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1. Introduction

Over the twenty-five years since Little's Law first appeared (Little [13]),
its simplicity and importance have established it as a basic tool of queueing
theory (cf e.g. the survey paper by Ramalhoto, Amaral and Cochito [15] ).
Little's Law equates the expectations of two variates in a system. For many of
the systems to which Little's Law is applicable, a stronger relation between
the distributions of the two variates is available. The setting required is
described in the theorem in Section 2. The distributional form of Little's law
has been observed previously in special contexts, (Fuhrmann and Cooper [3],
Servi [15], Svoronos and Zipkin [16]) but the generality of the setting and its
importance for queueing theory has not been set forth.

Suppose that, for some ergodic queuing system, there is a class C of
customers in the system with Poisson arrival rate X. Let N be the ergodic
number of customers in the system in that class and let T be the ergodic time
in system spent by a customer in that class. Let NS(U) = E[uN] be the p.g.f. of
N and let -s(s) = E(e' sT) be the Laplace-Stieltjes transform of T. Suppose it
is known for class C that

NS (U)= aTS(-XU) (1)
i.e. that

N =d KXT (2)

Here Ko is a Poisson variate with parameter 0 . In words, the ergodic
number of customers in that class in the system is equal in distribution to the
number of Poisson customers arriving during an ergodic time in system for
members of that class. A customer class for which the equality in
distribution holds may be said to satisfy the distributional form of
Little's Law or to be an LLD class. If one differentiates (1) at u = 1, one
sees that LLD implies Little's Law, i.e. E[N] = E[T] for that class. The
converse is not true as will be seen.
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For many of the system contexts for which Little's Law is valid , the
distributional form of the law is also valid. The object of the paper is to
demonstrate the prevalence of such system contexts, and to make clear the
value of the distributional form.

2. The prevalence of LLD Classes

It is known ( c.f.Kendall [11]) that the customers of an M/G/1 system
with infinite queue capacity and FIFO discipline satisfy (1). A broader
prevalence of the distributional form of Little's Law is suggested by the
following two theorems.

Prop. 1 ( Keilson and Servi [8])

Consider an M/G/1 type system with two classes of customers, infinite
queue capacity and FIFO preempt-resume discipline for the low priority
class. The distributional form of Little's Law is valid for the low priority
customers.

Prop. 2.

Every class of customers in an M/G/1 type priority system for which all
classes have Poisson arrivals and FIFO preempt-resume discipline over
lower priority classes is an LLD class.

Proof. Each class of customers sees only the customers with higher
priority. The totality of all customers with higher priority may be regarded
as a single class having a Poisson arrival rate equal to the sum of all the
arrival rates with higher priority and an effective service time distribution
which is a weighted mixture of the service times with higher priority. The
general result then follows from that for two classes.

These examples suggest an even broader validity. A more general
theorem is given next.
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Theorem.

Let an ergodic queueing system be such that, for a given class C of
customers:

a) arrivals are Poisson of rate X;
b) all arriving customers enter the system, and remain in the

system until served i.e there is no blocking, balking or reneging;
c) the customers are served one at a time in order of arrival;
d) arriving customers do not affect the time in the system of

previous customers.

Then the distributional form of Little's Law is valid for that class C of
customers.

The proof is based on two lemmas.

Lemma A.(Cf. Cooper [2] for the result due to Burke and Takacs) Let N(t)
be a time homogeneous process in continuous time on the lattice of non-
negative integers with changes of +1 at sequences of successive arrival and
departure epochs (Ak) and (Dk) respectively. Then lim k, ,P[N(TDk+)<

n] = lim k P[N(TAk-) < n ] when these limits exist.

