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Abstract

A closed form expression for the waiting-time distribution under FCFS

is derived for the queueing system Ck/Cm/s, where Ck is the class of Coxian

probability density functions (pdfs) of order k, which is a subset of the pdfs that

have rational Laplace transform (R). Using the calculus of difference equations

and based on previous results of the author it is proved that the waiting-time

distribution is a mixture of ( ) exponential terms. Our approach offers

qualitative insight by providing exact and asymptotic expressions, generalizes

and unifies the theories developed for the well known G/G/1, GIMIs QS and

leads to an O(k3('+' - )3) algorithm, which is polynomial if only one of the

parameters s or m varies, but it is exponential if both parameters vary. As

an example numerical results for the waiting-time distribution of the C 2 /C 2/s

queueing system are presented.

Keywords: Multichannel queues, Coxian pdf, Waiting-time distribution
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1 Introduction

The explicit evaluation, either by analytic or by numerical means, of the waiting-

time distribution in a general multi-server queueing system (QS) is by now well

known to present substantial difficulties. Up to the beginning of the last decade, the

only revelant results available in the literature were those for the MID/s system,

found in the first half of the century by Erlang and Crommelin (as reviewed by

Takacs [22]) and for the G/M/s system, first given independently by Pollaczek

[15] and Kendall [10]. In this respect, it is reasonable to expect that the more we

depart beyond the M/D/s and G/M/s assumptions, (which are seldom validated

in practice), the harder the relevant problem becomes.

In this paper based on previous results of the author (Bertsimas [21), which are

summarized in section 2.3, we derive closed-form expressions for the waiting-time

distribution under FCFS for the Cn/C,/s QS, where Ck is the class of Coxian

probability density functions (pdfs) of order k, which is a subset of the pdfs that

have rational Laplace transform (R).

1.1 Related work

Although a historical review and description of related work is given in Papacon-

stantinou and Bertsimas [14] we include for completeness the following very short

commentary on the application of solution approaches to multiserver models, which

assesses fairly their inherent potential to produce theoretical and, especially, exact

numerical results (which should usually be their ultimate goal) for the waiting-time

distribution. In the area of exact waiting-time analysis for multiserver QS's with

non-constant or non-exponential service-times, the only "potentially able to provide

numerical results" approaches (always restricted to FCFS) are, up to date, due to:

1. Pollaczek [16],[17](see also Syski 21])who presents for the G/G/s model a

system of equations and describes how they should be solved for the G/R/s
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case, but restricts his analysis to the s=2 case, which still necessitates consid-

erable efforts to obtain numerical results. He also claims that the waiting-time

distribution is a mixture of at most ( ) exponential terms. His deriva-

tions, being long and complicated, lack any probabilistic interpretation, need

deep arguments from complex variable theory and for 8 > 2 lead to almost in-

tractable mathematics. It should be stressed, however, that Pollaczek's ideas

were pioneering and his work exerted tremendous impact on the development

of queueing theory.

2. Avis [1], who develops for the virtual waiting time of the G/E,,/s system

a computational procedure based on Yu's 1251 theoretical treatise. Because

of the inherent complexity of the algorithmic method used, this procedure is

applicable to M/E 2 /2, E/E 2 /2 and D/E2 /2 systems.

3. Cohen [3] who (constructing a 2-dimensional functional equation and apply-

ing several times a Wiener-Hopf decomposition) investigates the M/H,/2

system, but derives an explicit Laplace-Stieltjes transform which he admits to

be very complicated and not suitable for further analysis (even for studying

its asymptotic properties).

4. De Smit [19], who, (continuing and expanding the work of Pollaczek), consid-

ers the waiting-time distribution of G/H,I/s and reports numerical results for

G/H2/s in [20]. Yet, this approach leads to an algorithm of very high com-

putational complexity, which for the G/H 2 /s is (s 6 ) compared with O(s3)

of our method.

5. Ishikawa [9], who (proceeding through an intricate analysis based on supple-

mentary variables), gives numerical results for the waiting-time distribution

of the G/E,,/s system for very small values of m, s (m < 3, s < 3).
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6. Papaconstantinou and Bertsimas [141, who describe a probabilistic method

based on the post-departure probabilities for the Ek/G/s QS. Using the

method of stages, they show that if the probability distribution for the num-

ber of stages in the system is known, then the waiting-time distribution can

be easily obtained and apply this method to derive explicit formulas and nu-

merical results for the waiting-time distribution of the Ek/C2/s QS.

