the following two important facts.

Theorem 1 If an optimal solution of (P(A)) for some 0 < A < 1 satisfies (2)

as an equality, then it is also optimal for all (P(A)) with 0 < A < A.

Proof. Let i be an optimal solution of P(A) satisfying (2) as an equality, i.e.,

SL(x) = 0. Suppose is not optimal for P(A) with 0 < A < A. Then there

exists x satisfying

A(TR() - TR(x)) < TC(i) - TC(i). (11)

And also from Corollary 1, SL(i) = 0. From the fact that SL(i) = SL(x) = 0,

TR(i) - TR(x) = TC() - TC(Q). In addition, from (11) and the fact that

A < 1, TR() - TR(x) > 0. Therefore, since 0 < A < < 1,

A(TR(i) - TR(x)) < TC(i) - TC().
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This contradicts the assumption that x is optimal for A. [D

Corollary 2 If there exists an optimal solution for (Pl(k')) satisfying SL = 0

for some 0 < k' < 1, then it is also optimal for (P(A)) with 0 < A < k'.

From Lemma 2, we also obtain the following relation between A and the

corresponding optimal Lagrangean multiplier of (LDA), denoted by u*(A).

Theorem 2 Suppose (Pl(k)) doesn't have an optimal solution with SL = 0

for 0 k < 1. Let k* be defined such that (PI(k*)) has at least two optimal

solutions, one with SL > 0 and the other with SL < O. Then such k* uniquely
exists between 0 and 1. Moreover, the following holds:

0, if k* < A <1 ,

u*(XA) = -<*-X
if 0 A< k*.

Proof. Let X(k) be the set of all the optimal vectors of (Pl(k)). And also

let SL = min SL(x) and SLu = max SL(x). Since X(O) contains only the
xEX(k) xeX(k)

null vector, SL' > 0. And from the feasibility assumption of (P(A)), SLu < 0.

Therefore, if k* exists, then 0 < k* < 1 and k* is unique by Lemma 2. Suppose

that k* doesn't exist. Then there must exist 0 < k' < 1 such that SLu, < 0 and

SL ,_- > 0 for any e > 0. This contradicts the fact that zl(k) is continuous.

The proof of the former statement is thus completed.

For the remaining statement, first note that every optimal solution of (LR(u))

is also optimal for (Pl(k)) with k = ,+ and that each of the corresponding

SL's provides a subgradient of zAR(u) at that value of u. Since zAR(u) contains a

zero subgradient at u = u*(A), it trivially holds from the theory of Lagrangean

duality that u*(A) becomes an optimal Lagrangean multiplier of (LDA) for each
A. [o

Theorem 2 renders the following
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Corollary 3 If (P 1 (k)) doesn't have an optimal solution with SL = 0 for 0 <

k < 1, then a duality gap exists between z(A) and ZD(A) for all 0 A < k*

where k* is defined as in Theorem 2.

Proof. For any 0 < A < k*, u*(A) > 0 from Theorem 2 and SL(x) > 0 for any

optimal solution of (LRx(u*(A))) from Lemma 2. 0

3.3. Modular description of the algorithm

Here we show how the properties presented in Section 3.2 can be used to con-

struct an algorithm. Suppose that we are to solve (P(At)) at iteration t of

the solution process outlined in Section 3.1. Recall that At is set at the value

making the objective value zero for given yt-. This corresponds to a feasible

solution of (P(At)) having the objective value of zero, so z(At) < 0. By Theo-

rem 1, if an optimal solution of (P(At-l)) satisfied (2) as an equality, we also

obtain an optimal solution of the problem. Otherwise, we must solve (P(At)).

k* _ t-
From Theorem 2, u*(A t- l) must be equal to either 0 or 1 k*. In the latter

case, we can calculate u*(At) without any extra efforts, due to Theorem 2 as

well as the fact that k* doesn't depend on A. In the former case, we first check

whether u*(At) = 0. This is done by solving (LRt(0)) i.e., (P 1(k)) with k = At .

Note that if (LR;t(O)) provides an optimal solution with SL < 0, u*(t) = 0.

Otherwise, we calculate k*.

Now consider how to derive k*. Let I+(k) denote the index set of open

facilities at the optimal solution of (P 1 (k)), and HI(I+,k) be the optimal ob-

jective value of (7) for given I + and k. Suppose that we try to calculate

k* at the tth step and let x1 and x2 be optimal solutions of (P 1(At-l)) and

(P1(At)), respectively. Then by the nature of our procedure, SL(xl) < 0 and

SL(x 2) > 0. We initially set km in as At and km ax as A t - l. Then we find k' such

that H(I+(kmin),k') = H(I+(kmaT),k'), and solve (P 1(k')). If I+(kmin ) and
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I+(kmax) are also optimal for k', then k* = k'. Otherwise, update k m i " or kmax

depending on the SL value for the obtained optimal solution of (P 1(k')), and

continue the above process. Of course, if (Pl(k')) provides an optimal solution

with SL = 0, we can immediately terminate the whole procedure by Corollary

2. Moreover, we update an upper bound of z(At), if possible. Among a number

of upper-bounding strategies varying in updating frequency, ours is to update
the upper bound whenever k* is calculated. This is simply done by calculating

z(At) with y-vector fixed such that yi = 1 for i E I+(k*) and 0 otherwise.