Lemma B. (Cf. Wolff [19], [2]) Let N(t) be an ergodic population
counting process in continuous time with Poisson arrivals at successive
epochs (Ak). Then

lim t -, ooP[N(t) < n = lim k -, oP[N(%Ak+) < n ]

Proof of theorem:
Suppose that at t=O, the system is empty. Let Tk be the arrival epoch of

the k'th customer in class C, and let Dk be the departure epoch for that
customer. Let N(t) be the number of customers of class C in the system at
time t. Let Tk be the time spent in the system by the k'th customer, i.e. let Tk

=T Dk - Tnk. Then
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N('Dk+) KXTk .

This is true, since:
i) all customers found at arrival by the k'th customer have left the

system before that customer entered service;
ii) all customers arriving during the k'th customer time in system

are still there;
iii) the arrival and departure of the k'th customer cancel;
iv) If the customer has spent time in system y, and condition d) of

the theorem holds, then the pgf of the customers behind him is exp[-Xy (l-u)].

But when k- oo, N(Dk+) d N(TAk-) from Lemma A and from Lemma

B, N(oo) d N(Ak-) . The theorem follows .

The necessity of condition d) is provided by the following counter-
example. Suppose the customer in service is finished instantaneously
whenever the queue fills a buffer. Then the queue can never exceed the
buffer size and the theorem could not be true since KXT has infinite support.

When one differentiates (1) at u=l, one obtains at once the following
corollary.

Corollary . For any LLD class, one has

Var[N] Var[T] + 1(3)
E[N] E[XT]

Equation (2) implies that N is a mixture of Poisson Variates and the form

(o2/g) appearing in (3) arises in the context of such power mixtures. (Cf.

Keilson and Steutel [10]). Note that from Little's Law, E[N] = E[RT].
From (3) one can relate the variance of N to the mean and variance of T.
One also sees from (3) that for any LLD class of customers

Var [N] = Var[XT] + E[N] > E[N] (4)
and

page 4



Var[N] > Var[T] (5)
E[N]2 E[T]2

When simulating a queuing system with LLD classes of customers, it is
known (Law [12], Carson and Law [1] ) that it is more efficient to run a
simulation for the time in the system and then to compute the number in the
system than to run a simulation directly for the number in the system.
Equation (5) provides a simple argument for this result

3. LLD customer classes in other systems.

From the theorem above, one can identify at once other LLD systems.

A. Priority systems. In any priority system, all customer classes having
FIFO service discipline and Poisson arrivals are LLD classes. The service
needn't be preempt-resume. The proof the theorem implies that preempt -
repeat classes are also LLD classes. Nor is preemptive interruption
necessary. Head of the line priority does not disturb the LLD property. Note
however that if FIFO is violated in a class, e.g. if priority is given to
customers with short service times, the class will not be LLD.

B. Vacation systems. In certain queueing systems with Poisson arrivals,
the server takes one or more vacations when the queue is depleted. In many
versions of this system the class of arrivals will be LLD. For some variants,
however (Keilson and Servi [9], Harris and Marchal [4]), the server may
take another vacation with a probability dependent on queue length. The
server, for example, might not end a vacation until N or more customers are
waiting (Yadin and Naor[18], [Heyman [5]). For such variants, the
distributional form of Little's Law is not predicted by the theorem since
condition d) of the theorem is violated.

C. M/G/1 systems with preemptive interruptions at clock ticks (Cf.
Keilson and Servi [7] ). If a Poisson stream of ordinary customers with iid
service times is preempted by other iid tasks arriving at clock ticks, then
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Little's law holds in distribution for the time to service completion of the
ordinary customers.

D. Cyclic service systems (Cf. Takagi [17]) Suppose Poisson customers
queue at service sites and a single server moves cyclicallly between such sites,
either serving the customers at the sites to exhaustion, employing a Bernoulli
schedule (Keilson and Servi [6] ), or serving at most K customers at a site
before moving on. Then the customers at any site are an LLD class provided
they are served in order of arrival. The changeover time of the server
between sites does not disturb the LLD property.