Regarding approximations of the exact waiting-time distribution for multi-server

QS, Hokstad [5] presented an approximate expression for the waiting-time distribu-

tion of a M/G/s QS by extending the formulae of the M/G/1 QS and in [6] gave

bounds for the mean queue length of the M/C 2 /s QS. Takahashi [23] and Neuts and

Takahashi [13] gave an expression for the tail of the distribution for PH/PH/s and

G/PH/s QS's respectively. We discuss the relation between their and our result

in section 3.3 of this paper. Van Hoorn and Tijms 18] presented an approximation

(in the form of a defective renewal equation) for the waiting-time distribution of

the M/G/s QS. Seelen [18], using the previous results of Takahashi, proposed for

the PH/PH/s QS a relatively simple approximation, for which though, there is no

guarantee of being a proper pdf and of preserving the correct asymptotic behaviour.

The interested reader should also try to read van Hoorn's [7] lucid discussion and

typical results of various exact and approximate algorithmic methods on QS's.

1.2 Organization of the paper

In section 2, we describe the system, explain its structure and the notation used

and review the results for the steady-state probability distribution for the number

of customers in the QS from Bertsimas [2] that we will use. In section 3, which is

the most important part of the paper, we write down the equations that describe

the system and then use the calculus of difference equations to derive a closed form

expression for the waiting-time distribution. Furthermore, in section 3.3 we exam-
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ine the asymptotic behavior of the waiting-time distribution. In section 3.4 we show

that the results for two seemingly very different QS, G/G/1 and G/M/s, which are

traditionally analysed with very different methods (Wiener-Hopf decomposition and

Imbedded Markov Chain respectively) are unified using the results of the present pa-

per. In section 4, the established theoretical results, which are considerably simpler

than those mentioned in section 1.1, are used to write a computationally efficient

algorithm in order to extract numerical results. As an example, the algorithm is

applied to the general class of C2 distributions, i.e. for the C 2 /C 2 /s QS, for which

numerical results are reported.

2 Description of the system and previous results

We shall examine, henceforth, an s identical-single-waiting-line QS with interarrival

and service time distributions of Coxian type of order k and m respectively. The

queue discipline is First-Come-First-Served (FCFS).

2.1 Probabilistic interpretation of the QS

The general Coxian class C, was introduced in Cox's [4] pioneering paper and is

clearly presented in Kleinrock 11]. Graphically it is presented in figure 1. It is

remarkable that even if we permit transitions from a stage with rate Ai to a stage

with rate C/j in figure 1 we do not obtain a new class of distributions. We can still

formulate this situation with a C, distribution with different transition rates. The

salient feature of the class C, is its high versatility (see e.g. Neuts [12], Whitt [24])

based on its ability to:

1. Generalize well-known distributions such as the exponential, the hyperexpo-

nential and all the forms (i.e., special, general, weighted, compound, etc.) of

the Erlangian.
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2. Be dense in the set of all probability distributions concentrated on (0, oo) and

thus to be able to approximate a general pdf.

3. Permit coefficients of variation V,2 greater than 1.

Figure 1: The C, class of distributions

To analyse the model we conceive of the arrival process as an arrival timing

channel (ATC) consisting of k consecutive stages with rates 1, 2, ... , )Ak and with

probabilities P,P2,...,k p 1 of entering the QS after the completion of the 1st,

2nd, ... kth stage. We remark that as soon as a customer in the ATC enters the

QS a new customer arrives at stage 1 of the ATC. For the service time distribution

we consider as above a service timing channel (STC) consisting of m consecutive

stages with rates /1,/ 2, ..., ,m and with probabilities ql,q2,..., q 1 of leaving the

system.

2.2 Notation

For the steady-state we introduce the random variables:

1. N The number of customers in the system.

2. N- The number of customers seen by an arriving customer just before his

arrival.

3. R -The number of the ATC stage currently occupied by the arriving cus-

tomer.

4. Rji The number of customers being served at the jth STC stage (j =

1, 2, ..., m).
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5. R - The number of customers being served at the jth STC stage (j =

1, 2, ... ,m), just before the arrival of an entering customer.

6. T - The waiting-time of an arriving customer.

7. Lq The length of the queue.

For simplicity of notation we introduce the vectors of random variables

- R

and also we will use the notation:

j- (0 ... , 0, 1,0..., 0) a(s, m) (+ s )

I- = s meaning that E'= 1 ij = s.