So far we have considered solving (P(A)) for a number of successive A values.

All the developments hitherto made can still be applied for solving partially re-

stricted (P(A))'s where some of y variables are fixed at 0 or 1. This saves a

significant amount of computation when performing a number of branch and

bound (BB) processes, one for solving each single (P(At)). In fact by Corollary

3, once a BB process is conducted to solve (P(Xt)) at some At, a BB process

is required thereafter for each subsequent (P(Xt)). For this, we keep the in-

formation regarding the BB tree, especially those BB nodes at which k* has
been calculated. Note that each BB node is associated with the corresponding

BB subproblem, i.e., the corresponding partial restriction of (P(A)). So when

solving a BB subproblem during a BB process for some (P(A)), we first check

whether k* has been obtained for the corresponding partial restriction of (P(A))

(BB node) in the preceding BB process. If found, solving the present BB sub-

problem, and thus updating the lower bound, can be done without any extra

effort.
Now we explain why it is relatively easy to calculate zl(k) and z(A) for

varying values of k and A when the values of yi variables are fixed. First

consider the case of calculating z(k). For given y-vector, the optimal values

of xij's in a transformed SPLP are simply constructed as follows: for each j,

if the minimum objective coefficient of x among i I+ = {i E Ily = 1} is

nonnegative, every xij for i I is zero. Otherwise, only the xij corresponding to
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the minimum coefficient is equal to one, and all other xij's are zero. Note that

for different values of k, the ordering of xij according to the object coefficients

never changes and is the same as that according to tij. Therefore, for given

y-vector, we can easily calculate zl(k) for varying values of k. Even in the case

of calculating z(A), the whole process is the same except considering one more
inequality. Moreover Corollary 1 and Theorem 1 are still valid for this restricted
problem.

4. An illustrative example

In this section, we provide an example to demonstrate the solution procedure
developed in Section 3. We assume a quadratic revenue function denoted by

ajSj - bjS 2 . Data for an example problem are given in Table 1. The required

profit level, 7r,, is 5000.

Table 1 here

(i) First we solve (P(A)) at A = 1. Let u = 0 for (LDA) and solve (Pl(1)).

The resulting optimal solution has I+ = {1,2,4} and negative SL, and thus

it is also optimal for (P(1)). We then calculate A which gives a zero objective

value of z(A) for given I + . The calculated value is 0.4179.

(ii) We obtain an optimal solution of (P 1 (0.4179)) which provides I+ = {4}

and positive SL. So we calculate k* by initially setting k mi = 0.4179 and
km = 1. The obtained k* is 0.4409 and we obtain a new upper bound with
I+ = {2,4} whose objective value is -462. Then we calculate u*(0.4179) and

the resulting ZD(A), which are 0.0412 and -512, respectively. Since there exists
a duality gap at this step, we must initiate a branch and bound process. The
summarizing result for a branch and bound process is shown in Figure 1. Since
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an optimal solution doesn't satisfy (2) as an equality, we calculate new A from

an optimal open facility set, I+ = {2, 4}. The new A is 0.3692.

Figure 1 here

(iii) From Corollary 3, we know that there also exists a duality gap for

A = 0.3692. So we directly carry out a branch and bound process using the
branch and bound tree produced in the previous step. For the subproblem
where Y2 is fixed closed, we can simply calculate a lower bound using previously
obtained k* = 0.54007. Since a lower bound for this problem is 5.82, this branch

is fathomed. For the subproblem where Y2 is fixed open, we calculate again

(P1 (0.3692)) since we didn't get k* in the previous calculation. This subproblem

provides a lower bound with zero and is fathomed. So z(0.3692) = 0, and an

optimal solution is found.

5. Conclusion

In this paper, we have developed an ROI maximizing model for a general SPLP

where locational and pricing decisions are to be determined simultaneously.
Here we have dealt with the discriminatory pricing environment which assumes
different pricing for different customers. Even under a different environment

such as a uniform price system [4], an ROI model can also be applied to it.

However, the model becomes more difficult to solve. Another possible extension

of our model is to impose the capacity restriction on each facility. However,

this model is also difficult to solve, since it doesn't allow the reformulation of
the model to a fixed demand model.

We can also consider the two different objective criteria, maximizing net
profit and maximizing ROI, in other settings. For example, we can maximize
the profit while maintaining the minimum required ROI level. In this case, it
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can easily be shown that optimal solutions are always obtained at the minimum

ROI level. Therefore, this model can be transformed to a standard maximizing
profit model. A bi-objective model may be a good alternative to ours, for which
the properties found here can also be used in finding non-dominant solutions.
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Table 1.
Data for Example

tij

i\ j 1 2 3 4 fi
1 20 60 80 140 570
2 60 20 40 100 1000
3 80 60 20 60 1500
4 120 100 40 20 1000

aj 80 180 100 220
bj 1 2 1 2 _ _
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k* = 0.4409

Y2 = 0

U* =O
LB = -462

Figure 1. Branch and bound tree for (P(A)) when A = 0.4179
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