E. Tandem server systems ( M/G/G/ .. /G). Consider K servers in
tandem each with infinite queue capacity and each having iid service times
for successive arrivals. If arrivals to the system are Poisson, and FIFO
discipline is maintained throughout the system, then Little's law in
distribution relates the time spent in the system to the number of customers in
the system at ergodicity.

4. The value of the distributional form of Little's Law.

Apart from the relations between means and variances given
in (3), the distribution information has other benefits, some of which
are listed below.

Stochastic bounds

It is well known that the Poisson variate K 0 increases stochastically

with 0. It then follows from (2) that N increases stochastically when T
increases. It is sometimes easy to obtain a distribution bound for a time in
system. When one can do so one automatically has a distribution bound for
the number in the system.

Heavily loaded systems.

Suppose it is known that T is exponentially distributed to good
approximation. It is then a direct consequence of the distributional form of
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Little's Law that for an LLD system N is geometrically distributed. The
single parameter needed for the distribution is then available from the first
moment. For heavily loaded systems, knowledge that T is asymptotically
exponential in distribution implies that N is asymptotically geometric in
distribution. An easy example is that of the number in the system for M/G/1
with FIFO discipline.

Decomposition Results.

For a broad class of customers, Fuhrmann and Cooper [3] proved that
the ergodic number of customers in the system is distributed as the sum of
two random variables, one of which is the ergodic number in the system of an
ordinary M/G/1 queue. This class is a proper subset of the LLD class. Every
LLD class for which N decomposes has a decomposition for T. This
decomposition has also been observed in [3] via separate reasoning when the
vacation lengths are not "triggered" by arrivals.

5. The LLD property for the number in queue.

The ordinary form of Little's Law is applicable both to the time in
system and to the time in queue. It is natural to try to find an LLD result for
the time in queue and the number in queue by transferring the ingredients of
the proof of the theorem to a subsystem consisting of a queue only. Direct
application of the theorem, however does not work. The difficulty arises
from the requirement in the theorem that the arrival process be Poisson . For
M/G/1, say, arrivals bypass the queue when the server is idle . The arrival
process to the queue (as against to the system) is then a Poisson point process
with censored epochs i.e. is not Poisson. Nevertheless, for an M/G/1 system,
the time in queue and the number in queue do obey Little's Law in
distribution.

This may be first verified from the familiar M/G/1 results . Let nNQ(U) be
the pgf of the ergodic number in the queue and let aTQ(s) be the transform of
the ergodic time in queue. Let nNs(u) be the pgf of the ergodic number in the
system and let cax(s) be the transform of the ergodic time in system. Let oa(s)
be the transform of the service time. We first note that NQ(U) has
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contributions from the idle state and from the states where the server is busy.
One then has

NS() -(l-P)
/NQ ( ) U (+ p 

From our theorem, NS(U) =TS(X-U ) = Q(X.-U)aT(X-XU). One has

( TQ(X-k.U)aT(-u) -(1 -p)(1 -U)
NQ(U)- u

Since the time in queue at ergodicity coincides with the ergodic waiting time,
we may employ the Pollaczek-Khintchine Law for aTQ(s) to see that

(1-p)(1-u)aT(-. -(p)(U )

aT(X-Xu)-u
sNQ(U) = U

aT(?.-Xu)
(1-p)(1-u){ aT(XXu)-u - 1 (l-p)(l-u)

u aCT(X-Xu)-u = aTQ( -U),

as required.
The validity of Little's Law in distribution could also have been obtained

from our theorem with the help of the following artifice. One could replace
the M/G/1 system by an M/G/1 vacation system (e.g., [1]) where the server
takes a vacation of duration D whenever it finds the queue idle . In this way
the queue is treated as a subsystem with Poisson arrivals and the theorem
gives the LLD result. When a sequence of such subsystems with vacation
durations Dj is considered, and Dj - 0, LLD holds for each j and hence in the
limit for M/G/1.

The same artifice or a similar artifice could be applied to all of the
customer classes described in Section 3 to conclude that the LLD property is
available for the ergodic number in queue and time in queue.
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