With the above definitions the system can be formulated as a continuous time

Markov chain with infinite state space:

{(N ,R.,,Ri, ... ,R),N = 0,1,..., k R = min(N, s)}
j=1

where the states with N < s (i.e., the states with at least one server free) and N > s

(or all servers busy) will be termed uunsaturated" and "saturated" respectively. We

now introduce the following set of probabilities:

P, ,, Pr{N = n, R. 1, R = i)

P--A Pr{N = n,R- =

Pn Pr{N = n)

P,; Pr{N- = n}

We also define:

fT, (), f(O) - The Laplace transform of the interarrival and service time distri-

butions respectively.

x-The mean interarrival time.

6



1The mean service time.
Ap =- = The traffic intensity.

V2 - The squared coefficient of variation of the interarrival distribution .

V? 2 The squared coefficient of variation of the service-time distribution .

2.3 Review of previous results

In Bertsimas [2], after writing the equations for Pn,, and using seperation of vari-

ables and a generating function technique, the following closed form expressions

were established for p < 1:

a(s,m) I-1 (

P,,= Bj (I (wj) + A )f(,wj) w n > s, I =l ,...,k, lil=s (1)
, =1Z(w) + A,+

where Bj are computed by solving a linear system of a(s, m) equations with a(s, m)

unknowns, f(i, wj) are computed from the following recursion:

f((O, ,.. ., ), Wj)= 1

m m

wj qP(ir + )f(+ 6 -6, wj) + (1 - q)r(i, + i)f(i'+ 4-r 5,+l, wj) =
r=1 r=l

f(i, wj)( ir.r - (wj)} , = s, j = 1,..., a(s, m) (2)
r=1

Each of the a(s,m) roots w3 satisfy the following system of nonlinear equations

(the subscript j corresponds to one of the a(s, m) combinations of the vector =

(il,i2,... ,im), Em=l i, = s and for simplicity of notation x(wi) is simply written

x):

,(z) i1o() + io2(X) + .. . + imm(X) = , i + i + ... + i = (3)

where O(x) (j = 1,... ,m) are the m roots of the polynomial equation of degree

fm:

f/~(X)(-j(X)) = 1 (4)

7



and

W = f,.(x)

The generating function of the coefficients f(i, wj)

= (i1 ,i)

satisfies the following linear partial differential equation

- aCj(z (lrZr - wjzl1 qA, - (1 - q,)rz,.r+l) = (wj)Gj(z)
was found to be (each j corresponding to a vector

was found to be (each j corresponding to a vector/ :

Gj(z= - l(
r=1

+ ... + b,,(wi)zm i

b.,. (wJ)

and the coefficients bi,,(wj) are computed from the expansion of a determinant.

The "unsaturated" probabilities Pn ,. are of the form:

a(am)

Pn,, = E Bj g(n,l,i wj)
j=l

n < s, I = 1,...,k, Iil = n

where the coefficients g(n, , i, wj) are computed recursively. Furthermore, the pre-

arrival probabilities P-- were found to be:
n,

Pn, = A Bj f(, wj) (Xl + :(wj));n+l n > s, I = SSj=I

3 Waiting time analysis under FCFS

We denote with

W(t) _ Pr{O < Tq < t}

FT,(t) Pr{T <• t}

F,.r(t) Pr{O < Tq < tIN- = n + s, R

(9)

8
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In this section we shall derive a closed form expression for W(t) and FT,(t) , i.e. the

probability distribution for the waiting-time under FCFS of an arriving customer.

Then by conditioning on N- and R- we easily find that

00oo

n=W(t) = E E F. -(t) P-

Using (9) we then find

1 a(a,m) 00
W(t) = E Bj ( 1 + z(wj))w;+{Z f(i,wj) E F.,t)w 7} (10)

i=l 1 = n=O

3.1 The equations

]3y conditioning on the next event in the interval (t, t + 6t) and taking the limit as

6t - 0 we can write the equations that F.,{t) satisfy

d
FdtF,(t) + FZ, (t) i =

m mgr=

iqF_ + (t) + (1 - qr)irrF,,t+,,+ (t) n > O, il =s (11)
r=1 r=1

where F_,.(t) 1, by definition. We define the Laplace transforms

W(O) L(W(t)) and b-V(6) (F, (t))

and the quantities
00

A () E W 'n*~,i (0)
n=O

Hj(0) _ C f(i. wj)A, j(O)

Then from (10) we take

1 a(,m)
W*(o) = , Bi (A1 + x(w))w1 ·+ Hij() (12)

j=1

9



Although (12) seems dissapointing we will find a very simple formula for Hi (9). We

now transform (11) and obtain

{ + E irLr} (9)
t=l

m

= ~ iQrrAr,(- (0)+
r=1

1- qr)rirb 1,+. (9)
r=l

n>o, il=s

where

_,b(a) {Flt)} = {1} 

3.2 The basic method

The strategy for obtaining a closed form expression for W'(8) is the following:

1. We obtain a difference equation for A(, -().

2. We multiply the equation for Ahj(O) by the coefficients f(i, w), ad with

respect to i and using the equations (2), we are able to solve for Hi(O).

We multiply (13) with w7' and add with respect to n to take

{O + E irr}A (0) = irq r + wj Z irqrrA;+6 -,_, j() +
r=l r=l

J:( - qr)lirAi-L,.,i+,+,,j(0)
r=1

Performing now the second step we get

OHj(o) + E f(i,wj)A- j(0) 
Pi=, r=1

m m

A, j(I)wj qAl,(i , + rl)f ( +- , wj) + (1-q,)z,(i,+) f (-+
il= r=l r=1

10
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(14)

1 m
tr r= 

r=l
qr, E irf(iwj)+

II=8

Wj)}

(15)



Substituting (2) into the rhs of (15) we find

0Hi(() + Z f(i wj)A;,( ) Z trMl
r=1

in

= E qrl 
0 .=1 P=

C A j(0) f(iw ) ( irAr - X(wj))

I1=8 r=1

Since in (16) the term

E f(i.wi) A () ir
i1=. r=l

cancels from both sides we get

1 m
OHj(O) = q r E'. irf (, s w) - x(wj)Hj (O)

Hence wer= can solve for 

Hence we can solve for Hj(O)

Hj,() = m 1 qr, Eil=( i f ( Wj)
t + (tj))

m m

, q,.Ar, s irf(, Wj) =
r=l P=8 r=1

qrGr z I=--r =
"z,

z(wA) Gj(i)
1-w' ,c

from where (17) becomes

Hi(0) = x(wj) Gj(l) 1
1 -wj 0( + (wj))

Substituting (18) into (12) we obtain

1 a(,'m)
W*(o) = - Bj Gj(l(A1

t=l

Using partial fractions we find

1 a(,m)
W*(O) = Bi

i=1
Gj(Q(, + X(wj)) ( 11-tv 0

11

i4f(t,wj)+

(16)

(17)

(18)

1+ (w))

1
+ (Wj) (19)

From (6) for = A (1, 1, .. 1) we find that



Now the inversion of (19) is an easy task. Thus

1 a(s,m)
W(t) Pr{o < Tq < t} = 

j=1
Bj Gj () (, + (Wj)) - (1 - e- z(wi)t)

As a check on the algebra we verify that in the limit t -- oo we find

00

lim W(t) = Pr{(T > 0} = E
t--oo n=

Also
1 a(,m)

FTq(t) = 1 - E B,
j=1

00

Pn =Z -nsn=s I'=

Gj() (XA + (j))e-(i)t
1- 

where from (5) w; = f (x(wj)). It is remarkable that the waiting-time pdf has also

rational Laplace transform, i.e. it belongs to the class R.(,,m) of distributions.

From (21) it is easy to find the following compact expression for the rth moment of

G '+ ((A + x(wj))
1-wj [(wj)lr

As an additional check on the algebra we calculate the factorial moments of Lq

E{L(Lq -1)... (Lq - r + 001)} - (n- s)(n- s-
n=a

Since for n > s

then from (1) we find

a(s,m)

Pn = Z
j=1

k

Pn = Pn,1, 
1=1 I/=

Bj Gj ( X, + ( I) w(1 -Wj) n>s

from where, after algebraic manipulations and using the identity

E n(n - 1) ... (n- r + 1) a"-'
n=O

d

a(a,m)

E{Lq(Lq -1) ... (Lq-r + 1)} = r! BG
j=1

(1 -a)" '

'') (XW + X(wj))
-(wi)

12
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Tq

(21)

E{T} = A
Ia(,m)

B
j=1

we fin

1) ... (n - s - r + 1) Pn



For r = 1 we verify Little's formula

E{Lq} = AE{Tq}

For k = 1 the model becomes M/C,/s and then we verify the well known result

which holds for M/G/s

E{Lq(L - 1) ... (Lq - r + 1)} = Ar E{7q}

where we used the fact that in this case wj = f.(x(wj)) 4= .z (Al = A).

3.3 Asymptotic results

Takahashi [23] proved that in a PHIPHIs QS the stationary probability Im that

there are more than m customers waiting in the queue behaves asymptotically as

m- oo:

I, m Klr;m

where the constant K 1 was not computed and 7 = f. (sy) where y is the unique

positive root of the equation:

f (sy) f(-y) - 1

Furtermore, he proved that as t --, oo:

1 - FT, (t) K2e- 'v t

where K ()

In order to see the connection of the above results and the results of the present

paper, we observe that

fi 0 Bam) AJ + (Wj)

: = n P.= E B G( X" + W(")l +x ) '
n=m+*+l j=l X(wj) u

13



Thus asymptotically as m -4 oo 11 behaves as

. l lB1 G1((i1 Z(Wi) l.+lW

where wl is the root corresponding to the combination of i = (O,... , ). Specializing

(3),(4) and (5) we find that wl = f(z(wl)) where x(wl) is the unique positive root

of the equation

f.() f .(--) = 1
8

Thus we see that by letting y = q(), , = wl the two results are identical.

Furthermore, we observe from (21) that as t -, oo

1 - FT,(t) B 1, Gl(f)(Al + x(wl)) Z(l)t
1 - ,

Again the two results are identical and we can also easily check that K =
K2 -(wl)

It should also be stressed that in our expressions we are able to compute expicitely

the constants K 1, K 2.

3.4 Two special cases

1. Cn/Cm/1

Since the only combination of i for s = 1 are of the type i = (0,..., 0, 1,0,..., 0)

(a(1,m) = m) we verify a well-known result from GIG/1 theory that FT,(t)

is a mixture of m exponential terms of the form of (21) where in this case

s(uj),j = 1,...,m are the m roots of the equation

f.(X)f;.(-X) = 1

subject to the constraint If~.(z)l < 1.

2. C/M/s

For m = 1 (4) becomes

f. (.z)(-- )= 1= = = s (1 - f ())S

14



Since a(s, 1) = 1 we find the well known result from G/M/s theory that

1 - FT,(t) = Kse-Zt

where z is the unique root of the above equation.

4 Computational and complexity considerations

4.1 The algorithm

In order to extract numerical results from the formulae presented in the previous

section the author in [2] has proposed an algorithm with complexity O(kS(+'-l)3),

which is polynomial if only one of the parameters s or m varies, but it is exponential

if both parameters vary. In other words, for an arbitrary interarrival distribution

and a given service-time distribution the problem of determining the waiting-time

distribution under FCFS can be solved in time polynomial in the number of servers.

This algorithm is summarized as follows:

S+m 1
1. Determination of the ( ) roots wi of the system of equations (3), (4),(5).

2. Recursive determination of the coefficients f(i, w) from (2).

3. Recursive determination of the coefficients g(n, I,i, w) in (8) from the equa-

tions that P,t,; satisfy for n < s.

4. Determination of the ( + s ) unknowns Bj as a solution of a non-homogeneous

linear system with ( s ) equations.

4.2 The numerical solution of the C 2 /C 2 /s QS

To fully gauge the performance of the proposed algorithm we programmed it in

FORTRAN, because of its inherent superiority in accuracy and speed and in BASIC

15



because of its greater availability in microsystems. The first program has been run

on a CYBER 171 and the second on a SPECTRUM 48K, in order to prove that even

for such a "difficult" model exact numerical results can be obtained by a practitioner

on a small personal computer.

The reasons we selected this model are:

1. It is representative of the general behavior of the algorithm for more general

models.

2. It is in real arithmetic.

3. Its complexity is 0(s 3 ).

4. This model allows the determination of exact results when the coefficients of

variation of the interarrival and of the service time pdf are both bigger than

1.

Merely as an illustration of the stability and accuracy of the present algorithm,

we present in figure 2 some results for the waiting-time complementary distribution
A A
FT, (t) 1 - FT,(t) for the C 2 /C 2 /s QS as V.2 varies (s = 10, p = 0.9, V,2 = 5.0).

A
In figure 3 we show the dependence of FTq (t) for the C 2 /C 2 /s QS as V 2 varies

(s = 5, p = 0.8, V2 = 5.0).

Figure 2: FT, (t) as a function of Vf2 for the C 2/C 2/10 QS

Figure 3: FT9 (t) as a function of V.2 for the C 2/C 2/5 QS
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Figure 1: The C, class of distributions

20

.



2.0

Waiting-time complementary

distribution function

for the C 2 /C 2 /s model with

s = lo, p = 0.9, C 2 = 5

10 5~~~~~~~~~~

30

A
Figure 2: FT, (t) as a function of V2 for the C 2/C 2 /10 QS
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Waiting-time complementary

distribution function

for the C 2 /C 2 /s model with

8 = 5, p = 0.8, C2 = 5
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Figure 3: FTg (t) as a function of V,2 for the C 2 /C 2/5 QS
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